Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRefine Drugs, Don't Complete Them: Uniform-Source Discrete Flows for Fragment-Based Drug Discovery
We introduce InVirtuoGen, a discrete flow generative model for fragmented SMILES for de novo and fragment-constrained generation, and target-property/lead optimization of small molecules. The model learns to transform a uniform source over all possible tokens into the data distribution. Unlike masked models, its training loss accounts for predictions on all sequence positions at every denoising step, shifting the generation paradigm from completion to refinement, and decoupling the number of sampling steps from the sequence length. For de novo generation, InVirtuoGen achieves a stronger quality-diversity pareto frontier than prior fragment-based models and competitive performance on fragment-constrained tasks. For property and lead optimization, we propose a hybrid scheme that combines a genetic algorithm with a Proximal Property Optimization fine-tuning strategy adapted to discrete flows. Our approach sets a new state-of-the-art on the Practical Molecular Optimization benchmark, measured by top-10 AUC across tasks, and yields higher docking scores in lead optimization than previous baselines. InVirtuoGen thus establishes a versatile generative foundation for drug discovery, from early hit finding to multi-objective lead optimization. We further contribute to open science by releasing pretrained checkpoints and code, making our results fully reproduciblehttps://github.com/invirtuolabs/InVirtuoGen_results.
Learning Descriptive Image Captioning via Semipermeable Maximum Likelihood Estimation
Image captioning aims to describe visual content in natural language. As 'a picture is worth a thousand words', there could be various correct descriptions for an image. However, with maximum likelihood estimation as the training objective, the captioning model is penalized whenever its prediction mismatches with the label. For instance, when the model predicts a word expressing richer semantics than the label, it will be penalized and optimized to prefer more concise expressions, referred to as conciseness optimization. In contrast, predictions that are more concise than labels lead to richness optimization. Such conflicting optimization directions could eventually result in the model generating general descriptions. In this work, we introduce Semipermeable MaxImum Likelihood Estimation (SMILE), which allows richness optimization while blocking conciseness optimization, thus encouraging the model to generate longer captions with more details. Extensive experiments on two mainstream image captioning datasets MSCOCO and Flickr30K demonstrate that SMILE significantly enhances the descriptiveness of generated captions. We further provide in-depth investigations to facilitate a better understanding of how SMILE works.
The Importance of Directional Feedback for LLM-based Optimizers
We study the potential of using large language models (LLMs) as an interactive optimizer for solving maximization problems in a text space using natural language and numerical feedback. Inspired by the classical optimization literature, we classify the natural language feedback into directional and non-directional, where the former is a generalization of the first-order feedback to the natural language space. We find that LLMs are especially capable of optimization when they are provided with {directional feedback}. Based on this insight, we design a new LLM-based optimizer that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations. Empirically, we show our LLM-based optimizer is more stable and efficient in solving optimization problems, from maximizing mathematical functions to optimizing prompts for writing poems, compared with existing techniques.
Sparse Reward Exploration via Novelty Search and Emitters
Reward-based optimization algorithms require both exploration, to find rewards, and exploitation, to maximize performance. The need for efficient exploration is even more significant in sparse reward settings, in which performance feedback is given sparingly, thus rendering it unsuitable for guiding the search process. In this work, we introduce the SparsE Reward Exploration via Novelty and Emitters (SERENE) algorithm, capable of efficiently exploring a search space, as well as optimizing rewards found in potentially disparate areas. Contrary to existing emitters-based approaches, SERENE separates the search space exploration and reward exploitation into two alternating processes. The first process performs exploration through Novelty Search, a divergent search algorithm. The second one exploits discovered reward areas through emitters, i.e. local instances of population-based optimization algorithms. A meta-scheduler allocates a global computational budget by alternating between the two processes, ensuring the discovery and efficient exploitation of disjoint reward areas. SERENE returns both a collection of diverse solutions covering the search space and a collection of high-performing solutions for each distinct reward area. We evaluate SERENE on various sparse reward environments and show it compares favorably to existing baselines.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
PASTA: Pessimistic Assortment Optimization
We consider a class of assortment optimization problems in an offline data-driven setting. A firm does not know the underlying customer choice model but has access to an offline dataset consisting of the historically offered assortment set, customer choice, and revenue. The objective is to use the offline dataset to find an optimal assortment. Due to the combinatorial nature of assortment optimization, the problem of insufficient data coverage is likely to occur in the offline dataset. Therefore, designing a provably efficient offline learning algorithm becomes a significant challenge. To this end, we propose an algorithm referred to as Pessimistic ASsortment opTimizAtion (PASTA for short) designed based on the principle of pessimism, that can correctly identify the optimal assortment by only requiring the offline data to cover the optimal assortment under general settings. In particular, we establish a regret bound for the offline assortment optimization problem under the celebrated multinomial logit model. We also propose an efficient computational procedure to solve our pessimistic assortment optimization problem. Numerical studies demonstrate the superiority of the proposed method over the existing baseline method.
Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning
Recent Meta-learning for Black-Box Optimization (MetaBBO) methods harness neural networks to meta-learn configurations of traditional black-box optimizers. Despite their success, they are inevitably restricted by the limitations of predefined hand-crafted optimizers. In this paper, we present Symbol, a novel framework that promotes the automated discovery of black-box optimizers through symbolic equation learning. Specifically, we propose a Symbolic Equation Generator (SEG) that allows closed-form optimization rules to be dynamically generated for specific tasks and optimization steps. Within Symbol, we then develop three distinct strategies based on reinforcement learning, so as to meta-learn the SEG efficiently. Extensive experiments reveal that the optimizers generated by Symbol not only surpass the state-of-the-art BBO and MetaBBO baselines, but also exhibit exceptional zero-shot generalization abilities across entirely unseen tasks with different problem dimensions, population sizes, and optimization horizons. Furthermore, we conduct in-depth analyses of our Symbol framework and the optimization rules that it generates, underscoring its desirable flexibility and interpretability.
