Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCan Alfvénic Fluctuations Affect the Correlation and Complexity of Magnetic Fields in Magnetic Ejecta? A Case Study Based on Multi-Spacecraft Measurements at 1~au
We investigate whether Alfv\'enic fluctuations (AFs) can affect the structure of magnetic ejecta (MEs) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by ACE and Wind, at a total angular separation of sim0.8^circ (sim0.014~au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfv\'enicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about six hours. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multi-point in-situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.
Systematic Bias in Ionizing Radiation Escape Fraction Measurements from Foreground Large-Scale Structures
We investigate the relationship between the Lyman-alpha (Lya) forest transmission in the intergalactic medium (IGM) and the environmental density of galaxies, focusing on its implications for the measurement of ionizing radiation escape fractions. Using a sample of 268 spectroscopically confirmed background galaxies at 2.7<z<3.0 and a galaxy density map at z~2.5 within the COSMOS field, we measure the Lya transmission photometrically, leveraging the multiwavelength data available from the COSMOS2020 catalog. Our results reveal a weak but statistically significant positive correlation between Lya optical depth and galaxy density contrast, suggesting that overdense regions are enriched in neutral gas, which could bias escape fraction measurements. This emphasizes the need to account for the large-scale structure of the IGM in analyses of ionizing radiation escape fractions, and highlights the advantages of a photometric approach for increasing the number of sampled lines of sight across large fields. The photometric redshifts provided by upcoming all-sky surveys, such as Euclid, will make it possible to account for this effect across widely separated fields.
Predicting Many Properties of a Quantum System from Very Few Measurements
Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order log M measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.
Neural network emulator to constrain the high-$z$ IGM thermal state from Lyman-$α$ forest flux auto-correlation function
We present a neural network emulator to constrain the thermal parameters of the intergalactic medium (IGM) at 5.4z6.0 using the Lyman-displaystylealpha (Lydisplaystylealpha) forest flux auto-correlation function. Our auto-differentiable JAX-based framework accelerates the surrogate model generation process using approximately 100 sparsely sampled Nyx hydrodynamical simulations with varying combinations of thermal parameters, i.e., the temperature at mean density T_{{0}}, the slope of the temperaturedisplaystyle-density relation displaystylegamma, and the mean transmission flux langle{F}{rangle}. We show that this emulator has a typical accuracy of 1.0% across the specified redshift range. Bayesian inference of the IGM thermal parameters, incorporating emulator uncertainty propagation, is further expedited using NumPyro Hamiltonian Monte Carlo. We compare both the inference results and computational cost of our framework with the traditional nearest-neighbor interpolation approach applied to the same set of mock Lyalpha flux. By examining the credibility contours of the marginalized posteriors for T_{{0}},gamma,and{langle}{F}{rangle} obtained using the emulator, the statistical reliability of measurements is established through inference on 100 realistic mock data sets of the auto-correlation function.
Fill in the BLANC: Human-free quality estimation of document summaries
We present BLANC, a new approach to the automatic estimation of document summary quality. Our goal is to measure the functional performance of a summary with an objective, reproducible, and fully automated method. Our approach achieves this by measuring the performance boost gained by a pre-trained language model with access to a document summary while carrying out its language understanding task on the document's text. We present evidence that BLANC scores have as good correlation with human evaluations as do the ROUGE family of summary quality measurements. And unlike ROUGE, the BLANC method does not require human-written reference summaries, allowing for fully human-free summary quality estimation.
Optimizing the $L$-$σ$ Relation of HII Galaxies for Improving Cosmological Application
The basic premise of using HII starburst galaxies (HIIGs) as cosmic "standard candels" is that there is a significant correlation between the Hbeta luminosity (L) and the velocity dispersion (sigma) of the ionized gas from HIIGs measurements, which can be called as the empirical L - sigma relation. However, the scaling L - sigma relation well-calibrated with the lower-redshift HIIGs is unfitted for the higher-redshift HIIGs. To solve this problem, we explore new relational expression for the L - sigma relation which should be suitable for both lower-redshift and higher-redshift HIIGs. After reconstructing the Hubble diagram with the Gaussian process (GP) method from the Pantheon+ supernovae Ia sample, we examine and compare six different revised formulas of L - sigma relation. Furthermore, we use the Bayesian evidence to compare the revised L - sigma relations with the analysis of a joint sample of 36 giant extragalactic HII regions (GEHRs) and 145 HIIGs. It turns out that the redshift-dependent bilinear correction and the quadratic sigma based correction are significantly better than the others. Moreover, a quadratic sigma based correction is the most supported one. It suggests that the appropriate corrections to the L - sigma relation should be considered when the HIIGs are used as a kind of cosmological probes.
