Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray Classification
Deep learning methods have shown outstanding classification accuracy in medical imaging problems, which is largely attributed to the availability of large-scale datasets manually annotated with clean labels. However, given the high cost of such manual annotation, new medical imaging classification problems may need to rely on machine-generated noisy labels extracted from radiology reports. Indeed, many Chest X-ray (CXR) classifiers have already been modelled from datasets with noisy labels, but their training procedure is in general not robust to noisy-label samples, leading to sub-optimal models. Furthermore, CXR datasets are mostly multi-label, so current noisy-label learning methods designed for multi-class problems cannot be easily adapted. In this paper, we propose a new method designed for the noisy multi-label CXR learning, which detects and smoothly re-labels samples from the dataset, which is then used to train common multi-label classifiers. The proposed method optimises a bag of multi-label descriptors (BoMD) to promote their similarity with the semantic descriptors produced by BERT models from the multi-label image annotation. Our experiments on diverse noisy multi-label training sets and clean testing sets show that our model has state-of-the-art accuracy and robustness in many CXR multi-label classification benchmarks.
Chest X-ray Foundation Model with Global and Local Representations Integration
Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.
Explainable Knowledge Distillation for On-device Chest X-Ray Classification
Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.
CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation
Chest X-rays (CXRs) are the most frequently performed imaging test in clinical practice. Recent advances in the development of vision-language foundation models (FMs) give rise to the possibility of performing automated CXR interpretation, which can assist physicians with clinical decision-making and improve patient outcomes. However, developing FMs that can accurately interpret CXRs is challenging due to the (1) limited availability of large-scale vision-language datasets in the medical image domain, (2) lack of vision and language encoders that can capture the complexities of medical data, and (3) absence of evaluation frameworks for benchmarking the abilities of FMs on CXR interpretation. In this work, we address these challenges by first introducing CheXinstruct - a large-scale instruction-tuning dataset curated from 28 publicly-available datasets. We then present CheXagent - an instruction-tuned FM capable of analyzing and summarizing CXRs. To build CheXagent, we design a clinical large language model (LLM) for parsing radiology reports, a vision encoder for representing CXR images, and a network to bridge the vision and language modalities. Finally, we introduce CheXbench - a novel benchmark designed to systematically evaluate FMs across 8 clinically-relevant CXR interpretation tasks. Extensive quantitative evaluations and qualitative reviews with five expert radiologists demonstrate that CheXagent outperforms previously-developed general- and medical-domain FMs on CheXbench tasks. Furthermore, in an effort to improve model transparency, we perform a fairness evaluation across factors of sex, race and age to highlight potential performance disparities. Our project is at https://stanford-aimi.github.io/chexagent.html.
Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation
Chest X-Ray (CXR) report generation is a promising approach to improving the efficiency of CXR interpretation. However, a significant increase in diagnostic accuracy is required before that can be realised. Motivated by this, we propose a framework that is more inline with a radiologist's workflow by considering longitudinal data. Here, the decoder is additionally conditioned on the report from the subject's previous imaging study via a prompt. We also propose a new reward for reinforcement learning based on CXR-BERT, which computes the similarity between reports. We conduct experiments on the MIMIC-CXR dataset. The results indicate that longitudinal data improves CXR report generation. CXR-BERT is also shown to be a promising alternative to the current state-of-the-art reward based on RadGraph. This investigation indicates that longitudinal CXR report generation can offer a substantial increase in diagnostic accuracy. Our Hugging Face model is available at: https://huggingface.co/aehrc/cxrmate and code is available at: https://github.com/aehrc/cxrmate.
Chest ImaGenome Dataset for Clinical Reasoning
Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe 242,072 images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) 1,256 combinations of relation annotations between 29 CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over 670,000 localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from 500 unique patients.
Synthetically Enhanced: Unveiling Synthetic Data's Potential in Medical Imaging Research
Chest X-rays (CXR) are the most common medical imaging study and are used to diagnose multiple medical conditions. This study examines the impact of synthetic data supplementation, using diffusion models, on the performance of deep learning (DL) classifiers for CXR analysis. We employed three datasets: CheXpert, MIMIC-CXR, and Emory Chest X-ray, training conditional denoising diffusion probabilistic models (DDPMs) to generate synthetic frontal radiographs. Our approach ensured that synthetic images mirrored the demographic and pathological traits of the original data. Evaluating the classifiers' performance on internal and external datasets revealed that synthetic data supplementation enhances model accuracy, particularly in detecting less prevalent pathologies. Furthermore, models trained on synthetic data alone approached the performance of those trained on real data. This suggests that synthetic data can potentially compensate for real data shortages in training robust DL models. However, despite promising outcomes, the superiority of real data persists.
Distilling BlackBox to Interpretable models for Efficient Transfer Learning
Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (e.g., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a mixture of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.
MedRAX: Medical Reasoning Agent for Chest X-ray
Chest X-rays (CXRs) play an integral role in driving critical decisions in disease management and patient care. While recent innovations have led to specialized models for various CXR interpretation tasks, these solutions often operate in isolation, limiting their practical utility in clinical practice. We present MedRAX, the first versatile AI agent that seamlessly integrates state-of-the-art CXR analysis tools and multimodal large language models into a unified framework. MedRAX dynamically leverages these models to address complex medical queries without requiring additional training. To rigorously evaluate its capabilities, we introduce ChestAgentBench, a comprehensive benchmark containing 2,500 complex medical queries across 7 diverse categories. Our experiments demonstrate that MedRAX achieves state-of-the-art performance compared to both open-source and proprietary models, representing a significant step toward the practical deployment of automated CXR interpretation systems. Data and code have been publicly available at https://github.com/bowang-lab/MedRAX
RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
Multimodal models trained on large natural image-text pair datasets have exhibited astounding abilities in generating high-quality images. Medical imaging data is fundamentally different to natural images, and the language used to succinctly capture relevant details in medical data uses a different, narrow but semantically rich, domain-specific vocabulary. Not surprisingly, multi-modal models trained on natural image-text pairs do not tend to generalize well to the medical domain. Developing generative imaging models faithfully representing medical concepts while providing compositional diversity could mitigate the existing paucity of high-quality, annotated medical imaging datasets. In this work, we develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays (CXR) and their corresponding radiology (text) reports. We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts. We assess the model outputs quantitatively using image quality metrics, and evaluate image quality and text-image alignment by human domain experts. We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language. Fine-tuning this model on a fixed training set and using it as a data augmentation method, we measure a 5% improvement of a classifier trained jointly on synthetic and real images, and a 3% improvement when trained on a larger but purely synthetic training set. Finally, we observe that this fine-tuning distills in-domain knowledge in the text-encoder and can improve its representation capabilities of certain diseases like pneumothorax by 25%.
SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation
Inspired by the success of large language models (LLMs), there is growing research interest in developing LLMs in the medical domain to assist clinicians. However, for hospitals, using closed-source commercial LLMs involves privacy issues, and developing open-source public LLMs requires large-scale computational resources, which are usually limited, especially in resource-efficient regions and low-income countries. We propose an open-source Small Language and Vision Assistant (SLaVA-CXR) that can be used for Chest X-Ray report automation. To efficiently train a small assistant, we first propose the Re^3Training method, which simulates the cognitive development of radiologists and optimizes the model in the Recognition, Reasoning, and Reporting training manner. Then, we introduce a data synthesis method, RADEX, which can generate a high-quality and diverse training corpus with privacy regulation compliance. The extensive experiments show that our SLaVA-CXR built on a 2.7B backbone not only outperforms but also achieves 6 times faster inference efficiency than previous state-of-the-art larger models.
Fairness and Robustness of CLIP-Based Models for Chest X-rays
Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness
Enhanced Contrastive Learning with Multi-view Longitudinal Data for Chest X-ray Report Generation
Automated radiology report generation offers an effective solution to alleviate radiologists' workload. However, most existing methods focus primarily on single or fixed-view images to model current disease conditions, which limits diagnostic accuracy and overlooks disease progression. Although some approaches utilize longitudinal data to track disease progression, they still rely on single images to analyze current visits. To address these issues, we propose enhanced contrastive learning with Multi-view Longitudinal data to facilitate chest X-ray Report Generation, named MLRG. Specifically, we introduce a multi-view longitudinal contrastive learning method that integrates spatial information from current multi-view images and temporal information from longitudinal data. This method also utilizes the inherent spatiotemporal information of radiology reports to supervise the pre-training of visual and textual representations. Subsequently, we present a tokenized absence encoding technique to flexibly handle missing patient-specific prior knowledge, allowing the model to produce more accurate radiology reports based on available prior knowledge. Extensive experiments on MIMIC-CXR, MIMIC-ABN, and Two-view CXR datasets demonstrate that our MLRG outperforms recent state-of-the-art methods, achieving a 2.3% BLEU-4 improvement on MIMIC-CXR, a 5.5% F1 score improvement on MIMIC-ABN, and a 2.7% F1 RadGraph improvement on Two-view CXR.
MCL: Multi-view Enhanced Contrastive Learning for Chest X-ray Report Generation
Radiology reports are crucial for planning treatment strategies and enhancing doctor-patient communication, yet manually writing these reports is burdensome for radiologists. While automatic report generation offers a solution, existing methods often rely on single-view radiographs, limiting diagnostic accuracy. To address this problem, we propose MCL, a Multi-view enhanced Contrastive Learning method for chest X-ray report generation. Specifically, we first introduce multi-view enhanced contrastive learning for visual representation by maximizing agreements between multi-view radiographs and their corresponding report. Subsequently, to fully exploit patient-specific indications (e.g., patient's symptoms) for report generation, we add a transitional ``bridge" for missing indications to reduce embedding space discrepancies caused by their presence or absence. Additionally, we construct Multi-view CXR and Two-view CXR datasets from public sources to support research on multi-view report generation. Our proposed MCL surpasses recent state-of-the-art methods across multiple datasets, achieving a 5.0% F1 RadGraph improvement on MIMIC-CXR, a 7.3% BLEU-1 improvement on MIMIC-ABN, a 3.1% BLEU-4 improvement on Multi-view CXR, and an 8.2% F1 CheXbert improvement on Two-view CXR.
Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray imaging (CXR) is an important diagnostic tool used in hospitals to assess patient conditions and monitor changes over time. Generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic X-rays. However, these models mainly focus on conditional generation using single-time-point data, i.e., typically CXRs taken at a specific time with their corresponding reports, limiting their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes, suggesting its potential for further development as a clinical simulation tool. This could offer valuable insights for patient monitoring and treatment planning in the medical field.
