new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 27

InstantSfM: Fully Sparse and Parallel Structure-from-Motion

Structure-from-Motion (SfM), a method that recovers camera poses and scene geometry from uncalibrated images, is a central component in robotic reconstruction and simulation. Despite the state-of-the-art performance of traditional SfM methods such as COLMAP and its follow-up work, GLOMAP, naive CPU-specialized implementations of bundle adjustment (BA) or global positioning (GP) introduce significant computational overhead when handling large-scale scenarios, leading to a trade-off between accuracy and speed in SfM. Moreover, the blessing of efficient C++-based implementations in COLMAP and GLOMAP comes with the curse of limited flexibility, as they lack support for various external optimization options. On the other hand, while deep learning based SfM pipelines like VGGSfM and VGGT enable feed-forward 3D reconstruction, they are unable to scale to thousands of input views at once as GPU memory consumption increases sharply as the number of input views grows. In this paper, we unleash the full potential of GPU parallel computation to accelerate each critical stage of the standard SfM pipeline. Building upon recent advances in sparse-aware bundle adjustment optimization, our design extends these techniques to accelerate both BA and GP within a unified global SfM framework. Through extensive experiments on datasets of varying scales (e.g. 5000 images where VGGSfM and VGGT run out of memory), our method demonstrates up to about 40 times speedup over COLMAP while achieving consistently comparable or even improved reconstruction accuracy. Our project page can be found at https://cre185.github.io/InstantSfM/.

  • 8 authors
·
Oct 15, 2025

Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images

Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.

  • 10 authors
·
Jul 8, 2024 1