Tunable WS$_2$ Micro-Dome Open Cavity Single Photon Source
Versatile, tunable, and potentially scalable single-photon sources are a key asset in emergent photonic quantum technologies. In this work, a single-photon source based on WS_2 micro-domes, created via hydrogen ion irradiation, is realized and integrated into an open, tunable optical microcavity. Single-photon emission from the coupled emitter-cavity system is verified via the second-order correlation measurement, revealing a g^{(2)}(τ=0) value of 0.3. A detailed analysis of the spectrally selective, cavity enhanced emission features shows the impact of a pronounced acoustic phonon emission sideband, which contributes specifically to the non-resonant emitter-cavity coupling in this system. The achieved level of cavity-emitter control highlights the potential of open-cavity systems to tailor the emission properties of atomically thin quantum emitters, advancing their suitability for real-world quantum technology applications.
Measuring and Reducing Gendered Correlations in Pre-trained Models
Pre-trained models have revolutionized natural language understanding. However, researchers have found they can encode artifacts undesired in many applications, such as professions correlating with one gender more than another. We explore such gendered correlations as a case study for how to address unintended correlations in pre-trained models. We define metrics and reveal that it is possible for models with similar accuracy to encode correlations at very different rates. We show how measured correlations can be reduced with general-purpose techniques, and highlight the trade offs different strategies have. With these results, we make recommendations for training robust models: (1) carefully evaluate unintended correlations, (2) be mindful of seemingly innocuous configuration differences, and (3) focus on general mitigations.
Analytical Derivation and Comparison of Alarm Similarity Measures
An industrial process includes many devices, variables, and sub-processes that are physically or electronically interconnected. These interconnections imply some level of correlation between different process variables. Since most of the alarms in a process plant are defined on process variables, alarms are also correlated. However, this can be a nuisance to operators, for one fault might trigger a, sometimes large, number of alarms. So, it is essential to find and correct correlated alarms. In this paper, we study different methods and techniques proposed to measure correlation or similarity between alarms. The similarity indices are first analytically calculated and then studied and compared. The results are also validated using Monte-Carlo simulation.
Active Hypothesis Testing for Correlated Combinatorial Anomaly Detection
We study the problem of identifying an anomalous subset of streams under correlated noise, motivated by monitoring and security in cyber-physical systems. This problem can be viewed as a form of combinatorial pure exploration, where each stream plays the role of an arm and measurements must be allocated sequentially under uncertainty. Existing combinatorial bandit and hypothesis testing methods typically assume independent observations and fail to exploit correlation for efficient measurement design. We propose ECC-AHT, an adaptive algorithm that selects continuous, constrained measurements to maximize Chernoff information between competing hypotheses, enabling active noise cancellation through differential sensing. ECC-AHT achieves optimal sample complexity guarantees and significantly outperforms state-of-the-art baselines in both synthetic and real-world correlated environments. The code is available on https://github.com/VincentdeCristo/ECC-AHT
Measuring Data
We identify the task of measuring data to quantitatively characterize the composition of machine learning data and datasets. Similar to an object's height, width, and volume, data measurements quantify different attributes of data along common dimensions that support comparison. Several lines of research have proposed what we refer to as measurements, with differing terminology; we bring some of this work together, particularly in fields of computer vision and language, and build from it to motivate measuring data as a critical component of responsible AI development. Measuring data aids in systematically building and analyzing machine learning (ML) data towards specific goals and gaining better control of what modern ML systems will learn. We conclude with a discussion of the many avenues of future work, the limitations of data measurements, and how to leverage these measurement approaches in research and practice.
Phase Transitions in the Detection of Correlated Databases
We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies.
CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
Measurement of plutonium isotopes, 239Pu and 240Pu, in air-filter samples from Seville (2001-2002)
Since the last nuclear atmospheric test carried out by the People Republic of China in 1980 and since the Chernobyl accident in 1986, the plutonium hasn't been directly released into the atmosphere. However, nowadays, it is still present in the troposphere. This is due to plutonium-bearing soil particles physical resuspension processes. In this work, we study for the first time the temporal variation of plutonium isotopes, 239Pu and 240Pu, baseline concentrations on a monthly basis in surface air from Seville (Spain), and their correlation with some tracers of mineral dust, during 2001 and 2002. The Pu analyses were performed by low-energy Accelerator Mass Spectrometry (AMS). The 239Pu plus 240Pu (239+240Pu) activity levels achieved maximums during the summer period, characterized by the absence of rains, and minimums during the rainy seasons, laying in the range 1-20 nBq per cubic meter. The 240Pu/239Pu two-year average atomic ratio was 0.18(0.03), in agreement with the fallout plutonium. A good correlation with Pu and Al and Ti levels is observed. They are crustal components usually used as tracers of African dust over European countries. The hypothesis of the influence of the Saharan dust intrusions is supported as well through the study of Total Ozone Mass Spectrometer (TOMS) daily images.