Ontology-Based Concept Distillation for Radiology Report Retrieval and Labeling
Retrieval-augmented learning based on radiology reports has emerged as a promising direction to improve performance on long-tail medical imaging tasks, such as rare disease detection in chest X-rays. Most existing methods rely on comparing high-dimensional text embeddings from models like CLIP or CXR-BERT, which are often difficult to interpret, computationally expensive, and not well-aligned with the structured nature of medical knowledge. We propose a novel, ontology-driven alternative for comparing radiology report texts based on clinically grounded concepts from the Unified Medical Language System (UMLS). Our method extracts standardised medical entities from free-text reports using an enhanced pipeline built on RadGraph-XL and SapBERT. These entities are linked to UMLS concepts (CUIs), enabling a transparent, interpretable set-based representation of each report. We then define a task-adaptive similarity measure based on a modified and weighted version of the Tversky Index that accounts for synonymy, negation, and hierarchical relationships between medical entities. This allows efficient and semantically meaningful similarity comparisons between reports. We demonstrate that our approach outperforms state-of-the-art embedding-based retrieval methods in a radiograph classification task on MIMIC-CXR, particularly in long-tail settings. Additionally, we use our pipeline to generate ontology-backed disease labels for MIMIC-CXR, offering a valuable new resource for downstream learning tasks. Our work provides more explainable, reliable, and task-specific retrieval strategies in clinical AI systems, especially when interpretability and domain knowledge integration are essential. Our code is available at https://github.com/Felix-012/ontology-concept-distillation
Shadow and Light: Digitally Reconstructed Radiographs for Disease Classification
In this paper, we introduce DRR-RATE, a large-scale synthetic chest X-ray dataset derived from the recently released CT-RATE dataset. DRR-RATE comprises of 50,188 frontal Digitally Reconstructed Radiographs (DRRs) from 21,304 unique patients. Each image is paired with a corresponding radiology text report and binary labels for 18 pathology classes. Given the controllable nature of DRR generation, it facilitates the inclusion of lateral view images and images from any desired viewing position. This opens up avenues for research into new and novel multimodal applications involving paired CT, X-ray images from various views, text, and binary labels. We demonstrate the applicability of DRR-RATE alongside existing large-scale chest X-ray resources, notably the CheXpert dataset and CheXnet model. Experiments demonstrate that CheXnet, when trained and tested on the DRR-RATE dataset, achieves sufficient to high AUC scores for the six common pathologies cited in common literature: Atelectasis, Cardiomegaly, Consolidation, Lung Lesion, Lung Opacity, and Pleural Effusion. Additionally, CheXnet trained on the CheXpert dataset can accurately identify several pathologies, even when operating out of distribution. This confirms that the generated DRR images effectively capture the essential pathology features from CT images. The dataset and labels are publicly accessible at https://huggingface.co/datasets/farrell236/DRR-RATE.
MAIRA-1: A specialised large multimodal model for radiology report generation
We present a radiology-specific multimodal model for the task for generating radiological reports from chest X-rays (CXRs). Our work builds on the idea that large language model(s) can be equipped with multimodal capabilities through alignment with pre-trained vision encoders. On natural images, this has been shown to allow multimodal models to gain image understanding and description capabilities. Our proposed model (MAIRA-1) leverages a CXR-specific image encoder in conjunction with a fine-tuned large language model based on Vicuna-7B, and text-based data augmentation, to produce reports with state-of-the-art quality. In particular, MAIRA-1 significantly improves on the radiologist-aligned RadCliQ metric and across all lexical metrics considered. Manual review of model outputs demonstrates promising fluency and accuracy of generated reports while uncovering failure modes not captured by existing evaluation practices. More information and resources can be found on the project website: https://aka.ms/maira.
The Devil is in the Prompts: De-Identification Traces Enhance Memorization Risks in Synthetic Chest X-Ray Generation
Generative models, particularly text-to-image (T2I) diffusion models, play a crucial role in medical image analysis. However, these models are prone to training data memorization, posing significant risks to patient privacy. Synthetic chest X-ray generation is one of the most common applications in medical image analysis with the MIMIC-CXR dataset serving as the primary data repository for this task. This study adopts a data-driven approach and presents the first systematic attempt to identify prompts and text tokens in MIMIC-CXR that contribute the most to training data memorization. Our analysis reveals an unexpected finding: prompts containing traces of de-identification procedures are among the most memorized, with de-identification markers contributing the most. Furthermore, we also find existing inference-time memorization mitigation strategies are ineffective and fail to sufficiently reduce the model's reliance on memorized text tokens highlighting a broader issue in T2I synthesis with MIMIC-CXR. On this front, we propose actionable strategies to enhance privacy and improve the reliability of generative models in medical imaging. Finally, our results provide a foundation for future work on developing and benchmarking memorization mitigation techniques for synthetic chest X-ray generation using the MIMIC-CXR dataset.
Enhancing Cost Efficiency in Active Learning with Candidate Set Query
This paper introduces a cost-efficient active learning (AL) framework for classification, featuring a novel query design called candidate set query. Unlike traditional AL queries requiring the oracle to examine all possible classes, our method narrows down the set of candidate classes likely to include the ground-truth class, significantly reducing the search space and labeling cost. Moreover, we leverage conformal prediction to dynamically generate small yet reliable candidate sets, adapting to model enhancement over successive AL rounds. To this end, we introduce an acquisition function designed to prioritize data points that offer high information gain at lower cost. Empirical evaluations on CIFAR-10, CIFAR-100, and ImageNet64x64 demonstrate the effectiveness and scalability of our framework. Notably, it reduces labeling cost by 42% on ImageNet64x64.
The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation. Traditionally, CXR report generation relies solely on CXR images and limited radiology data, overlooking valuable information from patient health records, particularly from emergency departments. Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as aperiodic vital signs, medications, and clinical history to enhance diagnostic accuracy. We introduce a novel approach to transform these heterogeneous data sources into embeddings that prompt a multimodal language model, significantly enhancing the diagnostic accuracy of generated radiology reports. Our comprehensive evaluation demonstrates the benefits of using a broader set of patient data, underscoring the potential for enhanced diagnostic capabilities and better patient outcomes through the integration of multimodal data in CXR report generation.
Automated Structured Radiology Report Generation
Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists' workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT's hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs
Chest radiography is an extremely powerful imaging modality, allowing for a detailed inspection of a patient's thorax, but requiring specialized training for proper interpretation. With the advent of high performance general purpose computer vision algorithms, the accurate automated analysis of chest radiographs is becoming increasingly of interest to researchers. However, a key challenge in the development of these techniques is the lack of sufficient data. Here we describe MIMIC-CXR-JPG v2.0.0, a large dataset of 377,110 chest x-rays associated with 227,827 imaging studies sourced from the Beth Israel Deaconess Medical Center between 2011 - 2016. Images are provided with 14 labels derived from two natural language processing tools applied to the corresponding free-text radiology reports. MIMIC-CXR-JPG is derived entirely from the MIMIC-CXR database, and aims to provide a convenient processed version of MIMIC-CXR, as well as to provide a standard reference for data splits and image labels. All images have been de-identified to protect patient privacy. The dataset is made freely available to facilitate and encourage a wide range of research in medical computer vision.
M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation
The rapid evolution of artificial intelligence, especially in large language models (LLMs), has significantly impacted various domains, including healthcare. In chest X-ray (CXR) analysis, previous studies have employed LLMs, but with limitations: either underutilizing the multi-tasking capabilities of LLMs or lacking clinical accuracy. This paper presents M4CXR, a multi-modal LLM designed to enhance CXR interpretation. The model is trained on a visual instruction-following dataset that integrates various task-specific datasets in a conversational format. As a result, the model supports multiple tasks such as medical report generation (MRG), visual grounding, and visual question answering (VQA). M4CXR achieves state-of-the-art clinical accuracy in MRG by employing a chain-of-thought prompting strategy, in which it identifies findings in CXR images and subsequently generates corresponding reports. The model is adaptable to various MRG scenarios depending on the available inputs, such as single-image, multi-image, and multi-study contexts. In addition to MRG, M4CXR performs visual grounding at a level comparable to specialized models and also demonstrates outstanding performance in VQA. Both quantitative and qualitative assessments reveal M4CXR's versatility in MRG, visual grounding, and VQA, while consistently maintaining clinical accuracy.
CXR-LLaVA: Multimodal Large Language Model for Interpreting Chest X-ray Images
Purpose: Recent advancements in large language models (LLMs) have expanded their capabilities in a multimodal fashion, potentially replicating the image interpretation of human radiologists. This study aimed to develop open-source multimodal large language model for interpreting chest X-ray images (CXR-LLaVA). We also examined the effect of prompt engineering and model parameters such as temperature and nucleus sampling. Materials and Methods: For training, we collected 659,287 publicly available CXRs: 417,336 CXRs had labels for certain radiographic abnormalities (dataset 1); 241,951 CXRs provided free-text radiology reports (dataset 2). After pre-training the Resnet50 as an image encoder, the contrastive language-image pre-training was used to align CXRs and corresponding radiographic abnormalities. Then, the Large Language Model Meta AI-2 was fine-tuned using dataset 2, which were refined using GPT-4, with generating various question answering scenarios. The code can be found at https://github.com/ECOFRI/CXR_LLaVA. Results: In the test set, we observed that the model's performance fluctuated based on its parameters. On average, it achieved F1 score of 0.34 for five pathologic findings (atelectasis, cardiomegaly, consolidation, edema, and pleural effusion), which was improved to 0.46 through prompt engineering. In the independent set, the model achieved an average F1 score of 0.30 for the same pathologic findings. Notably, for the pediatric chest radiograph dataset, which was unseen during training, the model differentiated abnormal radiographs with an F1 score ranging from 0.84 to 0.85. Conclusion: CXR-LLaVA demonstrates promising potential in CXR interpretation. Both prompt engineering and model parameter adjustments can play pivotal roles in interpreting CXRs.
Label Noise: Ignorance Is Bliss
We establish a new theoretical framework for learning under multi-class, instance-dependent label noise. This framework casts learning with label noise as a form of domain adaptation, in particular, domain adaptation under posterior drift. We introduce the concept of relative signal strength (RSS), a pointwise measure that quantifies the transferability from noisy to clean posterior. Using RSS, we establish nearly matching upper and lower bounds on the excess risk. Our theoretical findings support the simple Noise Ignorant Empirical Risk Minimization (NI-ERM) principle, which minimizes empirical risk while ignoring label noise. Finally, we translate this theoretical insight into practice: by using NI-ERM to fit a linear classifier on top of a self-supervised feature extractor, we achieve state-of-the-art performance on the CIFAR-N data challenge.
LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
The recent trend in scaling language models has led to a growing demand for parameter-efficient tuning (PEFT) methods such as LoRA (Low-Rank Adaptation). LoRA consistently matches or surpasses the full fine-tuning baseline with fewer parameters. However, handling numerous task-specific or user-specific LoRA modules on top of a base model still presents significant storage challenges. To address this, we introduce LoRA-XS (Low-Rank Adaptation with eXtremely Small number of parameters), a novel approach leveraging Singular Value Decomposition (SVD) for parameter-efficient fine-tuning. LoRA-XS introduces a small r x r weight matrix between frozen LoRA matrices, which are constructed by SVD of the original weight matrix. Training only r x r weight matrices ensures independence from model dimensions, enabling more parameter-efficient fine-tuning, especially for larger models. LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA. Our benchmarking across various scales, including GLUE, GSM8k, and MATH benchmarks, shows that our approach outperforms LoRA and recent state-of-the-art approaches like VeRA in terms of parameter efficiency while maintaining competitive performance.