Practical tradeoffs between memory, compute, and performance in learned optimizers
Optimization plays a costly and crucial role in developing machine learning systems. In learned optimizers, the few hyperparameters of commonly used hand-designed optimizers, e.g. Adam or SGD, are replaced with flexible parametric functions. The parameters of these functions are then optimized so that the resulting learned optimizer minimizes a target loss on a chosen class of models. Learned optimizers can both reduce the number of required training steps and improve the final test loss. However, they can be expensive to train, and once trained can be expensive to use due to computational and memory overhead for the optimizer itself. In this work, we identify and quantify the design features governing the memory, compute, and performance trade-offs for many learned and hand-designed optimizers. We further leverage our analysis to construct a learned optimizer that is both faster and more memory efficient than previous work. Our model and training code are open source.
Optimization Methods for Large-Scale Machine Learning
This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
Towards Constituting Mathematical Structures for Learning to Optimize
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling
Despite the rapid development of large language models (LLMs), a fundamental challenge persists: the lack of high-quality optimization modeling datasets hampers LLMs' robust modeling of practical optimization problems from natural language descriptions (NL). This data scarcity also contributes to the generalization difficulties experienced by learning-based methods. To address these challenges, we propose a scalable framework for synthesizing a high-quality dataset, named OptMATH. Starting from curated seed data with mathematical formulations (MF), this framework automatically generates problem data (PD) with controllable complexity. Then, a back-translation step is employed to obtain NL. To verify the correspondence between the NL and the PD, a forward modeling step followed by rejection sampling is used. The accepted pairs constitute the training part of OptMATH. Then a collection of rejected pairs is identified and further filtered. This collection serves as a new benchmark for optimization modeling, containing difficult instances whose lengths are much longer than these of NL4OPT and MAMO. Through extensive experiments, we demonstrate that models of various sizes (0.5B-32B parameters) trained on OptMATH achieve superior results on multiple modeling benchmarks, thereby validating the effectiveness and scalability of our approach. Our dataset is publicly available at https://github.com/AuroraLHL/OptMATH.
Text2Zinc: A Cross-Domain Dataset for Modeling Optimization and Satisfaction Problems in MiniZinc
There is growing interest in utilizing large language models (LLMs) as co-pilots for combinatorial optimization and constraint programming tasks across various problems. This paper aims to advance this line of research by introducing Text2Zinc}, a cross-domain dataset for capturing optimization and satisfaction problems specified in natural language text. Our work is distinguished from previous attempts by integrating both satisfaction and optimization problems within a unified dataset using a solver-agnostic modeling language. To achieve this, we leverage MiniZinc's solver-and-paradigm-agnostic modeling capabilities to formulate these problems. Using the Text2Zinc dataset, we conduct comprehensive baseline experiments to compare execution and solution accuracy across several methods, including off-the-shelf prompting strategies, chain-of-thought reasoning, and a compositional approach. Additionally, we explore the effectiveness of intermediary representations, specifically knowledge graphs. Our findings indicate that LLMs are not yet a push-button technology to model combinatorial problems from text. We hope that Text2Zinc serves as a valuable resource for researchers and practitioners to advance the field further.
Large Language Models as Optimizers
Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to prompt optimization where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
Generalized Preference Optimization: A Unified Approach to Offline Alignment
Offline preference optimization allows fine-tuning large models directly from offline data, and has proved effective in recent alignment practices. We propose generalized preference optimization (GPO), a family of offline losses parameterized by a general class of convex functions. GPO enables a unified view over preference optimization, encompassing existing algorithms such as DPO, IPO and SLiC as special cases, while naturally introducing new variants. The GPO framework also sheds light on how offline algorithms enforce regularization, through the design of the convex function that defines the loss. Our analysis and experiments reveal the connections and subtle differences between the offline regularization and the KL divergence regularization intended by the canonical RLHF formulation. In a controlled setting akin to Gao et al 2023, we also show that different GPO variants achieve similar trade-offs between regularization and performance, though the optimal values of hyper-parameter might differ as predicted by theory. In all, our results present new algorithmic toolkits and empirical insights to alignment practitioners.
FORGE: Foundational Optimization Representations from Graph Embeddings
Combinatorial optimization problems are ubiquitous in science and engineering. Still, learning-based approaches to accelerate combinatorial optimization often require solving a large number of difficult instances to collect training data, incurring significant computational cost. Existing learning-based methods require training dedicated models for each problem distribution, for each downstream task, severely limiting their scalability and generalization. We introduce Forge: Foundational Optimization Representations from Graph Embeddings, a framework that pre-trains a vector-quantized graph autoencoder on a large, diverse collection of mixed-integer programming (MIP) instances in an unsupervised manner, without relying on optimization solvers or optimal solutions. Vector quantization produces discrete code assignments that serve as a vocabulary for representing optimization instances. We evaluate Forge in both unsupervised and supervised settings. In the unsupervised setting, Forge embeddings effectively cluster unseen instances across problem domains and sizes. In the supervised setting, we fine-tune Forge embeddings and show that a single pre-trained model helps predicting both the integrality gap for cut-generation and variable hints for search guidance across multiple problem and size distributions. In both tasks, we improve the performance of a commercial optimization solver and outperform state-of-the-art learning-based methods. Finally, we open-source our training code, pre-trained Forge weights, and embeddings for multiple MIP distributions to foster further research in representation learning for optimization problems.
Evolving Deep Learning Optimizers
We present a genetic algorithm framework for automatically discovering deep learning optimization algorithms. Our approach encodes optimizers as genomes that specify combinations of primitive update terms (gradient, momentum, RMS normalization, Adam-style adaptive terms, and sign-based updates) along with hyperparameters and scheduling options. Through evolutionary search over 50 generations with a population of 50 individuals, evaluated across multiple vision tasks, we discover an evolved optimizer that outperforms Adam by 2.6% in aggregate fitness and achieves a 7.7% relative improvement on CIFAR-10. The evolved optimizer combines sign-based gradient terms with adaptive moment estimation, uses lower momentum coefficients than Adam (β_1=0.86, β_2=0.94), and notably disables bias correction while enabling learning rate warmup and cosine decay. Our results demonstrate that evolutionary search can discover competitive optimization algorithms and reveal design principles that differ from hand-crafted optimizers. Code is available at https://github.com/mmarfinetz/evo-optimizer.