Deep learning automates Cobb angle measurement compared with multi-expert observers
Scoliosis, a prevalent condition characterized by abnormal spinal curvature leading to deformity, requires precise assessment methods for effective diagnosis and management. The Cobb angle is a widely used scoliosis quantification method that measures the degree of curvature between the tilted vertebrae. Yet, manual measuring of Cobb angles is time-consuming and labor-intensive, fraught with significant interobserver and intraobserver variability. To address these challenges and the lack of interpretability found in certain existing automated methods, we have created fully automated software that not only precisely measures the Cobb angle but also provides clear visualizations of these measurements. This software integrates deep neural network-based spine region detection and segmentation, spine centerline identification, pinpointing the most significantly tilted vertebrae, and direct visualization of Cobb angles on the original images. Upon comparison with the assessments of 7 expert readers, our algorithm exhibited a mean deviation in Cobb angle measurements of 4.17 degrees, notably surpassing the manual approach's average intra-reader discrepancy of 5.16 degrees. The algorithm also achieved intra-class correlation coefficients (ICC) exceeding 0.96 and Pearson correlation coefficients above 0.944, reflecting robust agreement with expert assessments and superior measurement reliability. Through the comprehensive reader study and statistical analysis, we believe this algorithm not only ensures a higher consensus with expert readers but also enhances interpretability and reproducibility during assessments. It holds significant promise for clinical application, potentially aiding physicians in more accurate scoliosis assessment and diagnosis, thereby improving patient care.
Language Complexity Measurement as a Noisy Zero-Shot Proxy for Evaluating LLM Performance
Large Language Models (LLMs) have made significant strides in natural language generation but often face challenges in tasks requiring precise calculations and structural analysis. This paper investigates the performance of state-of-the-art LLMs on language complexity measurement tasks, through the computation of the LIX readability metric and Average Dependency Distance (ADD). Using Swedish high school and university-level essays, we evaluate the models' abilities to compute LIX scores and perform dependency parsing, comparing their results to established ground truths. Our findings reveal that while all models demonstrate some capacity for these tasks, ChatGPT-o1-mini performs most consistently, achieving the highest accuracy in both LIX computation and dependency parsing. Additionally, we observe a strong significant correlation -0.875 p 0.026 (N=6) between the models' accuracy in computing LIX and their overall performance on the Massive Multitask Language Understanding (MMLU) benchmark. These results suggest that language complexity measurement abilities can serve as a noisy zero-shot proxies for assessing the general capabilities of LLMs, providing a practical method for model evaluation without the need for extensive benchmarking datasets.
Solving Inverse Problems in Medical Imaging with Score-Based Generative Models
Reconstructing medical images from partial measurements is an important inverse problem in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Existing solutions based on machine learning typically train a model to directly map measurements to medical images, leveraging a training dataset of paired images and measurements. These measurements are typically synthesized from images using a fixed physical model of the measurement process, which hinders the generalization capability of models to unknown measurement processes. To address this issue, we propose a fully unsupervised technique for inverse problem solving, leveraging the recently introduced score-based generative models. Specifically, we first train a score-based generative model on medical images to capture their prior distribution. Given measurements and a physical model of the measurement process at test time, we introduce a sampling method to reconstruct an image consistent with both the prior and the observed measurements. Our method does not assume a fixed measurement process during training, and can thus be flexibly adapted to different measurement processes at test time. Empirically, we observe comparable or better performance to supervised learning techniques in several medical imaging tasks in CT and MRI, while demonstrating significantly better generalization to unknown measurement processes.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
Diquark Correlations in Hadron Physics: Origin, Impact and Evidence
The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play.
Fast and Accurate Transferability Measurement by Evaluating Intra-class Feature Variance
Given a set of pre-trained models, how can we quickly and accurately find the most useful pre-trained model for a downstream task? Transferability measurement is to quantify how transferable is a pre-trained model learned on a source task to a target task. It is used for quickly ranking pre-trained models for a given task and thus becomes a crucial step for transfer learning. Existing methods measure transferability as the discrimination ability of a source model for a target data before transfer learning, which cannot accurately estimate the fine-tuning performance. Some of them restrict the application of transferability measurement in selecting the best supervised pre-trained models that have classifiers. It is important to have a general method for measuring transferability that can be applied in a variety of situations, such as selecting the best self-supervised pre-trained models that do not have classifiers, and selecting the best transferring layer for a target task. In this work, we propose TMI (TRANSFERABILITY MEASUREMENT WITH INTRA-CLASS FEATURE VARIANCE), a fast and accurate algorithm to measure transferability. We view transferability as the generalization of a pre-trained model on a target task by measuring intra-class feature variance. Intra-class variance evaluates the adaptability of the model to a new task, which measures how transferable the model is. Compared to previous studies that estimate how discriminative the models are, intra-class variance is more accurate than those as it does not require an optimal feature extractor and classifier. Extensive experiments on real-world datasets show that TMI outperforms competitors for selecting the top-5 best models, and exhibits consistently better correlation in 13 out of 17 cases.
Transformation of stimulus correlations by the retina
Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.
Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: measuring a circular-polarization mode
The Stokes V parameter characterizes asymmetry of amplitudes between right- and left-handed waves, and non-vanishing value of the V parameter yields a circularly polarized signal. Cosmologically, V parameter may be a direct probe for parity violation in the universe. In this paper, we theoretically investigate a measurement of this parameter, particularly focusing on the gravitational-wave backgrounds observed via ground-based interferometers. In contrast to the traditional analysis that only considers the total amplitude (or equivalently Omega_{GW}), the signal analysis including a circular-polarized mode has a rich structure due to the multi-dimensionality of target parameters. We show that, by using the network of next-generation detectors, separation between polarized and unpolarized modes can be performed with small statistical loss induced by their correlation.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
A comparison of evaluation methods in coevolution
In this research, we compare four different evaluation methods in coevolution on the Majority Function problem. The size of the problem is selected such that evaluation against all possible test cases is feasible. Two measures are used for the comparisons, i.e., the objective fitness derived from evaluating solutions against all test cases, and the objective fitness correlation (OFC), which is defined as the correlation coefficient between subjective and objective fitness. The results of our experiments suggest that a combination of average score and weighted informativeness may provide a more accurate evaluation in coevolution. In order to confirm this difference, a series of t-tests on the preference between each pair of the evaluation methods is performed. The resulting significance is affirmative, and the tests for two quality measures show similar preference on four evaluation methods. %This study is the first time OFC is actually computed on a real problem. Experiments on Majority Function problems with larger sizes and Parity problems are in progress, and their results will be added in the final version.
The ORCA Benchmark: Evaluating Real-World Calculation Accuracy in Large Language Models
We present ORCA (Omni Research on Calculation in AI) Benchmark - a novel benchmark that evaluates large language models (LLMs) on multi-domain, real-life quantitative reasoning using verified outputs from Omni's calculator engine. In 500 natural-language tasks across domains such as finance, physics, health, and statistics, the five state-of-the-art systems (ChatGPT-5, Gemini~2.5~Flash, Claude~Sonnet~4.5, Grok~4, and DeepSeek~V3.2) achieved only 45--63,% accuracy, with errors mainly related to rounding (35,%) and calculation mistakes (33,%). Results in specific domains indicate strengths in mathematics and engineering, but weaknesses in physics and natural sciences. Correlation analysis (r approx 0.40--0.65) shows that the models often fail together but differ in the types of errors they make, highlighting their partial complementarity rather than redundancy. Unlike standard math datasets, ORCA evaluates step-by-step reasoning, numerical precision, and domain generalization across real problems from finance, physics, health, and statistics.
Learning Invariant Representations with Missing Data
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb^{-1}. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
Fast Combinatorial Algorithms for Min Max Correlation Clustering
We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.
Fragile Mastery: Are Domain-Specific Trade-Offs Undermining On-Device Language Models?
The application of on-device language models (ODLMs) on resource-constrained edge devices is a multi-dimensional problem that strikes a fine balance between computational effectiveness, memory, power usage, and linguistic capacity across heterogeneous tasks. This holistic study conducts a thorough investigation of the trade-offs between domain-specific optimization and cross-domain robustness, culminating in the proposal of the Generalized Edge Model (GEM), a new architecture that aims to balance specialization and generalization in a harmonious manner. With a rigorous experimental approach testing 47 well-chosen benchmarks in eight domains--healthcare, law, finance, STEM, commonsense, conversational AI, multilingual, and domain-adaptive tasks--we show that conventional optimization techniques decrease target task perplexity by 18-25% but result in a precipitous decline in general-task performance with F1 scores decreasing by 12-29%, as reported by Liu et al. GEM employs a Sparse Cross-Attention Router (SCAR) to dynamically allocate computation to a variable number of computing resources with a cross-domain F1 accuracy of 0.89 on less than 100ms latency across Raspberry Pi 4, Pixel 6, iPhone 13, and bespoke custom neural processing units (NPUs). Compared to GPT-4 Lite, GEM enhances the general-task level by 7% with respect and parity in domain-specific performance. We propose three new measurement tools--Domain Specialization Index (DSI), Generalization Gap (GG), and Cross-Domain Transfer Ratio (CDTR)--which show strong correlation between model compression intensity and brittleness.
Blind Men and the Elephant: Diverse Perspectives on Gender Stereotypes in Benchmark Datasets
The multifaceted challenge of accurately measuring gender stereotypical bias in language models is akin to discerning different segments of a broader, unseen entity. This short paper primarily focuses on intrinsic bias mitigation and measurement strategies for language models, building on prior research that demonstrates a lack of correlation between intrinsic and extrinsic approaches. We delve deeper into intrinsic measurements, identifying inconsistencies and suggesting that these benchmarks may reflect different facets of gender stereotype. Our methodology involves analyzing data distributions across datasets and integrating gender stereotype components informed by social psychology. By adjusting the distribution of two datasets, we achieve a better alignment of outcomes. Our findings underscore the complexity of gender stereotyping in language models and point to new directions for developing more refined techniques to detect and reduce bias.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Measuring Data Diversity for Instruction Tuning: A Systematic Analysis and A Reliable Metric
Data diversity is crucial for the instruction tuning of large language models. Existing studies have explored various diversity-aware data selection methods to construct high-quality datasets and enhance model performance. However, the fundamental problem of precisely defining and measuring data diversity remains underexplored, limiting clear guidance for data engineering. To address this, we systematically analyze 11 existing diversity measurement methods by evaluating their correlation with model performance through extensive fine-tuning experiments. Our results indicate that a reliable diversity measure should properly account for both inter-sample differences and the information distribution in the sample space. Building on this, we propose NovelSum, a new diversity metric based on sample-level "novelty." Experiments on both simulated and real-world data show that NovelSum accurately captures diversity variations and achieves a 0.97 correlation with instruction-tuned model performance, highlighting its value in guiding data engineering practices. With NovelSum as an optimization objective, we further develop a greedy, diversity-oriented data selection strategy that outperforms existing approaches, validating both the effectiveness and practical significance of our metric.