Exploring the Capabilities of LLM Encoders for Image-Text Retrieval in Chest X-rays
Vision-language pretraining has advanced image-text alignment, yet progress in radiology remains constrained by the heterogeneity of clinical reports, including abbreviations, impression-only notes, and stylistic variability. Unlike general-domain settings where more data often leads to better performance, naively scaling to large collections of noisy reports can plateau or even degrade model learning. We ask whether large language model (LLM) encoders can provide robust clinical representations that transfer across diverse styles and better guide image-text alignment. We introduce LLM2VEC4CXR, a domain-adapted LLM encoder for chest X-ray reports, and LLM2CLIP4CXR, a dual-tower framework that couples this encoder with a vision backbone. LLM2VEC4CXR improves clinical text understanding over BERT-based baselines, handles abbreviations and style variation, and achieves strong clinical alignment on report-level metrics. LLM2CLIP4CXR leverages these embeddings to boost retrieval accuracy and clinically oriented scores, with stronger cross-dataset generalization than prior medical CLIP variants. Trained on 1.6M CXR studies from public and private sources with heterogeneous and noisy reports, our models demonstrate that robustness -- not scale alone -- is the key to effective multimodal learning. We release models to support further research in medical image-text representation learning.
Vision-Language Generative Model for View-Specific Chest X-ray Generation
Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.
NGAME: Negative Mining-aware Mini-batching for Extreme Classification
Extreme Classification (XC) seeks to tag data points with the most relevant subset of labels from an extremely large label set. Performing deep XC with dense, learnt representations for data points and labels has attracted much attention due to its superiority over earlier XC methods that used sparse, hand-crafted features. Negative mining techniques have emerged as a critical component of all deep XC methods that allow them to scale to millions of labels. However, despite recent advances, training deep XC models with large encoder architectures such as transformers remains challenging. This paper identifies that memory overheads of popular negative mining techniques often force mini-batch sizes to remain small and slow training down. In response, this paper introduces NGAME, a light-weight mini-batch creation technique that offers provably accurate in-batch negative samples. This allows training with larger mini-batches offering significantly faster convergence and higher accuracies than existing negative sampling techniques. NGAME was found to be up to 16% more accurate than state-of-the-art methods on a wide array of benchmark datasets for extreme classification, as well as 3% more accurate at retrieving search engine queries in response to a user webpage visit to show personalized ads. In live A/B tests on a popular search engine, NGAME yielded up to 23% gains in click-through-rates.
FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation
Developing an interpretable system for generating reports in chest X-ray (CXR) analysis is becoming increasingly crucial in Computer-aided Diagnosis (CAD) systems, enabling radiologists to comprehend the decisions made by these systems. Despite the growth of diverse datasets and methods focusing on report generation, there remains a notable gap in how closely these models' generated reports align with the interpretations of real radiologists. In this study, we tackle this challenge by initially introducing Fine-Grained CXR (FG-CXR) dataset, which provides fine-grained paired information between the captions generated by radiologists and the corresponding gaze attention heatmaps for each anatomy. Unlike existing datasets that include a raw sequence of gaze alongside a report, with significant misalignment between gaze location and report content, our FG-CXR dataset offers a more grained alignment between gaze attention and diagnosis transcript. Furthermore, our analysis reveals that simply applying black-box image captioning methods to generate reports cannot adequately explain which information in CXR is utilized and how long needs to attend to accurately generate reports. Consequently, we propose a novel explainable radiologist's attention generator network (Gen-XAI) that mimics the diagnosis process of radiologists, explicitly constraining its output to closely align with both radiologist's gaze attention and transcript. Finally, we perform extensive experiments to illustrate the effectiveness of our method. Our datasets and checkpoint is available at https://github.com/UARK-AICV/FG-CXR.
PINA: Leveraging Side Information in eXtreme Multi-label Classification via Predicted Instance Neighborhood Aggregation
The eXtreme Multi-label Classification~(XMC) problem seeks to find relevant labels from an exceptionally large label space. Most of the existing XMC learners focus on the extraction of semantic features from input query text. However, conventional XMC studies usually neglect the side information of instances and labels, which can be of use in many real-world applications such as recommendation systems and e-commerce product search. We propose Predicted Instance Neighborhood Aggregation (PINA), a data enhancement method for the general XMC problem that leverages beneficial side information. Unlike most existing XMC frameworks that treat labels and input instances as featureless indicators and independent entries, PINA extracts information from the label metadata and the correlations among training instances. Extensive experimental results demonstrate the consistent gain of PINA on various XMC tasks compared to the state-of-the-art methods: PINA offers a gain in accuracy compared to standard XR-Transformers on five public benchmark datasets. Moreover, PINA achieves a sim 5% gain in accuracy on the largest dataset LF-AmazonTitles-1.3M. Our implementation is publicly available.
A Review of Longitudinal Radiology Report Generation: Dataset Composition, Methods, and Performance Evaluation
Chest Xray imaging is a widely used diagnostic tool in modern medicine, and its high utilization creates substantial workloads for radiologists. To alleviate this burden, vision language models are increasingly applied to automate Chest Xray radiology report generation (CXRRRG), aiming for clinically accurate descriptions while reducing manual effort. Conventional approaches, however, typically rely on single images, failing to capture the longitudinal context necessary for producing clinically faithful comparison statements. Recently, growing attention has been directed toward incorporating longitudinal data into CXR RRG, enabling models to leverage historical studies in ways that mirror radiologists diagnostic workflows. Nevertheless, existing surveys primarily address single image CXRRRG and offer limited guidance for longitudinal settings, leaving researchers without a systematic framework for model design. To address this gap, this survey provides the first comprehensive review of longitudinal radiology report generation (LRRG). Specifically, we examine dataset construction strategies, report generation architectures alongside longitudinally tailored designs, and evaluation protocols encompassing both longitudinal specific measures and widely used benchmarks. We further summarize LRRG methods performance, alongside analyses of different ablation studies, which collectively highlight the critical role of longitudinal information and architectural design choices in improving model performance. Finally, we summarize five major limitations of current research and outline promising directions for future development, aiming to lay a foundation for advancing this emerging field.
Generating Radiology Reports via Memory-driven Transformer
Medical imaging is frequently used in clinical practice and trials for diagnosis and treatment. Writing imaging reports is time-consuming and can be error-prone for inexperienced radiologists. Therefore, automatically generating radiology reports is highly desired to lighten the workload of radiologists and accordingly promote clinical automation, which is an essential task to apply artificial intelligence to the medical domain. In this paper, we propose to generate radiology reports with memory-driven Transformer, where a relational memory is designed to record key information of the generation process and a memory-driven conditional layer normalization is applied to incorporating the memory into the decoder of Transformer. Experimental results on two prevailing radiology report datasets, IU X-Ray and MIMIC-CXR, show that our proposed approach outperforms previous models with respect to both language generation metrics and clinical evaluations. Particularly, this is the first work reporting the generation results on MIMIC-CXR to the best of our knowledge. Further analyses also demonstrate that our approach is able to generate long reports with necessary medical terms as well as meaningful image-text attention mappings.
Instruction-Guided Lesion Segmentation for Chest X-rays with Automatically Generated Large-Scale Dataset
The applicability of current lesion segmentation models for chest X-rays (CXRs) has been limited both by a small number of target labels and the reliance on long, detailed expert-level text inputs, creating a barrier to practical use. To address these limitations, we introduce a new paradigm: instruction-guided lesion segmentation (ILS), which is designed to segment diverse lesion types based on simple, user-friendly instructions. Under this paradigm, we construct MIMIC-ILS, the first large-scale instruction-answer dataset for CXR lesion segmentation, using our fully automated multimodal pipeline that generates annotations from chest X-ray images and their corresponding reports. MIMIC-ILS contains 1.1M instruction-answer pairs derived from 192K images and 91K unique segmentation masks, covering seven major lesion types. To empirically demonstrate its utility, we introduce ROSALIA, a vision-language model fine-tuned on MIMIC-ILS. ROSALIA can segment diverse lesions and provide textual explanations in response to user instructions. The model achieves high segmentation and textual accuracy in our newly proposed task, highlighting the effectiveness of our pipeline and the value of MIMIC-ILS as a foundational resource for pixel-level CXR lesion grounding.
Large Model driven Radiology Report Generation with Clinical Quality Reinforcement Learning
Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists. Current RRG approaches are still unsatisfactory against clinical standards. This paper introduces a novel RRG method, LM-RRG, that integrates large models (LMs) with clinical quality reinforcement learning to generate accurate and comprehensive chest X-ray radiology reports. Our method first designs a large language model driven feature extractor to analyze and interpret different regions of the chest X-ray image, emphasizing specific regions with medical significance. Next, based on the large model's decoder, we develop a multimodal report generator that leverages multimodal prompts from visual features and textual instruction to produce the radiology report in an auto-regressive way. Finally, to better reflect the clinical significant and insignificant errors that radiologists would normally assign in the report, we introduce a novel clinical quality reinforcement learning strategy. It utilizes the radiology report clinical quality (RadCliQ) metric as a reward function in the learning process. Extensive experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration and inefficient utilization of learned representations. To address this limitation, we propose RADAR, a framework for enhancing radiology report generation with supplementary knowledge injection. RADAR improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, RADAR generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy
Multimodal Disease Progression Modeling via Spatiotemporal Disentanglement and Multiscale Alignment
Longitudinal multimodal data, including electronic health records (EHR) and sequential chest X-rays (CXRs), is critical for modeling disease progression, yet remains underutilized due to two key challenges: (1) redundancy in consecutive CXR sequences, where static anatomical regions dominate over clinically-meaningful dynamics, and (2) temporal misalignment between sparse, irregular imaging and continuous EHR data. We introduce DiPro, a novel framework that addresses these challenges through region-aware disentanglement and multi-timescale alignment. First, we disentangle static (anatomy) and dynamic (pathology progression) features in sequential CXRs, prioritizing disease-relevant changes. Second, we hierarchically align these static and dynamic CXR features with asynchronous EHR data via local (pairwise interval-level) and global (full-sequence) synchronization to model coherent progression pathways. Extensive experiments on the MIMIC dataset demonstrate that DiPro could effectively extract temporal clinical dynamics and achieve state-of-the-art performance on both disease progression identification and general ICU prediction tasks.
Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis
Automated diagnosis prediction from medical images is a valuable resource to support clinical decision-making. However, such systems usually need to be trained on large amounts of annotated data, which often is scarce in the medical domain. Zero-shot methods address this challenge by allowing a flexible adaption to new settings with different clinical findings without relying on labeled data. Further, to integrate automated diagnosis in the clinical workflow, methods should be transparent and explainable, increasing medical professionals' trust and facilitating correctness verification. In this work, we introduce Xplainer, a novel framework for explainable zero-shot diagnosis in the clinical setting. Xplainer adapts the classification-by-description approach of contrastive vision-language models to the multi-label medical diagnosis task. Specifically, instead of directly predicting a diagnosis, we prompt the model to classify the existence of descriptive observations, which a radiologist would look for on an X-Ray scan, and use the descriptor probabilities to estimate the likelihood of a diagnosis. Our model is explainable by design, as the final diagnosis prediction is directly based on the prediction of the underlying descriptors. We evaluate Xplainer on two chest X-ray datasets, CheXpert and ChestX-ray14, and demonstrate its effectiveness in improving the performance and explainability of zero-shot diagnosis. Our results suggest that Xplainer provides a more detailed understanding of the decision-making process and can be a valuable tool for clinical diagnosis.
CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images
The development of successful artificial intelligence models for chest X-ray analysis relies on large, diverse datasets with high-quality annotations. While several databases of chest X-ray images have been released, most include disease diagnosis labels but lack detailed pixel-level anatomical segmentation labels. To address this gap, we introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images coming from six well-known publicly available databases: CANDID-PTX, ChestX-ray8, Chexpert, MIMIC-CXR-JPG, Padchest, and VinDr-CXR, resulting in 676,803 segmentation masks. Our methodology utilizes the HybridGNet model to ensure consistent and high-quality segmentations across all datasets. Rigorous validation, including expert physician evaluation and automatic quality control, was conducted to validate the resulting masks. Additionally, we provide individualized quality indices per mask and an overall quality estimation per dataset. This dataset serves as a valuable resource for the broader scientific community, streamlining the development and assessment of innovative methodologies in chest X-ray analysis. The CheXmask dataset is publicly available at: https://physionet.org/content/chexmask-cxr-segmentation-data/.
MedXChat: Bridging CXR Modalities with a Unified Multimodal Large Model
Despite the success of Large Language Models (LLMs) in general image tasks, a gap persists in the medical field for a multimodal large model adept at handling the nuanced diversity of medical images. Addressing this, we propose MedXChat, a unified multimodal large model designed for seamless interactions between medical assistants and users. MedXChat encompasses three key functionalities: CXR(Chest X-ray)-to-Report generation, CXR-based visual question-answering (VQA), and Text-to-CXR synthesis. Our contributions are as follows. Firstly, our model showcases exceptional cross-task adaptability, displaying adeptness across all three defined tasks and outperforming the benchmark models on the MIMIC dataset in medical multimodal applications. Secondly, we introduce an innovative Text-to-CXR synthesis approach that utilizes instruction-following capabilities within the Stable Diffusion (SD) architecture. This technique integrates smoothly with the existing model framework, requiring no extra parameters, thereby maintaining the SD's generative strength while also bestowing upon it the capacity to render fine-grained medical images with high fidelity. Comprehensive experiments validate MedXChat's synergistic enhancement across all tasks. Our instruction data and model will be open-sourced.
I-AI: A Controllable & Interpretable AI System for Decoding Radiologists' Intense Focus for Accurate CXR Diagnoses
In the field of chest X-ray (CXR) diagnosis, existing works often focus solely on determining where a radiologist looks, typically through tasks such as detection, segmentation, or classification. However, these approaches are often designed as black-box models, lacking interpretability. In this paper, we introduce Interpretable Artificial Intelligence (I-AI) a novel and unified controllable interpretable pipeline for decoding the intense focus of radiologists in CXR diagnosis. Our I-AI addresses three key questions: where a radiologist looks, how long they focus on specific areas, and what findings they diagnose. By capturing the intensity of the radiologist's gaze, we provide a unified solution that offers insights into the cognitive process underlying radiological interpretation. Unlike current methods that rely on black-box machine learning models, which can be prone to extracting erroneous information from the entire input image during the diagnosis process, we tackle this issue by effectively masking out irrelevant information. Our proposed I-AI leverages a vision-language model, allowing for precise control over the interpretation process while ensuring the exclusion of irrelevant features. To train our I-AI model, we utilize an eye gaze dataset to extract anatomical gaze information and generate ground truth heatmaps. Through extensive experimentation, we demonstrate the efficacy of our method. We showcase that the attention heatmaps, designed to mimic radiologists' focus, encode sufficient and relevant information, enabling accurate classification tasks using only a portion of CXR. The code, checkpoints, and data are at https://github.com/UARK-AICV/IAI
Fast hyperboloid decision tree algorithms
Hyperbolic geometry is gaining traction in machine learning for its effectiveness at capturing hierarchical structures in real-world data. Hyperbolic spaces, where neighborhoods grow exponentially, offer substantial advantages and consistently deliver state-of-the-art results across diverse applications. However, hyperbolic classifiers often grapple with computational challenges. Methods reliant on Riemannian optimization frequently exhibit sluggishness, stemming from the increased computational demands of operations on Riemannian manifolds. In response to these challenges, we present hyperDT, a novel extension of decision tree algorithms into hyperbolic space. Crucially, hyperDT eliminates the need for computationally intensive Riemannian optimization, numerically unstable exponential and logarithmic maps, or pairwise comparisons between points by leveraging inner products to adapt Euclidean decision tree algorithms to hyperbolic space. Our approach is conceptually straightforward and maintains constant-time decision complexity while mitigating the scalability issues inherent in high-dimensional Euclidean spaces. Building upon hyperDT we introduce hyperRF, a hyperbolic random forest model. Extensive benchmarking across diverse datasets underscores the superior performance of these models, providing a swift, precise, accurate, and user-friendly toolkit for hyperbolic data analysis.
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Although deep neural networks hold the state-of-the-art in several remote sensing tasks, their black-box operation hinders the understanding of their decisions, concealing any bias and other shortcomings in datasets and model performance. To this end, we have applied explainable artificial intelligence (XAI) methods in remote sensing multi-label classification tasks towards producing human-interpretable explanations and improve transparency. In particular, we utilized and trained deep learning models with state-of-the-art performance in the benchmark BigEarthNet and SEN12MS datasets. Ten XAI methods were employed towards understanding and interpreting models' predictions, along with quantitative metrics to assess and compare their performance. Numerous experiments were performed to assess the overall performance of XAI methods for straightforward prediction cases, competing multiple labels, as well as misclassification cases. According to our findings, Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods. However, none delivers high-resolution outputs, while apart from Grad-CAM, both Lime and Occlusion are computationally expensive. We also highlight different aspects of XAI performance and elaborate with insights on black-box decisions in order to improve transparency, understand their behavior and reveal, as well, datasets' particularities.
Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.
RadGraph: Extracting Clinical Entities and Relations from Radiology Reports
Extracting structured clinical information from free-text radiology reports can enable the use of radiology report information for a variety of critical healthcare applications. In our work, we present RadGraph, a dataset of entities and relations in full-text chest X-ray radiology reports based on a novel information extraction schema we designed to structure radiology reports. We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14,579 entities and 10,889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets. Using these datasets, we train and test a deep learning model, RadGraph Benchmark, that achieves a micro F1 of 0.82 and 0.73 on relation extraction on the MIMIC-CXR and CheXpert test sets respectively. Additionally, we release an inference dataset, which contains annotations automatically generated by RadGraph Benchmark across 220,763 MIMIC-CXR reports (around 6 million entities and 4 million relations) and 500 CheXpert reports (13,783 entities and 9,908 relations) with mappings to associated chest radiographs. Our freely available dataset can facilitate a wide range of research in medical natural language processing, as well as computer vision and multi-modal learning when linked to chest radiographs.
SemSup-XC: Semantic Supervision for Zero and Few-shot Extreme Classification
Extreme classification (XC) involves predicting over large numbers of classes (thousands to millions), with real-world applications like news article classification and e-commerce product tagging. The zero-shot version of this task requires generalization to novel classes without additional supervision. In this paper, we develop SemSup-XC, a model that achieves state-of-the-art zero-shot and few-shot performance on three XC datasets derived from legal, e-commerce, and Wikipedia data. To develop SemSup-XC, we use automatically collected semantic class descriptions to represent classes and facilitate generalization through a novel hybrid matching module that matches input instances to class descriptions using a combination of semantic and lexical similarity. Trained with contrastive learning, SemSup-XC significantly outperforms baselines and establishes state-of-the-art performance on all three datasets considered, gaining up to 12 precision points on zero-shot and more than 10 precision points on one-shot tests, with similar gains for recall@10. Our ablation studies highlight the relative importance of our hybrid matching module and automatically collected class descriptions.
BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models
Lung diseases represent a significant global health challenge, with Chest X-Ray (CXR) being a key diagnostic tool due to their accessibility and affordability. Nonetheless, the detection of pulmonary lesions is often hindered by overlapping bone structures in CXR images, leading to potential misdiagnoses. To address this issue, we developed an end-to-end framework called BS-LDM, designed to effectively suppress bone in high-resolution CXR images. This framework is based on conditional latent diffusion models and incorporates a multi-level hybrid loss-constrained vector-quantized generative adversarial network which is crafted for perceptual compression, ensuring the preservation of details. To further enhance the framework's performance, we introduce offset noise and a temporal adaptive thresholding strategy. These additions help minimize discrepancies in generating low-frequency information, thereby improving the clarity of the generated soft tissue images. Additionally, we have compiled a high-quality bone suppression dataset named SZCH-X-Rays. This dataset includes 818 pairs of high-resolution CXR and dual-energy subtraction soft tissue images collected from a partner hospital. Moreover, we processed 241 data pairs from the JSRT dataset into negative images, which are more commonly used in clinical practice. Our comprehensive experimental and clinical evaluations reveal that BS-LDM excels in bone suppression, underscoring its significant clinical value.
Efficiently predicting high resolution mass spectra with graph neural networks
Identifying a small molecule from its mass spectrum is the primary open problem in computational metabolomics. This is typically cast as information retrieval: an unknown spectrum is matched against spectra predicted computationally from a large database of chemical structures. However, current approaches to spectrum prediction model the output space in ways that force a tradeoff between capturing high resolution mass information and tractable learning. We resolve this tradeoff by casting spectrum prediction as a mapping from an input molecular graph to a probability distribution over molecular formulas. We discover that a large corpus of mass spectra can be closely approximated using a fixed vocabulary constituting only 2% of all observed formulas. This enables efficient spectrum prediction using an architecture similar to graph classification - GrAFF-MS - achieving significantly lower prediction error and orders-of-magnitude faster runtime than state-of-the-art methods.