Large Language Models to Enhance Bayesian Optimization
Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
A Survey on the Optimization of Large Language Model-based Agents
With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
A General Framework for User-Guided Bayesian Optimization
The optimization of expensive-to-evaluate black-box functions is prevalent in various scientific disciplines. Bayesian optimization is an automatic, general and sample-efficient method to solve these problems with minimal knowledge of the underlying function dynamics. However, the ability of Bayesian optimization to incorporate prior knowledge or beliefs about the function at hand in order to accelerate the optimization is limited, which reduces its appeal for knowledgeable practitioners with tight budgets. To allow domain experts to customize the optimization routine, we propose ColaBO, the first Bayesian-principled framework for incorporating prior beliefs beyond the typical kernel structure, such as the likely location of the optimizer or the optimal value. The generality of ColaBO makes it applicable across different Monte Carlo acquisition functions and types of user beliefs. We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.
A Survey on Inference Optimization Techniques for Mixture of Experts Models
The emergence of large-scale Mixture of Experts (MoE) models has marked a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, the deployment and inference of these models present substantial challenges in terms of computational resources, latency, and energy efficiency. This comprehensive survey systematically analyzes the current landscape of inference optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey not only provides a structured overview of existing solutions but also identifies key challenges and promising research directions in MoE inference optimization. Our comprehensive analysis serves as a valuable resource for researchers and practitioners working on large-scale deployment of MoE models in resource-constrained environments. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at https://github.com/MoE-Inf/awesome-moe-inference/.
Scattered Forest Search: Smarter Code Space Exploration with LLMs
We propose a novel approach to scaling LLM inference for code generation. We frame code generation as a black box optimization problem within the code space, and employ optimization-inspired techniques to enhance exploration. Specifically, we introduce Scattered Forest Search to enhance solution diversity while searching for solutions. Our theoretical analysis illustrates how these methods avoid local optima during optimization. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance improvements. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our method scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Optimizing Millions of Hyperparameters by Implicit Differentiation
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results about the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyper-parameters. For example, we learn a data-augmentation network - where every weight is a hyperparameter tuned for validation performance - outputting augmented training examples. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.
ROOT: Rethinking Offline Optimization as Distributional Translation via Probabilistic Bridge
This paper studies the black-box optimization task which aims to find the maxima of a black-box function using a static set of its observed input-output pairs. This is often achieved via learning and optimizing a surrogate function with that offline data. Alternatively, it can also be framed as an inverse modeling task that maps a desired performance to potential input candidates that achieve it. Both approaches are constrained by the limited amount of offline data. To mitigate this limitation, we introduce a new perspective that casts offline optimization as a distributional translation task. This is formulated as learning a probabilistic bridge transforming an implicit distribution of low-value inputs (i.e., offline data) into another distribution of high-value inputs (i.e., solution candidates). Such probabilistic bridge can be learned using low- and high-value inputs sampled from synthetic functions that resemble the target function. These synthetic functions are constructed as the mean posterior of multiple Gaussian processes fitted with different parameterizations on the offline data, alleviating the data bottleneck. The proposed approach is evaluated on an extensive benchmark comprising most recent methods, demonstrating significant improvement and establishing a new state-of-the-art performance. Our code is publicly available at https://github.com/cuong-dm/ROOT.
FOSI: Hybrid First and Second Order Optimization
Popular machine learning approaches forgo second-order information due to the difficulty of computing curvature in high dimensions. We present FOSI, a novel meta-algorithm that improves the performance of any base first-order optimizer by efficiently incorporating second-order information during the optimization process. In each iteration, FOSI implicitly splits the function into two quadratic functions defined on orthogonal subspaces, then uses a second-order method to minimize the first, and the base optimizer to minimize the other. We formally analyze FOSI's convergence and the conditions under which it improves a base optimizer. Our empirical evaluation demonstrates that FOSI improves the convergence rate and optimization time of first-order methods such as Heavy-Ball and Adam, and outperforms second-order methods (K-FAC and L-BFGS).
Generalizable Heuristic Generation Through Large Language Models with Meta-Optimization
Heuristic design with large language models (LLMs) has emerged as a promising approach for tackling combinatorial optimization problems (COPs). However, existing approaches often rely on manually predefined evolutionary computation (EC) optimizers and single-task training schemes, which may constrain the exploration of diverse heuristic algorithms and hinder the generalization of the resulting heuristics. To address these issues, we propose Meta-Optimization of Heuristics (MoH), a novel framework that operates at the optimizer level, discovering effective optimizers through the principle of meta-learning. Specifically, MoH leverages LLMs to iteratively refine a meta-optimizer that autonomously constructs diverse optimizers through (self-)invocation, thereby eliminating the reliance on a predefined EC optimizer. These constructed optimizers subsequently evolve heuristics for downstream tasks, enabling broader heuristic exploration. Moreover, MoH employs a multi-task training scheme to promote its generalization capability. Experiments on classic COPs demonstrate that MoH constructs an effective and interpretable meta-optimizer, achieving state-of-the-art performance across various downstream tasks, particularly in cross-size settings.