Neither weak nor strong entropic Leggett-Garg inequalities can be violated
The Leggett-Garg inequalities probe the classical-quantum boundary by putting limits on the sum of pairwise correlation functions between classical measurement devices that consecutively measured the same quantum system. The apparent violation of these inequalities by standard quantum measurements has cast doubt on quantum mechanics' ability to consistently describe classical objects. Recent work has concluded that these inequalities cannot be violated by either strong or weak projective measurements [1]. Here I consider an entropic version of the Leggett-Garg inequalities that are different from the standard inequalities yet similar in form, and can be defined without reference to any particular observable. I find that the entropic inequalities also cannot be be violated by strong quantum measurements. The entropic inequalities can be extended to describe weak quantum measurements, and I show that these weak entropic Leggett-Garg inequalities cannot be violated either even though the quantum system remains unprojected, because the inequalities describe the classical measurement devices, not the quantum system. I conclude that quantum mechanics adequately describes classical devices, and that we should be careful not to assume that the classical devices accurately describe the quantum system.
Isolating Sources of Disentanglement in Variational Autoencoders
We decompose the evidence lower bound to show the existence of a term measuring the total correlation between latent variables. We use this to motivate our beta-TCVAE (Total Correlation Variational Autoencoder), a refinement of the state-of-the-art beta-VAE objective for learning disentangled representations, requiring no additional hyperparameters during training. We further propose a principled classifier-free measure of disentanglement called the mutual information gap (MIG). We perform extensive quantitative and qualitative experiments, in both restricted and non-restricted settings, and show a strong relation between total correlation and disentanglement, when the latent variables model is trained using our framework.
The redshift dependence of the inferred $H_0$ in a local void solution to the Hubble tension
Galaxy number counts suggest that we are located within the Gpc-scale KBC void. The Hubble tension might arise due to gravitationally driven outflow from this void, as explored in detail by Haslbauer et al. We explore how the impact of the void on redshift decays at large distances. We define H_0(z) as the present expansion rate H_0 that would be inferred from observations in a narrow redshift range centred on z. We find H_0(z) in three different ways, all of which give similar results. We then compare these results with the observations of Jia et al., who were careful to minimise the impact of correlations between H_0 measurements from data in different redshift bins. We find reasonable agreement with their results for the Gaussian and Exponential void underdensity profiles, although the agreement is less good in the Maxwell-Boltzmann case. The latter profile causes severe disagreement with the observed bulk flow curve at z < 0.1 (Mazurenko et al.), so the tension with higher redshift data further highlights that the deepest part of the KBC void is probably near its centre. The observations show a decline of H_0(z) towards the background Planck value in qualitative agreement with the considered models, even if we use a larger void. The good overall agreement with the recent results of Jia et al. suggests that the local supervoid evident from the galaxy luminosity density out to a Gpc might also solve the Hubble tension while retaining a low background H_0 consistent with Planck data, assuming enhanced structure formation on >100 Mpc scales.
EDNet: Efficient Disparity Estimation with Cost Volume Combination and Attention-based Spatial Residual
Existing state-of-the-art disparity estimation works mostly leverage the 4D concatenation volume and construct a very deep 3D convolution neural network (CNN) for disparity regression, which is inefficient due to the high memory consumption and slow inference speed. In this paper, we propose a network named EDNet for efficient disparity estimation. Firstly, we construct a combined volume which incorporates contextual information from the squeezed concatenation volume and feature similarity measurement from the correlation volume. The combined volume can be next aggregated by 2D convolutions which are faster and require less memory than 3D convolutions. Secondly, we propose an attention-based spatial residual module to generate attention-aware residual features. The attention mechanism is applied to provide intuitive spatial evidence about inaccurate regions with the help of error maps at multiple scales and thus improve the residual learning efficiency. Extensive experiments on the Scene Flow and KITTI datasets show that EDNet outperforms the previous 3D CNN based works and achieves state-of-the-art performance with significantly faster speed and less memory consumption.
MINDE: Mutual Information Neural Diffusion Estimation
In this work we present a new method for the estimation of Mutual Information (MI) between random variables. Our approach is based on an original interpretation of the Girsanov theorem, which allows us to use score-based diffusion models to estimate the Kullback Leibler divergence between two densities as a difference between their score functions. As a by-product, our method also enables the estimation of the entropy of random variables. Armed with such building blocks, we present a general recipe to measure MI, which unfolds in two directions: one uses conditional diffusion process, whereas the other uses joint diffusion processes that allow simultaneous modelling of two random variables. Our results, which derive from a thorough experimental protocol over all the variants of our approach, indicate that our method is more accurate than the main alternatives from the literature, especially for challenging distributions. Furthermore, our methods pass MI self-consistency tests, including data processing and additivity under independence, which instead are a pain-point of existing methods.