X3D: Expanding Architectures for Efficient Video Recognition
This paper presents X3D, a family of efficient video networks that progressively expand a tiny 2D image classification architecture along multiple network axes, in space, time, width and depth. Inspired by feature selection methods in machine learning, a simple stepwise network expansion approach is employed that expands a single axis in each step, such that good accuracy to complexity trade-off is achieved. To expand X3D to a specific target complexity, we perform progressive forward expansion followed by backward contraction. X3D achieves state-of-the-art performance while requiring 4.8x and 5.5x fewer multiply-adds and parameters for similar accuracy as previous work. Our most surprising finding is that networks with high spatiotemporal resolution can perform well, while being extremely light in terms of network width and parameters. We report competitive accuracy at unprecedented efficiency on video classification and detection benchmarks. Code will be available at: https://github.com/facebookresearch/SlowFast
Similarity-Distance-Magnitude Activations
We introduce the Similarity-Distance-Magnitude (SDM) activation function, a more robust and interpretable formulation of the standard softmax activation function, adding Similarity (i.e., correctly predicted depth-matches into training) awareness and Distance-to-training-distribution awareness to the existing output Magnitude (i.e., decision-boundary) awareness, and enabling interpretability-by-exemplar via dense matching. We further introduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical CDFs via the SDM activation, to control the class- and prediction-conditional accuracy among selective classifications. When used as the final-layer activation over pre-trained language models for selective classification, the SDM estimator is more robust to co-variate shifts and out-of-distribution inputs than existing calibration methods using softmax activations, while remaining informative over in-distribution data.
All models are wrong, some are useful: Model Selection with Limited Labels
We introduce MODEL SELECTOR, a framework for label-efficient selection of pretrained classifiers. Given a pool of unlabeled target data, MODEL SELECTOR samples a small subset of highly informative examples for labeling, in order to efficiently identify the best pretrained model for deployment on this target dataset. Through extensive experiments, we demonstrate that MODEL SELECTOR drastically reduces the need for labeled data while consistently picking the best or near-best performing model. Across 18 model collections on 16 different datasets, comprising over 1,500 pretrained models, MODEL SELECTOR reduces the labeling cost by up to 94.15% to identify the best model compared to the cost of the strongest baseline. Our results further highlight the robustness of MODEL SELECTOR in model selection, as it reduces the labeling cost by up to 72.41% when selecting a near-best model, whose accuracy is only within 1% of the best model.
Chemical classification program synthesis using generative artificial intelligence
Accurately classifying chemical structures is essential for cheminformatics and bioinformatics, including tasks such as identifying bioactive compounds of interest, screening molecules for toxicity to humans, finding non-organic compounds with desirable material properties, or organizing large chemical libraries for drug discovery or environmental monitoring. However, manual classification is labor-intensive and difficult to scale to large chemical databases. Existing automated approaches either rely on manually constructed classification rules, or the use of deep learning methods that lack explainability. This work presents an approach that uses generative artificial intelligence to automatically write chemical classifier programs for classes in the Chemical Entities of Biological Interest (ChEBI) database. These programs can be used for efficient deterministic run-time classification of SMILES structures, with natural language explanations. The programs themselves constitute an explainable computable ontological model of chemical class nomenclature, which we call the ChEBI Chemical Class Program Ontology (C3PO). We validated our approach against the ChEBI database, and compared our results against state of the art deep learning models. We also demonstrate the use of C3PO to classify out-of-distribution examples taken from metabolomics repositories and natural product databases. We also demonstrate the potential use of our approach to find systematic classification errors in existing chemical databases, and show how an ensemble artificial intelligence approach combining generated ontologies, automated literature search, and multimodal vision models can be used to pinpoint potential errors requiring expert validation
Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
The rise in internet usage has led to the generation of massive amounts of data, resulting in the adoption of various supervised and semi-supervised machine learning algorithms, which can effectively utilize the colossal amount of data to train models. However, before deploying these models in the real world, these must be strictly evaluated on performance measures like worst-case recall and satisfy constraints such as fairness. We find that current state-of-the-art empirical techniques offer sub-optimal performance on these practical, non-decomposable performance objectives. On the other hand, the theoretical techniques necessitate training a new model from scratch for each performance objective. To bridge the gap, we propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models, to optimize for the desired objective. The core idea of our framework is to determine a sampling distribution to perform a mixup of features between samples from particular classes such that it optimizes the given objective. We comprehensively evaluate our technique against the existing empirical and theoretically principled methods on standard benchmark datasets for imbalanced classification. We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
RadVLM: A Multitask Conversational Vision-Language Model for Radiology
The widespread use of chest X-rays (CXRs), coupled with a shortage of radiologists, has driven growing interest in automated CXR analysis and AI-assisted reporting. While existing vision-language models (VLMs) show promise in specific tasks such as report generation or abnormality detection, they often lack support for interactive diagnostic capabilities. In this work we present RadVLM, a compact, multitask conversational foundation model designed for CXR interpretation. To this end, we curate a large-scale instruction dataset comprising over 1 million image-instruction pairs containing both single-turn tasks -- such as report generation, abnormality classification, and visual grounding -- and multi-turn, multi-task conversational interactions. After fine-tuning RadVLM on this instruction dataset, we evaluate it across different tasks along with re-implemented baseline VLMs. Our results show that RadVLM achieves state-of-the-art performance in conversational capabilities and visual grounding while remaining competitive in other radiology tasks. Ablation studies further highlight the benefit of joint training across multiple tasks, particularly for scenarios with limited annotated data. Together, these findings highlight the potential of RadVLM as a clinically relevant AI assistant, providing structured CXR interpretation and conversational capabilities to support more effective and accessible diagnostic workflows.
Theoretical Behavior of XAI Methods in the Presence of Suppressor Variables
In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'. However, a concrete problem to be solved by XAI methods has not yet been formally stated. As a result, XAI methods are lacking theoretical and empirical evidence for the 'correctness' of their explanations, limiting their potential use for quality-control and transparency purposes. At the same time, Haufe et al. (2014) showed, using simple toy examples, that even standard interpretations of linear models can be highly misleading. Specifically, high importance may be attributed to so-called suppressor variables lacking any statistical relation to the prediction target. This behavior has been confirmed empirically for a large array of XAI methods in Wilming et al. (2022). Here, we go one step further by deriving analytical expressions for the behavior of a variety of popular XAI methods on a simple two-dimensional binary classification problem involving Gaussian class-conditional distributions. We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise. This poses important limitations on the interpretations and conclusions that the outputs of these XAI methods can afford.
CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection
The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL
GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.
CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 10 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench
DINO-CXR: A self supervised method based on vision transformer for chest X-ray classification
The limited availability of labeled chest X-ray datasets is a significant bottleneck in the development of medical imaging methods. Self-supervised learning (SSL) can mitigate this problem by training models on unlabeled data. Furthermore, self-supervised pretraining has yielded promising results in visual recognition of natural images but has not been given much consideration in medical image analysis. In this work, we propose a self-supervised method, DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based on a vision transformer for chest X-ray classification. A comparative analysis is performed to show the effectiveness of the proposed method for both pneumonia and COVID-19 detection. Through a quantitative analysis, it is also shown that the proposed method outperforms state-of-the-art methods in terms of accuracy and achieves comparable results in terms of AUC and F-1 score while requiring significantly less labeled data.
MASIL: Towards Maximum Separable Class Representation for Few Shot Class Incremental Learning
Few Shot Class Incremental Learning (FSCIL) with few examples per class for each incremental session is the realistic setting of continual learning since obtaining large number of annotated samples is not feasible and cost effective. We present the framework MASIL as a step towards learning the maximal separable classifier. It addresses the common problem i.e forgetting of old classes and over-fitting to novel classes by learning the classifier weights to be maximally separable between classes forming a simplex Equiangular Tight Frame. We propose the idea of concept factorization explaining the collapsed features for base session classes in terms of concept basis and use these to induce classifier simplex for few shot classes. We further adds fine tuning to reduce any error occurred during factorization and train the classifier jointly on base and novel classes without retaining any base class samples in memory. Experimental results on miniImageNet, CIFAR-100 and CUB-200 demonstrate that MASIL outperforms all the benchmarks.
BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models from Chest X-Ray Images
Chest X-rays (CXRs) are commonly utilized as a low-dose modality for lung screening. Nonetheless, the efficacy of CXRs is somewhat impeded, given that approximately 75% of the lung area overlaps with bone, which in turn hampers the detection and diagnosis of diseases. As a remedial measure, bone suppression techniques have been introduced. The current dual-energy subtraction imaging technique in the clinic requires costly equipment and subjects being exposed to high radiation. To circumvent these issues, deep learning-based image generation algorithms have been proposed. However, existing methods fall short in terms of producing high-quality images and capturing texture details, particularly with pulmonary vessels. To address these issues, this paper proposes a new bone suppression framework, termed BS-Diff, that comprises a conditional diffusion model equipped with a U-Net architecture and a simple enhancement module to incorporate an autoencoder. Our proposed network cannot only generate soft tissue images with a high bone suppression rate but also possesses the capability to capture fine image details. Additionally, we compiled the largest dataset since 2010, including data from 120 patients with high-definition, high-resolution paired CXRs and soft tissue images collected by our affiliated hospital. Extensive experiments, comparative analyses, ablation studies, and clinical evaluations indicate that the proposed BS-Diff outperforms several bone-suppression models across multiple metrics. Our code can be accessed at https://github.com/Benny0323/BS-Diff.
Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss
Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.
Learning on Model Weights using Tree Experts
The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.
Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation
The automated generation of imaging reports proves invaluable in alleviating the workload of radiologists. A clinically applicable reports generation algorithm should demonstrate its effectiveness in producing reports that accurately describe radiology findings and attend to patient-specific indications. In this paper, we introduce a novel method, Structural Entities extraction and patient indications Incorporation (SEI) for chest X-ray report generation. Specifically, we employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports and improve the quality of factual entity sequences. This reduces the noise in the following cross-modal alignment module by aligning X-ray images with factual entity sequences in reports, thereby enhancing the precision of cross-modal alignment and further aiding the model in gradient-free retrieval of similar historical cases. Subsequently, we propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications. This process allows the text decoder to attend to discriminative features of X-ray images, assimilate historical diagnostic information from similar cases, and understand the examination intention of patients. This, in turn, assists in triggering the text decoder to produce high-quality reports. Experiments conducted on MIMIC-CXR validate the superiority of SEI over state-of-the-art approaches on both natural language generation and clinical efficacy metrics.