PyLO: Towards Accessible Learned Optimizers in PyTorch
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization
Bayesian Optimization (BO) is typically used to optimize an unknown function f that is noisy and costly to evaluate, by exploiting an acquisition function that must be maximized at each optimization step. Even if provably asymptotically optimal BO algorithms are efficient at optimizing low-dimensional functions, scaling them to high-dimensional spaces remains an open problem, often tackled by assuming an additive structure for f. By doing so, BO algorithms typically introduce additional restrictive assumptions on the additive structure that reduce their applicability domain. This paper contains two main contributions: (i) we relax the restrictive assumptions on the additive structure of f without weakening the maximization guarantees of the acquisition function, and (ii) we address the over-exploration problem for decentralized BO algorithms. To these ends, we propose DuMBO, an asymptotically optimal decentralized BO algorithm that achieves very competitive performance against state-of-the-art BO algorithms, especially when the additive structure of f comprises high-dimensional factors.
CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems-a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agent frameworks against established human-designed algorithms, revealing key strengths and limitations of current approaches and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
Global Optimization with Parametric Function Approximation
We consider the problem of global optimization with noisy zeroth order oracles - a well-motivated problem useful for various applications ranging from hyper-parameter tuning for deep learning to new material design. Existing work relies on Gaussian processes or other non-parametric family, which suffers from the curse of dimensionality. In this paper, we propose a new algorithm GO-UCB that leverages a parametric family of functions (e.g., neural networks) instead. Under a realizable assumption and a few other mild geometric conditions, we show that GO-UCB achieves a cumulative regret of O(T) where T is the time horizon. At the core of GO-UCB is a carefully designed uncertainty set over parameters based on gradients that allows optimistic exploration. Synthetic and real-world experiments illustrate GO-UCB works better than Bayesian optimization approaches in high dimensional cases, even if the model is misspecified.
LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
ML4CO: Is GCNN All You Need? Graph Convolutional Neural Networks Produce Strong Baselines For Combinatorial Optimization Problems, If Tuned and Trained Properly, on Appropriate Data
The 2021 NeurIPS Machine Learning for Combinatorial Optimization (ML4CO) competition was designed with the goal of improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning models. The competition's main scientific question was the following: is machine learning a viable option for improving traditional combinatorial optimization solvers on specific problem distributions, when historical data is available? This was motivated by the fact that in many practical scenarios, the data changes only slightly between the repetitions of a combinatorial optimization problem, and this is an area where machine learning models are particularly powerful at. This paper summarizes the solution and lessons learned by the Huawei EI-OROAS team in the dual task of the competition. The submission of our team achieved the second place in the final ranking, with a very close distance to the first spot. In addition, our solution was ranked first consistently for several weekly leaderboard updates before the final evaluation. We provide insights gained from a large number of experiments, and argue that a simple Graph Convolutional Neural Network (GCNNs) can achieve state-of-the-art results if trained and tuned properly.
Symbolic Discovery of Optimization Algorithms
We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, Lion (Evo\textbf{Lved Sign Momentum}). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. The implementation of Lion is publicly available.
AReUReDi: Annealed Rectified Updates for Refining Discrete Flows with Multi-Objective Guidance
Designing sequences that satisfy multiple, often conflicting, objectives is a central challenge in therapeutic and biomolecular engineering. Existing generative frameworks largely operate in continuous spaces with single-objective guidance, while discrete approaches lack guarantees for multi-objective Pareto optimality. We introduce AReUReDi (Annealed Rectified Updates for Refining Discrete Flows), a discrete optimization algorithm with theoretical guarantees of convergence to the Pareto front. Building on Rectified Discrete Flows (ReDi), AReUReDi combines Tchebycheff scalarization, locally balanced proposals, and annealed Metropolis-Hastings updates to bias sampling toward Pareto-optimal states while preserving distributional invariance. Applied to peptide and SMILES sequence design, AReUReDi simultaneously optimizes up to five therapeutic properties (including affinity, solubility, hemolysis, half-life, and non-fouling) and outperforms both evolutionary and diffusion-based baselines. These results establish AReUReDi as a powerful, sequence-based framework for multi-property biomolecule generation.
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.
Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods
Mixed Integer Linear Programming (MILP) is a fundamental tool for modeling combinatorial optimization problems. Recently, a growing body of research has used machine learning to accelerate MILP solving. Despite the increasing popularity of this approach, there is a lack of a common repository that provides distributions of similar MILP instances across different domains, at different hardness levels, with standardized test sets. In this paper, we introduce Distributional MIPLIB, a multi-domain library of problem distributions for advancing ML-guided MILP methods. We curate MILP distributions from existing work in this area as well as real-world problems that have not been used, and classify them into different hardness levels. It will facilitate research in this area by enabling comprehensive evaluation on diverse and realistic domains. We empirically illustrate the benefits of using Distributional MIPLIB as a research vehicle in two ways. We evaluate the performance of ML-guided variable branching on previously unused distributions to identify potential areas for improvement. Moreover, we propose to learn branching policies from a mix of distributions, demonstrating that mixed distributions achieve better performance compared to homogeneous distributions when there is limited data and generalize well to larger instances. The dataset is publicly available at https://sites.google.com/usc.edu/distributional-miplib/home.
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse protein folding -- the task of predicting a protein sequence from its backbone atom coordinates -- has surfaced as an important problem in the "top down", de novo design of proteins. Contemporary approaches have cast this problem as a conditional generative modelling problem, where a large generative model over protein sequences is conditioned on the backbone. While these generative models very rapidly produce promising sequences, independent draws from generative models may fail to produce sequences that reliably fold to the correct backbone. Furthermore, it is challenging to adapt pure generative approaches to other settings, e.g., when constraints exist. In this paper, we cast the problem of improving generated inverse folds as an optimization problem that we solve using recent advances in "deep" or "latent space" Bayesian optimization. Our approach consistently produces protein sequences with greatly reduced structural error to the target backbone structure as measured by TM score and RMSD while using fewer computational resources. Additionally, we demonstrate other advantages of an optimization-based approach to the problem, such as the ability to handle constraints.
Regularized Langevin Dynamics for Combinatorial Optimization
This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.