Environmental dependence of galaxy properties in the southern GAMA regions
Using data from the Galaxy and Mass Assembly (GAMA) survey, we investigate how galaxy properties correlate with the local environment, focusing on the two southern regions of the survey (G02 and G23) that have not previously been examined in this context. We employ two-point and marked correlation functions to quantify the environmental dependence of galaxy color, stellar mass, luminosity across the u, g, r, J, and K bands, as well as star formation rate (SFR) and specific star formation rate (sSFR). We also assess the impact of redshift incompleteness and cosmic variance on these clustering measurements. Our results show that u-r and g-r colors are most strongly correlated with local overdensity, followed by stellar mass. The sSFR exhibits a clear inverse relationship with density of the environment, consistent with the trend observed for u-band luminosity, which traces young stellar populations. In contrast, galaxies brighter in the g, J, and K bands preferentially inhabit denser regions. By comparing our measurements from the southern regions with those from the equatorial regions of GAMA, we find that cosmic variance does not significantly influence our conclusions. However, redshift incompleteness affects the clustering measurements, as revealed through comparisons of subsets within the G02 region. The measured correlations provide key constraints for models of galaxy assembly across mass and environment, while the environmental trends in color and near-infrared luminosity offer a means to trace stellar mass growth and quenching with redshift.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
Scalable quantum neural networks by few quantum resources
This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
Spectral properties of bottomonium at high temperature: a systematic investigation
We investigate spectral features of bottomonium at high temperature, in particular the thermal mass shift and width of ground state S-wave and P-wave state. We employ and compare a range of methods for determining these features from lattice NRQCD correlators, including direct correlator analyses (multi-exponential fits and moments of spectral functions), linear methods (Backus-Gilbert, Tikhonov and HLT methods), and Bayesian methods for spectral function reconstruction (MEM and BR). We comment on the reliability and limitations of the various methods.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Evaluating noises of boson sampling with statistical benchmark methods
The lack of self-correcting codes hiders the development of boson sampling to be large-scale and robust. Therefore, it is important to know the noise levels in order to cautiously demonstrate the quantum computational advantage or realize certain tasks. Based on those statistical benchmark methods such as the correlators and the clouds, which are initially proposed to discriminate boson sampling and other mockups, we quantificationally evaluate noises of photon partial distinguishability and photon loss compensated by dark counts. This is feasible owing to the fact that the output distribution unbalances are suppressed by noises, which are actually results of multi-photon interferences. This is why the evaluation performance is better when high order correlators or corresponding clouds are employed. Our results indicate that the statistical benchmark methods can also work in the task of evaluating noises of boson sampling.
A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding
Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes' rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein-von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant "T9" used the DKF to type out messages on a tablet PC.
CUEMPATHY: A Counseling Speech Dataset for Psychotherapy Research
Psychotherapy or counseling is typically conducted through spoken conversation between a therapist and a client. Analyzing the speech characteristics of psychotherapeutic interactions can help understand the factors associated with effective psychotherapy. This paper introduces CUEMPATHY, a large-scale speech dataset collected from actual counseling sessions. The dataset consists of 156 counseling sessions involving 39 therapist-client dyads. The process of speech data collection, subjective ratings (one observer and two client ratings), and transcription are described. An automatic speech and text processing system is developed to locate the time stamps of speaker turns in each session. Examining the relationships among the three subjective ratings suggests that observer and client ratings have no significant correlation, while the client-rated measures are significantly correlated. The intensity similarity between the therapist and the client, measured by the averaged absolute difference of speaker-turn-level intensities, is associated with the psychotherapy outcomes. Recent studies on the acoustic and linguistic characteristics of the CUEMPATHY are introduced.
An OFDM Signal Identification Method for Wireless Communications Systems
Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques.
Observable Statistical Mechanics
Understanding equilibration and thermalization in isolated many-body quantum systems is a central challenge in quantum physics. The traditional approach focuses on the study of the full state of the quantum system which, at equilibrium, is best described by the Diagonal Ensemble. Here, we present Observable Statistical Mechanics, a novel paradigm that shifts attention from the full quantum state to the statistics of measurement outcomes. This approach is grounded in the Maximum Observable Entropy Principle, positing that equilibrium measurement statistics tend to maximize observable entropy under conserved average energy. By focusing on accessible measurements, the theory accurately predicts equilibrium probability distributions without needing detailed microscopic information like the energy eigenstates. Extensive numerical experiments on 7 spin-1/2 Hamiltonians demonstrate the broad applicability and robustness of this framework.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
Dissecting graph measure performance for node clustering in LFR parameter space
Graph measures that express closeness or distance between nodes can be employed for graph nodes clustering using metric clustering algorithms. There are numerous measures applicable to this task, and which one performs better is an open question. We study the performance of 25 graph measures on generated graphs with different parameters. While usually measure comparisons are limited to general measure ranking on a particular dataset, we aim to explore the performance of various measures depending on graph features. Using an LFR graph generator, we create a dataset of 11780 graphs covering the whole LFR parameter space. For each graph, we assess the quality of clustering with k-means algorithm for each considered measure. Based on this, we determine the best measure for each area of the parameter space. We find that the parameter space consists of distinct zones where one particular measure is the best. We analyze the geometry of the resulting zones and describe it with simple criteria. Given particular graph parameters, this allows us to recommend a particular measure to use for clustering.