RxRx3-core: Benchmarking drug-target interactions in High-Content Microscopy
High Content Screening (HCS) microscopy datasets have transformed the ability to profile cellular responses to genetic and chemical perturbations, enabling cell-based inference of drug-target interactions (DTI). However, the adoption of representation learning methods for HCS data has been hindered by the lack of accessible datasets and robust benchmarks. To address this gap, we present RxRx3-core, a curated and compressed subset of the RxRx3 dataset, and an associated DTI benchmarking task. At just 18GB, RxRx3-core significantly reduces the size barrier associated with large-scale HCS datasets while preserving critical data necessary for benchmarking representation learning models against a zero-shot DTI prediction task. RxRx3-core includes 222,601 microscopy images spanning 736 CRISPR knockouts and 1,674 compounds at 8 concentrations. RxRx3-core is available on HuggingFace and Polaris, along with pre-trained embeddings and benchmarking code, ensuring accessibility for the research community. By providing a compact dataset and robust benchmarks, we aim to accelerate innovation in representation learning methods for HCS data and support the discovery of novel biological insights.
Exploring Multimodal Large Language Models for Radiology Report Error-checking
This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.
Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology Report Generation
Automatic radiology report generation has attracted enormous research interest due to its practical value in reducing the workload of radiologists. However, simultaneously establishing global correspondences between the image (e.g., Chest X-ray) and its related report and local alignments between image patches and keywords remains challenging. To this end, we propose an Unify, Align and then Refine (UAR) approach to learn multi-level cross-modal alignments and introduce three novel modules: Latent Space Unifier (LSU), Cross-modal Representation Aligner (CRA) and Text-to-Image Refiner (TIR). Specifically, LSU unifies multimodal data into discrete tokens, making it flexible to learn common knowledge among modalities with a shared network. The modality-agnostic CRA learns discriminative features via a set of orthonormal basis and a dual-gate mechanism first and then globally aligns visual and textual representations under a triplet contrastive loss. TIR boosts token-level local alignment via calibrating text-to-image attention with a learnable mask. Additionally, we design a two-stage training procedure to make UAR gradually grasp cross-modal alignments at different levels, which imitates radiologists' workflow: writing sentence by sentence first and then checking word by word. Extensive experiments and analyses on IU-Xray and MIMIC-CXR benchmark datasets demonstrate the superiority of our UAR against varied state-of-the-art methods.
Overcoming Common Flaws in the Evaluation of Selective Classification Systems
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the AUROC in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve (AUGRC), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of AUGRC on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at https://stanfordmlgroup.github.io/competitions/chexpert .
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
Rethinking the Role of Token Retrieval in Multi-Vector Retrieval
Multi-vector retrieval models such as ColBERT [Khattab and Zaharia, 2020] allow token-level interactions between queries and documents, and hence achieve state of the art on many information retrieval benchmarks. However, their non-linear scoring function cannot be scaled to millions of documents, necessitating a three-stage process for inference: retrieving initial candidates via token retrieval, accessing all token vectors, and scoring the initial candidate documents. The non-linear scoring function is applied over all token vectors of each candidate document, making the inference process complicated and slow. In this paper, we aim to simplify the multi-vector retrieval by rethinking the role of token retrieval. We present XTR, ConteXtualized Token Retriever, which introduces a simple, yet novel, objective function that encourages the model to retrieve the most important document tokens first. The improvement to token retrieval allows XTR to rank candidates only using the retrieved tokens rather than all tokens in the document, and enables a newly designed scoring stage that is two-to-three orders of magnitude cheaper than that of ColBERT. On the popular BEIR benchmark, XTR advances the state-of-the-art by 2.8 nDCG@10 without any distillation. Detailed analysis confirms our decision to revisit the token retrieval stage, as XTR demonstrates much better recall of the token retrieval stage compared to ColBERT.
RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods
High-throughput screening techniques are commonly used to obtain large quantities of data in many fields of biology. It is well known that artifacts arising from variability in the technical execution of different experimental batches within such screens confound these observations and can lead to invalid biological conclusions. It is therefore necessary to account for these batch effects when analyzing outcomes. In this paper we describe RxRx1, a biological dataset designed specifically for the systematic study of batch effect correction methods. The dataset consists of 125,510 high-resolution fluorescence microscopy images of human cells under 1,138 genetic perturbations in 51 experimental batches across 4 cell types. Visual inspection of the images alone clearly demonstrates significant batch effects. We propose a classification task designed to evaluate the effectiveness of experimental batch correction methods on these images and examine the performance of a number of correction methods on this task. Our goal in releasing RxRx1 is to encourage the development of effective experimental batch correction methods that generalize well to unseen experimental batches. The dataset can be downloaded at https://rxrx.ai.
Dual-Encoders for Extreme Multi-Label Classification
Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.
Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications
Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine.
Open Vocabulary Extreme Classification Using Generative Models
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels - as is the case in zero-shot classification - models need to invent some labels on-the-fly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation
Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.
Enhancing Dataset Distillation via Non-Critical Region Refinement
Dataset distillation has become a popular method for compressing large datasets into smaller, more efficient representations while preserving critical information for model training. Data features are broadly categorized into two types: instance-specific features, which capture unique, fine-grained details of individual examples, and class-general features, which represent shared, broad patterns across a class. However, previous approaches often struggle to balance these features-some focus solely on class-general patterns, neglecting finer instance details, while others prioritize instance-specific features, overlooking the shared characteristics essential for class-level understanding. In this paper, we introduce the Non-Critical Region Refinement Dataset Distillation (NRR-DD) method, which preserves instance-specific details and fine-grained regions in synthetic data while enriching non-critical regions with class-general information. This approach enables models to leverage all pixel information, capturing both feature types and enhancing overall performance. Additionally, we present Distance-Based Representative (DBR) knowledge transfer, which eliminates the need for soft labels in training by relying on the distance between synthetic data predictions and one-hot encoded labels. Experimental results show that NRR-DD achieves state-of-the-art performance on both small- and large-scale datasets. Furthermore, by storing only two distances per instance, our method delivers comparable results across various settings. The code is available at https://github.com/tmtuan1307/NRR-DD.
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
Given the complexity and lack of transparency in deep neural networks (DNNs), extensive efforts have been made to make these systems more interpretable or explain their behaviors in accessible terms. Unlike most reviews, which focus on algorithmic and model-centric perspectives, this work takes a "data-centric" view, examining how data collection, processing, and analysis contribute to explainable AI (XAI). We categorize existing work into three categories subject to their purposes: interpretations of deep models, referring to feature attributions and reasoning processes that correlate data points with model outputs; influences of training data, examining the impact of training data nuances, such as data valuation and sample anomalies, on decision-making processes; and insights of domain knowledge, discovering latent patterns and fostering new knowledge from data and models to advance social values and scientific discovery. Specifically, we distill XAI methodologies into data mining operations on training and testing data across modalities, such as images, text, and tabular data, as well as on training logs, checkpoints, models and other DNN behavior descriptors. In this way, our study offers a comprehensive, data-centric examination of XAI from a lens of data mining methods and applications.
RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining
Developing advanced medical imaging retrieval systems is challenging due to the varying definitions of `similar images' across different medical contexts. This challenge is compounded by the lack of large-scale, high-quality medical imaging retrieval datasets and benchmarks. In this paper, we propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities in a scalable and fully automatic manner. Using this approach, we construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans, providing detailed image-image ranking annotations conditioned on diverse anatomical structures. Furthermore, we develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks. These systems also enable flexible, effective image retrieval conditioned on specific anatomical structures described in text, achieving state-of-the-art results on 77 out of 78 metrics.
Towards Data-Efficient Pretraining for Atomic Property Prediction
This paper challenges the recent paradigm in atomic property prediction that links progress to growing dataset sizes and computational resources. We show that pretraining on a carefully selected, task-relevant dataset can match or even surpass large-scale pretraining, while using as little as 1/24th of the computational cost. We introduce the Chemical Similarity Index (CSI), a novel metric inspired by computer vision's Fr\'echet Inception Distance, for molecular graphs which quantifies the alignment between upstream pretraining datasets and downstream tasks. By selecting the most relevant dataset with minimal CSI distance, we show that models pretrained on a smaller, focused dataset consistently outperform those pretrained on massive, mixed datasets such as JMP, even when those larger datasets include the relevant dataset. Counterintuitively, we also find that indiscriminately adding more data can degrade model performance when the additional data poorly aligns with the task at hand. Our findings highlight that quality often outperforms quantity in pretraining for atomic property prediction.
Budget Sensitive Reannotation of Noisy Relation Classification Data Using Label Hierarchy
Large crowd-sourced datasets are often noisy and relation classification (RC) datasets are no exception. Reannotating the entire dataset is one probable solution however it is not always viable due to time and budget constraints. This paper addresses the problem of efficient reannotation of a large noisy dataset for the RC. Our goal is to catch more annotation errors in the dataset while reannotating fewer instances. Existing work on RC dataset reannotation lacks the flexibility about how much data to reannotate. We introduce the concept of a reannotation budget to overcome this limitation. The immediate follow-up problem is: Given a specific reannotation budget, which subset of the data should we reannotate? To address this problem, we present two strategies to selectively reannotate RC datasets. Our strategies utilize the taxonomic hierarchy of relation labels. The intuition of our work is to rely on the graph distance between actual and predicted relation labels in the label hierarchy graph. We evaluate our reannotation strategies on the well-known TACRED dataset. We design our experiments to answer three specific research questions. First, does our strategy select novel candidates for reannotation? Second, for a given reannotation budget is our reannotation strategy more efficient at catching annotation errors? Third, what is the impact of data reannotation on RC model performance measurement? Experimental results show that our both reannotation strategies are novel and efficient. Our analysis indicates that the current reported performance of RC models on noisy TACRED data is inflated.
KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI
In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets.
Automatic Dataset Construction (ADC): Sample Collection, Data Curation, and Beyond
Large-scale data collection is essential for developing personalized training data, mitigating the shortage of training data, and fine-tuning specialized models. However, creating high-quality datasets quickly and accurately remains a challenge due to annotation errors, the substantial time and costs associated with human labor. To address these issues, we propose Automatic Dataset Construction (ADC), an innovative methodology that automates dataset creation with negligible cost and high efficiency. Taking the image classification task as a starting point, ADC leverages LLMs for the detailed class design and code generation to collect relevant samples via search engines, significantly reducing the need for manual annotation and speeding up the data generation process. Despite these advantages, ADC also encounters real-world challenges such as label errors (label noise) and imbalanced data distributions (label bias). We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data, ensuring a higher-quality training data and more robust model training procedure. Furthermore, we design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning. These datasets are vital because there are few existing datasets specifically for label noise detection, despite its importance. Finally, we evaluate the performance of existing popular methods on these datasets, thereby facilitating further research in the field.