Algorithm Evolution Using Large Language Model
Optimization can be found in many real-life applications. Designing an effective algorithm for a specific optimization problem typically requires a tedious amount of effort from human experts with domain knowledge and algorithm design skills. In this paper, we propose a novel approach called Algorithm Evolution using Large Language Model (AEL). It utilizes a large language model (LLM) to automatically generate optimization algorithms via an evolutionary framework. AEL does algorithm-level evolution without model training. Human effort and requirements for domain knowledge can be significantly reduced. We take constructive methods for the salesman traveling problem as a test example, we show that the constructive algorithm obtained by AEL outperforms simple hand-crafted and LLM-generated heuristics. Compared with other domain deep learning model-based algorithms, these methods exhibit excellent scalability across different problem sizes. AEL is also very different from previous attempts that utilize LLMs as search operators in algorithms.
OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning. Solving realistic optimization (OPT) problems in application scenarios requires advanced and applied mathematics ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs. OptiBench contains rich optimization problems, including linear and nonlinear programming with or without tabular data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to call a code solver to provide precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, \ReSocratic first incrementally synthesizes formatted optimization demonstration with mathematical formulations step by step and then back-translates the generated demonstrations into questions. Based on this, we synthesize the ReSocratic-29k dataset. We further conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. Experimental results show that ReSocratic-29k significantly improves the performance of open-source models.
Automated Optimization Modeling through Expert-Guided Large Language Model Reasoning
Optimization Modeling (OM) is essential for solving complex decision-making problems. However, the process remains time-consuming and error-prone, heavily relying on domain experts. While Large Language Models (LLMs) show promise in addressing these challenges through their natural language understanding and reasoning capabilities, current approaches face three critical limitations: high benchmark labeling error rates reaching up to 42%, narrow evaluation scope that only considers optimal values, and computational inefficiency due to heavy reliance on multi-agent systems or model fine-tuning. In this work, we first enhance existing datasets through systematic error correction and more comprehensive annotation. Additionally, we introduce LogiOR, a new optimization modeling benchmark from the logistics domain, containing more complex problems with standardized annotations. Furthermore, we present ORThought, a novel framework that leverages expert-level optimization modeling principles through chain-of-thought reasoning to automate the OM process. Through extensive empirical evaluation, we demonstrate that ORThought outperforms existing approaches, including multi-agent frameworks, with particularly significant advantages on complex optimization problems. Finally, we provide a systematic analysis of our method, identifying critical success factors and failure modes, providing valuable insights for future research on LLM-based optimization modeling.
Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
Expensive multi-objective optimization problems (EMOPs) are common in real-world scenarios where evaluating objective functions is costly and involves extensive computations or physical experiments. Current Pareto set learning methods for such problems often rely on surrogate models like Gaussian processes to approximate the objective functions. These surrogate models can become fragmented, resulting in numerous small uncertain regions between explored solutions. When using acquisition functions such as the Lower Confidence Bound (LCB), these uncertain regions can turn into pseudo-local optima, complicating the search for globally optimal solutions. To address these challenges, we propose a novel approach called SVH-PSL, which integrates Stein Variational Gradient Descent (SVGD) with Hypernetworks for efficient Pareto set learning. Our method addresses the issues of fragmented surrogate models and pseudo-local optima by collectively moving particles in a manner that smooths out the solution space. The particles interact with each other through a kernel function, which helps maintain diversity and encourages the exploration of underexplored regions. This kernel-based interaction prevents particles from clustering around pseudo-local optima and promotes convergence towards globally optimal solutions. Our approach aims to establish robust relationships between trade-off reference vectors and their corresponding true Pareto solutions, overcoming the limitations of existing methods. Through extensive experiments across both synthetic and real-world MOO benchmarks, we demonstrate that SVH-PSL significantly improves the quality of the learned Pareto set, offering a promising solution for expensive multi-objective optimization problems.
ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution
The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a novel integration of evolutionary search for efficiently exploring the heuristic space, and LLM reflections to provide verbal gradients within the space. Across five heterogeneous algorithmic types, six different COPs, and both white-box and black-box views of COPs, ReEvo yields state-of-the-art and competitive meta-heuristics, evolutionary algorithms, heuristics, and neural solvers, while being more sample-efficient than prior LHHs.
Optimizing Hyperparameters with Conformal Quantile Regression
Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.
Hierarchical Structure Enhances the Convergence and Generalizability of Linear Molecular Representation
Language models demonstrate fundamental abilities in syntax, semantics, and reasoning, though their performance often depends significantly on the inputs they process. This study introduces TSIS (Simplified TSID) and its variants:TSISD (TSIS with Depth-First Search), TSISO (TSIS in Order), and TSISR (TSIS in Random), as integral components of the t-SMILES framework. These additions complete the framework's design, providing diverse approaches to molecular representation. Through comprehensive analysis and experiments employing deep generative models, including GPT, diffusion models, and reinforcement learning, the findings reveal that the hierarchical structure of t-SMILES is more straightforward to parse than initially anticipated. Furthermore, t-SMILES consistently outperforms other linear representations such as SMILES, SELFIES, and SAFE, demonstrating superior convergence speed and enhanced generalization capabilities.
PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
Adaptive Kernel Design for Bayesian Optimization Is a Piece of CAKE with LLMs
The efficiency of Bayesian optimization (BO) relies heavily on the choice of the Gaussian process (GP) kernel, which plays a central role in balancing exploration and exploitation under limited evaluation budgets. Traditional BO methods often rely on fixed or heuristic kernel selection strategies, which can result in slow convergence or suboptimal solutions when the chosen kernel is poorly suited to the underlying objective function. To address this limitation, we propose a freshly-baked Context-Aware Kernel Evolution (CAKE) to enhance BO with large language models (LLMs). Concretely, CAKE leverages LLMs as the crossover and mutation operators to adaptively generate and refine GP kernels based on the observed data throughout the optimization process. To maximize the power of CAKE, we further propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective kernel through balancing the model fit measured by the Bayesian information criterion (BIC) with the expected improvement at each iteration of BO. Extensive experiments demonstrate that our fresh CAKE-based BO method consistently outperforms established baselines across a range of real-world tasks, including hyperparameter optimization, controller tuning, and photonic chip design. Our code is publicly available at https://github.com/cake4bo/cake.