Practical Benchmarking of Randomized Measurement Methods for Quantum Chemistry Hamiltonians
Many hybrid quantum-classical algorithms for the application of ground state energy estimation in quantum chemistry involve estimating the expectation value of a molecular Hamiltonian with respect to a quantum state through measurements on a quantum device. To guide the selection of measurement methods designed for this observable estimation problem, we propose a benchmark called CSHOREBench (Common States and Hamiltonians for ObseRvable Estimation Benchmark) that assesses the performance of these methods against a set of common molecular Hamiltonians and common states encountered during the runtime of hybrid quantum-classical algorithms. In CSHOREBench, we account for resource utilization of a quantum computer through measurements of a prepared state, and a classical computer through computational runtime spent in proposing measurements and classical post-processing of acquired measurement outcomes. We apply CSHOREBench considering a variety of measurement methods on Hamiltonians of size up to 16 qubits. Our discussion is aided by using the framework of decision diagrams which provides an efficient data structure for various randomized methods and illustrate how to derandomize distributions on decision diagrams. In numerical simulations, we find that the methods of decision diagrams and derandomization are the most preferable. In experiments on IBM quantum devices against small molecules, we observe that decision diagrams reduces the number of measurements made by classical shadows by more than 80%, that made by locally biased classical shadows by around 57%, and consistently require fewer quantum measurements along with lower classical computational runtime than derandomization. Furthermore, CSHOREBench is empirically efficient to run when considering states of random quantum ansatz with fixed depth.
SΩI: Score-based O-INFORMATION Estimation
The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce SOmegaI, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of SOmegaI in the context of a real-world use case.
A Test for Jumps in Metric-Space Conditional Means
Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regressionx2014which generalizes standard regression to metric-space valued datax2014the method estimates a mean path on either side of a candidate cutoff, extending existing k-sample tests to a flexible regression setting. Key theoretical contributions include a central limit theorem for the local estimator of the conditional Fr\'echet variance and the asymptotic validity and consistency of the proposed test. Simulations confirm nominal size control and robust power in finite samples. Two applications demonstrate the method's value by revealing effects invisible to scalar-based tests. First, I detect a sharp change in work-from-home compositions at Washington State's income threshold for non-compete enforceability during COVID-19, highlighting remote work's role as a bargaining margin. Second, I find that countries restructure their input-output networks after losing preferential US trade access. These findings underscore that analyzing regression functions within their native metric spaces can reveal structural discontinuities that scalar summaries would miss.
Measuring a Parity Violation Signature in the Early Universe via Ground-based Laser Interferometers
We show that pairs of widely separated interferometers are advantageous for measuring the Stokes parameter V of a stochastic background of gravitational waves. This parameter characterizes asymmetry of amplitudes of right- and left-handed waves and generation of the asymmetry is closely related to parity violation in the early universe. The advantageous pairs include LIGO(Livingston)-LCGT and AIGO-Virgo that are relatively insensitive to Omega_GW (the simple intensity of the background). Using at least three detectors, information of the intensity Omega_GW and the degree of asymmetry V can be separately measured.
Wigner's Friend as a Circuit: Inter-Branch Communication Witness Benchmarks on Superconducting Quantum Hardware
We implement and benchmark on IBM Quantum hardware the circuit family proposed by Violaris for estimating operational inter-branch communication witnesses, defined as correlations in classical measurement records produced by compiled Wigner's-friend-style circuits. We realize a five-qubit instance of the protocol as an inter-register message-transfer pattern within a single circuit, rather than physical signaling, and evaluate its behavior under realistic device noise and compilation constraints. The circuit encodes branch-conditioned evolution of an observer subsystem whose dynamics depend on a control qubit, followed by a controlled transfer operation that probes correlations between conditional measurement contexts. Executing on the ibm_fez backend with 20000 shots, we observe population-based visibility of 0.877, coherence witnesses of 0.840 and -0.811 along orthogonal axes, and a phase-sensitive magnitude of approximately 1.17. While the visibility metric is insensitive to some classes of dephasing, the coherence witnesses provide complementary sensitivity to off-diagonal noise. This work does not test or discriminate among interpretations of quantum mechanics. Instead, it provides a reproducible operational constraint pipeline for evaluating detectability of non-ideal channels relative to calibrated device noise.
When Should we Expect Non-Decreasing Returns from Data in Prediction Tasks?