Solving the Catastrophic Forgetting Problem in Generalized Category Discovery
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
Structuring Radiology Reports: Challenging LLMs with Lightweight Models
Radiology reports are critical for clinical decision-making but often lack a standardized format, limiting both human interpretability and machine learning (ML) applications. While large language models (LLMs) have shown strong capabilities in reformatting clinical text, their high computational requirements, lack of transparency, and data privacy concerns hinder practical deployment. To address these challenges, we explore lightweight encoder-decoder models (<300M parameters)-specifically T5 and BERT2BERT-for structuring radiology reports from the MIMIC-CXR and CheXpert Plus datasets. We benchmark these models against eight open-source LLMs (1B-70B), adapted using prefix prompting, in-context learning (ICL), and low-rank adaptation (LoRA) finetuning. Our best-performing lightweight model outperforms all LLMs adapted using prompt-based techniques on a human-annotated test set. While some LoRA-finetuned LLMs achieve modest gains over the lightweight model on the Findings section (BLEU 6.4%, ROUGE-L 4.8%, BERTScore 3.6%, F1-RadGraph 1.1%, GREEN 3.6%, and F1-SRR-BERT 4.3%), these improvements come at the cost of substantially greater computational resources. For example, LLaMA-3-70B incurred more than 400 times the inference time, cost, and carbon emissions compared to the lightweight model. These results underscore the potential of lightweight, task-specific models as sustainable and privacy-preserving solutions for structuring clinical text in resource-constrained healthcare settings.
SARATR-X: Toward Building A Foundation Model for SAR Target Recognition
Despite the remarkable progress in synthetic aperture radar automatic target recognition (SAR ATR), recent efforts have concentrated on detecting and classifying a specific category, e.g., vehicles, ships, airplanes, or buildings. One of the fundamental limitations of the top-performing SAR ATR methods is that the learning paradigm is supervised, task-specific, limited-category, closed-world learning, which depends on massive amounts of accurately annotated samples that are expensively labeled by expert SAR analysts and have limited generalization capability and scalability. In this work, we make the first attempt towards building a foundation model for SAR ATR, termed SARATR-X. SARATR-X learns generalizable representations via self-supervised learning (SSL) and provides a cornerstone for label-efficient model adaptation to generic SAR target detection and classification tasks. Specifically, SARATR-X is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now. Considering the characteristics of SAR images, a backbone tailored for SAR ATR is carefully designed, and a two-step SSL method endowed with multi-scale gradient features was applied to ensure the feature diversity and model scalability of SARATR-X. The capabilities of SARATR-X are evaluated on classification under few-shot and robustness settings and detection across various categories and scenes, and impressive performance is achieved, often competitive with or even superior to prior fully supervised, semi-supervised, or self-supervised algorithms. Our SARATR-X and the curated dataset are released at https://github.com/waterdisappear/SARATR-X to foster research into foundation models for SAR image interpretation.
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
Libra: Leveraging Temporal Images for Biomedical Radiology Analysis
Radiology report generation (RRG) is a challenging task, as it requires a thorough understanding of medical images, integration of multiple temporal inputs, and accurate report generation. Effective interpretation of medical images, such as chest X-rays (CXRs), demands sophisticated visual-language reasoning to map visual findings to structured reports. Recent studies have shown that multimodal large language models (MLLMs) can acquire multimodal capabilities by aligning with pre-trained vision encoders. However, current approaches predominantly focus on single-image analysis or utilise rule-based symbolic processing to handle multiple images, thereby overlooking the essential temporal information derived from comparing current images with prior ones. To overcome this critical limitation, we introduce Libra, a temporal-aware MLLM tailored for CXR report generation using temporal images. Libra integrates a radiology-specific image encoder with a MLLM and utilises a novel Temporal Alignment Connector to capture and synthesise temporal information of images across different time points with unprecedented precision. Extensive experiments show that Libra achieves new state-of-the-art performance among the same parameter scale MLLMs for RRG tasks on the MIMIC-CXR. Specifically, Libra improves the RadCliQ metric by 12.9% and makes substantial gains across all lexical metrics compared to previous models.
CLAX: Fast and Flexible Neural Click Models in JAX
CLAX is a JAX-based library that implements classic click models using modern gradient-based optimization. While neural click models have emerged over the past decade, complex click models based on probabilistic graphical models (PGMs) have not systematically adopted gradient-based optimization, preventing practitioners from leveraging modern deep learning frameworks while preserving the interpretability of classic models. CLAX addresses this gap by replacing EM-based optimization with direct gradient-based optimization in a numerically stable manner. The framework's modular design enables the integration of any component, from embeddings and deep networks to custom modules, into classic click models for end-to-end optimization. We demonstrate CLAX's efficiency by running experiments on the full Baidu-ULTR dataset comprising over a billion user sessions in approx 2 hours on a single GPU, orders of magnitude faster than traditional EM approaches. CLAX implements ten classic click models, serving both industry practitioners seeking to understand user behavior and improve ranking performance at scale and researchers developing new click models. CLAX is available at: https://github.com/philipphager/clax
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
BiXSE: Improving Dense Retrieval via Probabilistic Graded Relevance Distillation
Neural sentence embedding models for dense retrieval typically rely on binary relevance labels, treating query-document pairs as either relevant or irrelevant. However, real-world relevance often exists on a continuum, and recent advances in large language models (LLMs) have made it feasible to scale the generation of fine-grained graded relevance labels. In this work, we propose BiXSE, a simple and effective pointwise training method that optimizes binary cross-entropy (BCE) over LLM-generated graded relevance scores. BiXSE interprets these scores as probabilistic targets, enabling granular supervision from a single labeled query-document pair per query. Unlike pairwise or listwise losses that require multiple annotated comparisons per query, BiXSE achieves strong performance with reduced annotation and compute costs by leveraging in-batch negatives. Extensive experiments across sentence embedding (MMTEB) and retrieval benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms softmax-based contrastive learning (InfoNCE), and matches or exceeds strong pairwise ranking baselines when trained on LLM-supervised data. BiXSE offers a robust, scalable alternative for training dense retrieval models as graded relevance supervision becomes increasingly accessible.
A projection-based framework for gradient-free and parallel learning
We present a feasibility-seeking approach to neural network training. This mathematical optimization framework is distinct from conventional gradient-based loss minimization and uses projection operators and iterative projection algorithms. We reformulate training as a large-scale feasibility problem: finding network parameters and states that satisfy local constraints derived from its elementary operations. Training then involves projecting onto these constraints, a local operation that can be parallelized across the network. We introduce PJAX, a JAX-based software framework that enables this paradigm. PJAX composes projection operators for elementary operations, automatically deriving the solution operators for the feasibility problems (akin to autodiff for derivatives). It inherently supports GPU/TPU acceleration, provides a familiar NumPy-like API, and is extensible. We train diverse architectures (MLPs, CNNs, RNNs) on standard benchmarks using PJAX, demonstrating its functionality and generality. Our results show that this approach is as a compelling alternative to gradient-based training, with clear advantages in parallelism and the ability to handle non-differentiable operations.
CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL - Context-driven Sequential TRansfer Learning - achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at https://github.com/fahmidahossain/Report_Summarization.
Augment and Reduce: Stochastic Inference for Large Categorical Distributions
Categorical distributions are ubiquitous in machine learning, e.g., in classification, language models, and recommendation systems. However, when the number of possible outcomes is very large, using categorical distributions becomes computationally expensive, as the complexity scales linearly with the number of outcomes. To address this problem, we propose augment and reduce (A&R), a method to alleviate the computational complexity. A&R uses two ideas: latent variable augmentation and stochastic variational inference. It maximizes a lower bound on the marginal likelihood of the data. Unlike existing methods which are specific to softmax, A&R is more general and is amenable to other categorical models, such as multinomial probit. On several large-scale classification problems, we show that A&R provides a tighter bound on the marginal likelihood and has better predictive performance than existing approaches.
A Cost-Effective LLM-based Approach to Identify Wildlife Trafficking in Online Marketplaces
Wildlife trafficking remains a critical global issue, significantly impacting biodiversity, ecological stability, and public health. Despite efforts to combat this illicit trade, the rise of e-commerce platforms has made it easier to sell wildlife products, putting new pressure on wild populations of endangered and threatened species. The use of these platforms also opens a new opportunity: as criminals sell wildlife products online, they leave digital traces of their activity that can provide insights into trafficking activities as well as how they can be disrupted. The challenge lies in finding these traces. Online marketplaces publish ads for a plethora of products, and identifying ads for wildlife-related products is like finding a needle in a haystack. Learning classifiers can automate ad identification, but creating them requires costly, time-consuming data labeling that hinders support for diverse ads and research questions. This paper addresses a critical challenge in the data science pipeline for wildlife trafficking analytics: generating quality labeled data for classifiers that select relevant data. While large language models (LLMs) can directly label advertisements, doing so at scale is prohibitively expensive. We propose a cost-effective strategy that leverages LLMs to generate pseudo labels for a small sample of the data and uses these labels to create specialized classification models. Our novel method automatically gathers diverse and representative samples to be labeled while minimizing the labeling costs. Our experimental evaluation shows that our classifiers achieve up to 95% F1 score, outperforming LLMs at a lower cost. We present real use cases that demonstrate the effectiveness of our approach in enabling analyses of different aspects of wildlife trafficking.
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and are uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing zero-shot pipelines and requires no additional training cost. Code is available at: https://github.com/acmi-lab/CHILS.
Preference Fine-Tuning for Factuality in Chest X-Ray Interpretation Models Without Human Feedback
Radiologists play a crucial role by translating medical images into medical reports. However, the field faces staffing shortages and increasing workloads. While automated approaches using vision-language models (VLMs) show promise as assistants, they require exceptionally high accuracy. Most current VLMs in radiology rely solely on supervised fine-tuning (SFT). Meanwhile, in the general domain, additional preference fine-tuning has become standard practice. The challenge in radiology lies in the prohibitive cost of obtaining radiologist feedback. We propose a scalable automated preference alignment technique for VLMs in radiology, focusing on chest X-ray (CXR) report generation. Our method leverages publicly available datasets with an LLM-as-a-Judge mechanism, eliminating the need for additional expert radiologist feedback. We evaluate and benchmark five direct alignment algorithms (DAAs). Our results show up to a 57.4% improvement in average GREEN scores, a LLM-based metric for evaluating CXR reports, and a 9.2% increase in an average across six metrics (domain specific and general), compared to the SFT baseline. We study reward overoptimization via length exploitation, with reports lengthening by up to 3.2x. To assess a potential alignment tax, we benchmark on six additional diverse tasks, finding no significant degradations. A reader study involving four board-certified radiologists indicates win rates of up to 0.62 over the SFT baseline, while significantly penalizing verbosity. Our analysis provides actionable insights for the development of VLMs in high-stakes fields like radiology.
LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning
Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: https://github.com/EfficientTraining/LabelBench.