Localized Zeroth-Order Prompt Optimization
The efficacy of large language models (LLMs) in understanding and generating natural language has aroused a wide interest in developing prompt-based methods to harness the power of black-box LLMs. Existing methodologies usually prioritize a global optimization for finding the global optimum, which however will perform poorly in certain tasks. This thus motivates us to re-think the necessity of finding a global optimum in prompt optimization. To answer this, we conduct a thorough empirical study on prompt optimization and draw two major insights. Contrasting with the rarity of global optimum, local optima are usually prevalent and well-performed, which can be more worthwhile for efficient prompt optimization (Insight I). The choice of the input domain, covering both the generation and the representation of prompts, affects the identification of well-performing local optima (Insight II). Inspired by these insights, we propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO), which incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization. Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency, which we demonstrate through extensive experiments.
CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design
Tackling complex optimization problems often relies on expert-designed heuristics, typically crafted through extensive trial and error. Recent advances demonstrate that large language models (LLMs), when integrated into well-designed evolutionary search frameworks, can autonomously discover high-performing heuristics at a fraction of the traditional cost. However, existing approaches predominantly rely on verbal guidance, i.e., manipulating the prompt generation process, to steer the evolution of heuristics, without adapting the underlying LLM. We propose a hybrid framework that combines verbal and numerical guidance, the latter achieved by fine-tuning the LLM via reinforcement learning based on the quality of generated heuristics. This joint optimization allows the LLM to co-evolve with the search process. Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks, running locally on a single 24GB GPU using a 7B model with INT4 quantization. It surpasses methods that rely solely on verbal guidance, even when those use significantly more powerful API-based models.
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
Freeze-Thaw Bayesian Optimization
In this paper we develop a dynamic form of Bayesian optimization for machine learning models with the goal of rapidly finding good hyperparameter settings. Our method uses the partial information gained during the training of a machine learning model in order to decide whether to pause training and start a new model, or resume the training of a previously-considered model. We specifically tailor our method to machine learning problems by developing a novel positive-definite covariance kernel to capture a variety of training curves. Furthermore, we develop a Gaussian process prior that scales gracefully with additional temporal observations. Finally, we provide an information-theoretic framework to automate the decision process. Experiments on several common machine learning models show that our approach is extremely effective in practice.
GeLLM^3O: Generalizing Large Language Models for Multi-property Molecule Optimization
Despite recent advancements, most computational methods for molecule optimization are constrained to single- or double-property optimization tasks and suffer from poor scalability and generalizability to novel optimization tasks. Meanwhile, Large Language Models (LLMs) demonstrate remarkable out-of-domain generalizability to novel tasks. To demonstrate LLMs' potential for molecule optimization, we introduce MoMUInstruct, the first high-quality instruction-tuning dataset specifically focused on complex multi-property molecule optimization tasks. Leveraging MoMUInstruct, we develop GeLLM^3Os, a series of instruction-tuned LLMs for molecule optimization. Extensive evaluations across 5 in-domain and 5 out-of-domain tasks demonstrate that GeLLM^3Os consistently outperform state-of-the-art baselines. GeLLM^3Os also exhibit outstanding zero-shot generalization to unseen tasks, significantly outperforming powerful closed-source LLMs. Such strong generalizability demonstrates the tremendous potential of GeLLM^3Os as foundational models for molecule optimization, thereby tackling novel optimization tasks without resource-intensive retraining. MoMUInstruct, models, and code are accessible through https://github.com/ninglab/GeLLMO.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment
The rapid development of large language model (LLM) alignment algorithms has resulted in a complex and fragmented landscape, with limited clarity on the effectiveness of different methods and their inter-connections. This paper introduces Reward-Aware Preference Optimization (RPO), a mathematical framework that unifies popular preference optimization techniques in LLM alignment, including DPO, IPO, SimPO, and REINFORCE (LOO), among others. RPO provides a structured approach to disentangle and systematically study the impact of various design choices, such as the optimization objective, the number of responses per prompt, and the use of implicit versus explicit reward models, on LLM preference optimization. We additionally propose a new experimental setup that enables the clean and direct ablation of such design choices. Through an extensive series of ablation studies within the RPO framework, we gain insights into the critical factors shaping model alignment, offering practical guidance on the most effective strategies for improving LLM alignment.
Accelerated Parameter-Free Stochastic Optimization
We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning
Discovering efficient algorithms for solving complex problems has been an outstanding challenge in mathematics and computer science, requiring substantial human expertise over the years. Recent advancements in evolutionary search with large language models (LLMs) have shown promise in accelerating the discovery of algorithms across various domains, particularly in mathematics and optimization. However, existing approaches treat the LLM as a static generator, missing the opportunity to update the model with the signal obtained from evolutionary exploration. In this work, we propose to augment LLM-based evolutionary search by continuously refining the search operator - the LLM - through reinforcement learning (RL) fine-tuning. Our method leverages evolutionary search as an exploration strategy to discover improved algorithms, while RL optimizes the LLM policy based on these discoveries. Our experiments on three combinatorial optimization tasks - bin packing, traveling salesman, and the flatpack problem - show that combining RL and evolutionary search improves discovery efficiency of improved algorithms, showcasing the potential of RL-enhanced evolutionary strategies to assist computer scientists and mathematicians for more efficient algorithm design.