This article studies the change in the prediction accuracy of a response variable when the number of predictors increases, and all variables follow a multivariate normal distribution. Assuming that the correlations between variables are independently drawn, I show that adding variables leads to globally increasing returns to scale when the mean of the correlation distribution is zero. The speed of learning depends positively on the variance of the correlation distribution. I use simulations to study the more complex case of correlation distributions with a non-zero mean and find a pattern of decreasing returns followed by increasing returns to scale - as long as the variance of correlations is not degenerate, in which case globally decreasing returns emerge. I train a collaborative filtering algorithm using the MovieLens 1M dataset to analyze returns from adding variables in a more realistic setting and find globally increasing returns to scale across 2,000 variables. The results suggest significant scale advantages from additional variables in prediction tasks.
The Virtual Quantum Optics Laboratory
We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners.
Measurement of the properties of Higgs boson production at s = 13 TeV in the Htoγγ channel using 139 fb^{-1} of pp collision data with the ATLAS experiment
Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb^{-1} of pp collision data at s = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be 1.04^{+0.10}_{-0.09}. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a W or Z boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a p-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.
Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction
The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson r = 0.540, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson r = 0.513, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson r = -0.479, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson r = 0.382, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.
Can Model Uncertainty Function as a Proxy for Multiple-Choice Question Item Difficulty?
Estimating the difficulty of multiple-choice questions would be great help for educators who must spend substantial time creating and piloting stimuli for their tests, and for learners who want to practice. Supervised approaches to difficulty estimation have yielded to date mixed results. In this contribution we leverage an aspect of generative large models which might be seen as a weakness when answering questions, namely their uncertainty, and exploit it towards exploring correlations between two different metrics of uncertainty, and the actual student response distribution. While we observe some present but weak correlations, we also discover that the models' behaviour is different in the case of correct vs wrong answers, and that correlations differ substantially according to the different question types which are included in our fine-grained, previously unused dataset of 451 questions from a Biopsychology course. In discussing our findings, we also suggest potential avenues to further leverage model uncertainty as an additional proxy for item difficulty.
Experimental Estimation of Quantum State Properties from Classical Shadows
Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements on the number of qubits in the system. However, several ideas were proposed recently for predicting the limited number of features for these states, or estimating the expectation values of operators, without the need for full state reconstruction. These ideas go under the general name of shadow tomography. Here we provide an experimental demonstration of property estimation based on classical shadows proposed in [H.-Y. Huang, R. Kueng, J. Preskill. Nat. Phys. https://doi.org/10.1038/s41567-020-0932-7 (2020)] and study its performance in the quantum optical experiment with high-dimensional spatial states of photons. We show on experimental data how this procedure outperforms conventional state reconstruction in fidelity estimation from a limited number of measurements.
Continuous Sign Language Recognition with Correlation Network
Human body trajectories are a salient cue to identify actions in the video. Such body trajectories are mainly conveyed by hands and face across consecutive frames in sign language. However, current methods in continuous sign language recognition (CSLR) usually process frames independently, thus failing to capture cross-frame trajectories to effectively identify a sign. To handle this limitation, we propose correlation network (CorrNet) to explicitly capture and leverage body trajectories across frames to identify signs. In specific, a correlation module is first proposed to dynamically compute correlation maps between the current frame and adjacent frames to identify trajectories of all spatial patches. An identification module is then presented to dynamically emphasize the body trajectories within these correlation maps. As a result, the generated features are able to gain an overview of local temporal movements to identify a sign. Thanks to its special attention on body trajectories, CorrNet achieves new state-of-the-art accuracy on four large-scale datasets, i.e., PHOENIX14, PHOENIX14-T, CSL-Daily, and CSL. A comprehensive comparison with previous spatial-temporal reasoning methods verifies the effectiveness of CorrNet. Visualizations demonstrate the effects of CorrNet on emphasizing human body trajectories across adjacent frames.
Enhancing Neural Training via a Correlated Dynamics Model
As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce Correlation Mode Decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning.
Taming Landau level mixing in fractional quantum Hall states with deep learning
Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both 1/3 and 2/5 filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect.
Electronic properties, correlated topology and Green's function zeros
There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
The ability of Variational Autoencoders to learn disentangled representations has made them appealing for practical applications. However, their mean representations, which are generally used for downstream tasks, have recently been shown to be more correlated than their sampled counterpart, on which disentanglement is usually measured. In this paper, we refine this observation through the lens of selective posterior collapse, which states that only a subset of the learned representations, the active variables, is encoding useful information while the rest (the passive variables) is discarded. We first extend the existing definition to multiple data examples and show that active variables are equally disentangled in mean and sampled representations. Based on this extension and the pre-trained models from disentanglement lib, we then isolate the passive variables and show that they are responsible for the discrepancies between mean and sampled representations. Specifically, passive variables exhibit high correlation scores with other variables in mean representations while being fully uncorrelated in sampled ones. We thus conclude that despite what their higher correlation might suggest, mean representations are still good candidates for downstream tasks applications. However, it may be beneficial to remove their passive variables, especially when used with models sensitive to correlated features.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