Zero-Shot Composed Image Retrieval with Textual Inversion
Composed Image Retrieval (CIR) aims to retrieve a target image based on a query composed of a reference image and a relative caption that describes the difference between the two images. The high effort and cost required for labeling datasets for CIR hamper the widespread usage of existing methods, as they rely on supervised learning. In this work, we propose a new task, Zero-Shot CIR (ZS-CIR), that aims to address CIR without requiring a labeled training dataset. Our approach, named zero-Shot composEd imAge Retrieval with textuaL invErsion (SEARLE), maps the visual features of the reference image into a pseudo-word token in CLIP token embedding space and integrates it with the relative caption. To support research on ZS-CIR, we introduce an open-domain benchmarking dataset named Composed Image Retrieval on Common Objects in context (CIRCO), which is the first dataset for CIR containing multiple ground truths for each query. The experiments show that SEARLE exhibits better performance than the baselines on the two main datasets for CIR tasks, FashionIQ and CIRR, and on the proposed CIRCO. The dataset, the code and the model are publicly available at https://github.com/miccunifi/SEARLE.
Beyond Document Page Classification: Design, Datasets, and Challenges
This paper highlights the need to bring document classification benchmarking closer to real-world applications, both in the nature of data tested (X: multi-channel, multi-paged, multi-industry; Y: class distributions and label set variety) and in classification tasks considered (f: multi-page document, page stream, and document bundle classification, ...). We identify the lack of public multi-page document classification datasets, formalize different classification tasks arising in application scenarios, and motivate the value of targeting efficient multi-page document representations. An experimental study on proposed multi-page document classification datasets demonstrates that current benchmarks have become irrelevant and need to be updated to evaluate complete documents, as they naturally occur in practice. This reality check also calls for more mature evaluation methodologies, covering calibration evaluation, inference complexity (time-memory), and a range of realistic distribution shifts (e.g., born-digital vs. scanning noise, shifting page order). Our study ends on a hopeful note by recommending concrete avenues for future improvements.}
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Extreme Multi-Label Legal Text Classification: A case study in EU Legislation
We consider the task of Extreme Multi-Label Text Classification (XMTC) in the legal domain. We release a new dataset of 57k legislative documents from EURLEX, the European Union's public document database, annotated with concepts from EUROVOC, a multidisciplinary thesaurus. The dataset is substantially larger than previous EURLEX datasets and suitable for XMTC, few-shot and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with self-attention outperform the current multi-label state-of-the-art methods, which employ label-wise attention. Replacing CNNs with BIGRUs in label-wise attention networks leads to the best overall performance.
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
PixelCNNs are a recently proposed class of powerful generative models with tractable likelihood. Here we discuss our implementation of PixelCNNs which we make available at https://github.com/openai/pixel-cnn. Our implementation contains a number of modifications to the original model that both simplify its structure and improve its performance. 1) We use a discretized logistic mixture likelihood on the pixels, rather than a 256-way softmax, which we find to speed up training. 2) We condition on whole pixels, rather than R/G/B sub-pixels, simplifying the model structure. 3) We use downsampling to efficiently capture structure at multiple resolutions. 4) We introduce additional short-cut connections to further speed up optimization. 5) We regularize the model using dropout. Finally, we present state-of-the-art log likelihood results on CIFAR-10 to demonstrate the usefulness of these modifications.
In-Context Learning for Extreme Multi-Label Classification
Multi-label classification problems with thousands of classes are hard to solve with in-context learning alone, as language models (LMs) might lack prior knowledge about the precise classes or how to assign them, and it is generally infeasible to demonstrate every class in a prompt. We propose a general program, Infer--Retrieve--Rank, that defines multi-step interactions between LMs and retrievers to efficiently tackle such problems. We implement this program using the DSPy programming model, which specifies in-context systems in a declarative manner, and use DSPy optimizers to tune it towards specific datasets by bootstrapping only tens of few-shot examples. Our primary extreme classification program, optimized separately for each task, attains state-of-the-art results across three benchmarks (HOUSE, TECH, TECHWOLF). We apply the same program to a benchmark with vastly different characteristics and attain competitive performance as well (BioDEX). Unlike prior work, our proposed solution requires no finetuning, is easily applicable to new tasks, alleviates prompt engineering, and requires only tens of labeled examples. Our code is public at https://github.com/KarelDO/xmc.dspy.
Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Learning high-quality feature embeddings efficiently and effectively is critical for the performance of web-scale machine learning systems. A typical model ingests hundreds of features with vocabularies on the order of millions to billions of tokens. The standard approach is to represent each feature value as a d-dimensional embedding, introducing hundreds of billions of parameters for extremely high-cardinality features. This bottleneck has led to substantial progress in alternative embedding algorithms. Many of these methods, however, make the assumption that each feature uses an independent embedding table. This work introduces a simple yet highly effective framework, Feature Multiplexing, where one single representation space is used across many different categorical features. Our theoretical and empirical analysis reveals that multiplexed embeddings can be decomposed into components from each constituent feature, allowing models to distinguish between features. We show that multiplexed representations lead to Pareto-optimal parameter-accuracy tradeoffs for three public benchmark datasets. Further, we propose a highly practical approach called Unified Embedding with three major benefits: simplified feature configuration, strong adaptation to dynamic data distributions, and compatibility with modern hardware. Unified embedding gives significant improvements in offline and online metrics compared to highly competitive baselines across five web-scale search, ads, and recommender systems, where it serves billions of users across the world in industry-leading products.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.
OASIS: Open-world Adaptive Self-supervised and Imbalanced-aware System
The expansion of machine learning into dynamic environments presents challenges in handling open-world problems where label shift, covariate shift, and unknown classes emerge. Post-training methods have been explored to address these challenges, adapting models to newly emerging data. However, these methods struggle when the initial pre-training is performed on class-imbalanced datasets, limiting generalization to minority classes. To address this, we propose a method that effectively handles open-world problems even when pre-training is conducted on imbalanced data. Our contrastive-based pre-training approach enhances classification performance, particularly for underrepresented classes. Our post-training mechanism generates reliable pseudo-labels, improving model robustness against open-world problems. We also introduce selective activation criteria to optimize the post-training process, reducing unnecessary computation. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art adaptation techniques in both accuracy and efficiency across diverse open-world scenarios.
A Practical Approach to Novel Class Discovery in Tabular Data
The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the k-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms (k-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.
MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification
Radiology reports contain rich clinical information that can be used to train imaging models without relying on costly manual annotation. However, existing approaches face critical limitations: rule-based methods struggle with linguistic variability, supervised models require large annotated datasets, and recent LLM-based systems depend on closed-source or resource-intensive models that are unsuitable for clinical use. Moreover, current solutions are largely restricted to English and single-modality, single-taxonomy datasets. We introduce MOSAIC, a multilingual, taxonomy-agnostic, and computationally efficient approach for radiological report classification. Built on a compact open-access language model (MedGemma-4B), MOSAIC supports both zero-/few-shot prompting and lightweight fine-tuning, enabling deployment on consumer-grade GPUs. We evaluate MOSAIC across seven datasets in English, Spanish, French, and Danish, spanning multiple imaging modalities and label taxonomies. The model achieves a mean macro F1 score of 88 across five chest X-ray datasets, approaching or exceeding expert-level performance, while requiring only 24 GB of GPU memory. With data augmentation, as few as 80 annotated samples are sufficient to reach a weighted F1 score of 82 on Danish reports, compared to 86 with the full 1600-sample training set. MOSAIC offers a practical alternative to large or proprietary LLMs in clinical settings. Code and models are open-source. We invite the community to evaluate and extend MOSAIC on new languages, taxonomies, and modalities.
DACTYL: Diverse Adversarial Corpus of Texts Yielded from Large Language Models
Existing AIG (AI-generated) text detectors struggle in real-world settings despite succeeding in internal testing, suggesting that they may not be robust enough. We rigorously examine the machine-learning procedure to build these detectors to address this. Most current AIG text detection datasets focus on zero-shot generations, but little work has been done on few-shot or one-shot generations, where LLMs are given human texts as an example. In response, we introduce the Diverse Adversarial Corpus of Texts Yielded from Language models (DACTYL), a challenging AIG text detection dataset focusing on one-shot/few-shot generations. We also include texts from domain-specific continued-pre-trained (CPT) language models, where we fully train all parameters using a memory-efficient optimization approach. Many existing AIG text detectors struggle significantly on our dataset, indicating a potential vulnerability to one-shot/few-shot and CPT-generated texts. We also train our own classifiers using two approaches: standard binary cross-entropy (BCE) optimization and a more recent approach, deep X-risk optimization (DXO). While BCE-trained classifiers marginally outperform DXO classifiers on the DACTYL test set, the latter excels on out-of-distribution (OOD) texts. In our mock deployment scenario in student essay detection with an OOD student essay dataset, the best DXO classifier outscored the best BCE-trained classifier by 50.56 macro-F1 score points at the lowest false positive rates for both. Our results indicate that DXO classifiers generalize better without overfitting to the test set. Our experiments highlight several areas of improvement for AIG text detectors.
HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks, for example methane detection or mineral identification. This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites. Classical methods suffer from high false positive rates and previous deep learning models exhibit prohibitive computational requirements. We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension without relying on hand-crafted products or spectral band compression preprocessing. We evaluate our models on two tasks related to hyperspectral data processing. With our proposed general architectures, we improve the F1 score of the previous methane detection state-of-the-art models by 27% on a newly created synthetic dataset and by 13% on the previously released large benchmark dataset. We also demonstrate that training models on the synthetic dataset improves performance of models finetuned on the dataset of real events by 6.9% in F1 score in contrast with training from scratch. On a newly created dataset for mineral identification, our models provide 3.5% improvement in the F1 score in contrast to the default versions of the models. With our proposed models we improve the inference speed by 85% in contrast to previous classical and deep learning approaches by removing the dependency on classically computed features. With our architecture, one capture from the EMIT sensor can be processed within 30 seconds on realistic proxy of the ION-SCV 004 satellite.
X-Node: Self-Explanation is All We Need
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.
iSEARLE: Improving Textual Inversion for Zero-Shot Composed Image Retrieval
Given a query consisting of a reference image and a relative caption, Composed Image Retrieval (CIR) aims to retrieve target images visually similar to the reference one while incorporating the changes specified in the relative caption. The reliance of supervised methods on labor-intensive manually labeled datasets hinders their broad applicability. In this work, we introduce a new task, Zero-Shot CIR (ZS-CIR), that addresses CIR without the need for a labeled training dataset. We propose an approach named iSEARLE (improved zero-Shot composEd imAge Retrieval with textuaL invErsion) that involves mapping the visual information of the reference image into a pseudo-word token in CLIP token embedding space and combining it with the relative caption. To foster research on ZS-CIR, we present an open-domain benchmarking dataset named CIRCO (Composed Image Retrieval on Common Objects in context), the first CIR dataset where each query is labeled with multiple ground truths and a semantic categorization. The experimental results illustrate that iSEARLE obtains state-of-the-art performance on three different CIR datasets -- FashionIQ, CIRR, and the proposed CIRCO -- and two additional evaluation settings, namely domain conversion and object composition. The dataset, the code, and the model are publicly available at https://github.com/miccunifi/SEARLE.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Class-relation Knowledge Distillation for Novel Class Discovery
We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.
ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning
This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.