Exact Combinatorial Optimization with Temporo-Attentional Graph Neural Networks
Combinatorial optimization finds an optimal solution within a discrete set of variables and constraints. The field has seen tremendous progress both in research and industry. With the success of deep learning in the past decade, a recent trend in combinatorial optimization has been to improve state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning (ML) models. In this paper, we investigate two essential aspects of machine learning algorithms for combinatorial optimization: temporal characteristics and attention. We argue that for the task of variable selection in the branch-and-bound (B&B) algorithm, incorporating the temporal information as well as the bipartite graph attention improves the solver's performance. We support our claims with intuitions and numerical results over several standard datasets used in the literature and competitions. Code is available at: https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=047c6cf2-8463-40d7-b92f-7b2ca998e935
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion
Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy. Existing generative frameworks are largely limited to continuous spaces, unconditioned outputs, or single-objective guidance, making them unsuitable for discrete sequence optimization across multiple properties. To address this, we present PepTune, a multi-objective discrete diffusion model for the simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with state-dependent masking schedules and penalty-based objectives. To guide the diffusion process, we propose a Monte Carlo Tree Search (MCTS)-based strategy that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTS integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity inherent to discrete spaces. Using PepTune, we generate diverse, chemically-modified peptides optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling characteristics on various disease-relevant targets. In total, our results demonstrate that MCTS-guided discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.
TESO Tabu Enhanced Simulation Optimization for Noisy Black Box Problems
Simulation optimization (SO) is frequently challenged by noisy evaluations, high computational costs, and complex, multimodal search landscapes. This paper introduces Tabu-Enhanced Simulation Optimization (TESO), a novel metaheuristic framework integrating adaptive search with memory-based strategies. TESO leverages a short-term Tabu List to prevent cycling and encourage diversification, and a long-term Elite Memory to guide intensification by perturbing high-performing solutions. An aspiration criterion allows overriding tabu restrictions for exceptional candidates. This combination facilitates a dynamic balance between exploration and exploitation in stochastic environments. We demonstrate TESO's effectiveness and reliability using an queue optimization problem, showing improved performance compared to benchmarks and validating the contribution of its memory components. Source code and data are available at: https://github.com/bulentsoykan/TESO.
Preference Optimization as Probabilistic Inference
Existing preference optimization methods are mainly designed for directly learning from human feedback with the assumption that paired examples (preferred vs. dis-preferred) are available. In contrast, we propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback (positive or negative) is available. This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models based on human feedback as well as training policies for sequential decision-making problems, where learned (value) functions are available. Our approach builds upon the probabilistic framework introduced in (Dayan and Hinton, 1997), which proposes to use expectation-maximization (EM) to directly optimize the probability of preferred outcomes (as opposed to classic expected reward maximization). To obtain a practical algorithm, we identify and address a key limitation in current EM-based methods: when applied to preference optimization, they solely maximize the likelihood of preferred examples, while neglecting dis-preferred samples. We show how one can extend EM algorithms to explicitly incorporate dis-preferred outcomes, leading to a novel, theoretically grounded, preference optimization algorithm that offers an intuitive and versatile way to learn from both positive and negative feedback.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Gradient is All You Need?
In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.
LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation
Recent research explores optimization using large language models (LLMs) by either iteratively seeking next-step solutions from LLMs or directly prompting LLMs for an optimizer. However, these approaches exhibit inherent limitations, including low operational efficiency, high sensitivity to prompt design, and a lack of domain-specific knowledge. We introduce LLaMoCo, the first instruction-tuning framework designed to adapt LLMs for solving optimization problems in a code-to-code manner. Specifically, we establish a comprehensive instruction set containing well-described problem prompts and effective optimization codes. We then develop a novel two-phase learning strategy that incorporates a contrastive learning-based warm-up procedure before the instruction-tuning phase to enhance the convergence behavior during model fine-tuning. The experiment results demonstrate that a CodeGen (350M) model fine-tuned by our LLaMoCo achieves superior optimization performance compared to GPT-4 Turbo and the other competitors across both synthetic and realistic problem sets. The fine-tuned model and the usage instructions are available at https://anonymous.4open.science/r/LLaMoCo-722A.
Stabilizing Policy Gradients for Sample-Efficient Reinforcement Learning in LLM Reasoning
Reinforcement Learning, particularly through policy gradient methods, has played a central role in enabling reasoning capabilities of Large Language Models. However, the optimization stability of policy gradients in this setting remains understudied. As a result, existing implementations often resort to conservative hyperparameter choices to ensure stability, which requires more training samples and increases computational costs. Hence, developing models for reliably tracking the underlying optimization dynamics and leveraging them into training enables more sample-efficient regimes and further unleashes scalable post-training. We address this gap by formalizing the stochastic optimization problem of policy gradients with explicit consideration of second-order geometry. We propose a tractable computational framework that tracks and leverages curvature information during policy updates. We further employ this framework to design interventions in the optimization process through data selection. The resultant algorithm, Curvature-Aware Policy Optimization (CAPO), identifies samples that contribute to unstable updates and masks them out. Theoretically, we establish monotonic improvement guarantees under realistic assumptions. On standard math reasoning benchmarks, we empirically show that CAPO ensures stable updates under aggressive learning regimes where baselines catastrophically fail. With minimal intervention (rejecting fewer than 8% of tokens), CAPO achieves up to 30x improvement in sample efficiency over standard GRPO for LLM reasoning.
Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques
Offline optimization has recently emerged as an increasingly popular approach to mitigate the prohibitively expensive cost of online experimentation. The key idea is to learn a surrogate of the black-box function that underlines the target experiment using a static (offline) dataset of its previous input-output queries. Such an approach is, however, fraught with an out-of-distribution issue where the learned surrogate becomes inaccurate outside the offline data regimes. To mitigate this, existing offline optimizers have proposed numerous conditioning techniques to prevent the learned surrogate from being too erratic. Nonetheless, such conditioning strategies are often specific to particular surrogate or search models, which might not generalize to a different model choice. This motivates us to develop a model-agnostic approach instead, which incorporates a notion of model sharpness into the training loss of the surrogate as a regularizer. Our approach is supported by a new theoretical analysis demonstrating that reducing surrogate sharpness on the offline dataset provably reduces its generalized sharpness on unseen data. Our analysis extends existing theories from bounding generalized prediction loss (on unseen data) with loss sharpness to bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data, providing a new perspective on sharpness regularization. Our extensive experimentation on a diverse range of optimization tasks also shows that reducing surrogate sharpness often leads to significant improvement, marking (up to) a noticeable 9.6% performance boost. Our code is publicly available at https://github.com/cuong-dm/IGNITE
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Are Large Language Models Good Prompt Optimizers?
LLM-based Automatic Prompt Optimization, which typically utilizes LLMs as Prompt Optimizers to self-reflect and refine prompts, has shown promising performance in recent studies. Despite the success, the underlying mechanism of this approach remains unexplored, and the true effectiveness of LLMs as Prompt Optimizers requires further validation. In this work, we conducted a comprehensive study to uncover the actual mechanism of LLM-based Prompt Optimization. Our findings reveal that the LLM optimizers struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge rather than genuinely reflecting on the errors. Furthermore, even when the reflection is semantically valid, the LLM optimizers often fail to generate appropriate prompts for the target models with a single prompt refinement step, partly due to the unpredictable behaviors of the target models. Based on the observations, we introduce a new "Automatic Behavior Optimization" paradigm, which directly optimizes the target model's behavior in a more controllable manner. We hope our study can inspire new directions for automatic prompt optimization development.
Distributionally Robust Optimization with Bias and Variance Reduction
We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3times faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.
Improving Sharpness-Aware Minimization with Fisher Mask for Better Generalization on Language Models
Fine-tuning large pretrained language models on a limited training corpus usually suffers from poor generalization. Prior works show that the recently-proposed sharpness-aware minimization (SAM) optimization method can improve the model generalization. However, SAM adds a perturbation to each model parameter equally (but not all parameters contribute equally to the optimization of training), which we argue is sub-optimal and will lead to excessive computation. In this paper, we propose a novel optimization procedure, namely FSAM, which introduces a Fisher mask to improve the efficiency and performance of SAM. In short, instead of adding perturbation to all parameters, FSAM uses the Fisher information to identity the important parameters and formulates a Fisher mask to obtain the sparse perturbation, i.e., making the optimizer focus on these important parameters. Experiments on various tasks in GLUE and SuperGLUE benchmarks show that FSAM consistently outperforms the vanilla SAM by 0.67~1.98 average score among four different pretrained models. We also empirically show that FSAM works well in other complex scenarios, e.g., fine-tuning on generation tasks or limited training data. Encouragingly, when training data is limited, FSAM improves the SAM by a large margin, i.e., up to 15.1.
Optimization for Amortized Inverse Problems
Incorporating a deep generative model as the prior distribution in inverse problems has established substantial success in reconstructing images from corrupted observations. Notwithstanding, the existing optimization approaches use gradient descent largely without adapting to the non-convex nature of the problem and can be sensitive to initial values, impeding further performance improvement. In this paper, we propose an efficient amortized optimization scheme for inverse problems with a deep generative prior. Specifically, the optimization task with high degrees of difficulty is decomposed into optimizing a sequence of much easier ones. We provide a theoretical guarantee of the proposed algorithm and empirically validate it on different inverse problems. As a result, our approach outperforms baseline methods qualitatively and quantitatively by a large margin.
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design
Bayesian optimization (BO) is a powerful framework to optimize black-box expensive-to-evaluate functions via sequential interactions. In several important problems (e.g. drug discovery, circuit design, neural architecture search, etc.), though, such functions are defined over large combinatorial and unstructured spaces. This makes existing BO algorithms not feasible due to the intractable maximization of the acquisition function over these domains. To address this issue, we propose GameOpt, a novel game-theoretical approach to combinatorial BO. GameOpt establishes a cooperative game between the different optimization variables, and selects points that are game equilibria of an upper confidence bound acquisition function. These are stable configurations from which no variable has an incentive to deviate- analog to local optima in continuous domains. Crucially, this allows us to efficiently break down the complexity of the combinatorial domain into individual decision sets, making GameOpt scalable to large combinatorial spaces. We demonstrate the application of GameOpt to the challenging protein design problem and validate its performance on four real-world protein datasets. Each protein can take up to 20^{X} possible configurations, where X is the length of a protein, making standard BO methods infeasible. Instead, our approach iteratively selects informative protein configurations and very quickly discovers highly active protein variants compared to other baselines.
Preference Optimization via Contrastive Divergence: Your Reward Model is Secretly an NLL Estimator
Existing studies on preference optimization (PO) have centered on constructing pairwise preference data following simple heuristics, such as maximizing the margin between preferred and dispreferred completions based on human (or AI) ranked scores. However, none of these heuristics has a full theoretical justification. In this work, we develop a novel PO framework that provides theoretical guidance to effectively sample dispreferred completions. To achieve this, we formulate PO as minimizing the negative log-likelihood (NLL) of a probability model and propose to estimate its normalization constant via a sampling strategy. As we will demonstrate, these estimative samples can act as dispreferred completions in PO. We then select contrastive divergence (CD) as the sampling strategy, and propose a novel MC-PO algorithm that applies the Monte Carlo (MC) kernel from CD to sample hard negatives w.r.t. the parameterized reward model. Finally, we propose the OnMC-PO algorithm, an extension of MC-PO to the online setting. On popular alignment benchmarks, MC-PO outperforms existing SOTA baselines, and OnMC-PO leads to further improvement.
Benchmarking Optimizers for Large Language Model Pretraining
The recent development of Large Language Models (LLMs) has been accompanied by an effervescence of novel ideas and methods to better optimize the loss of deep learning models. Claims from those methods are myriad: from faster convergence to removing reliance on certain hyperparameters. However, the diverse experimental protocols used to validate these claims make direct comparisons between methods challenging. This study presents a comprehensive evaluation of recent optimization techniques across standardized LLM pretraining scenarios, systematically varying model size, batch size, and training duration. Through careful tuning of each method, we provide guidance to practitioners on which optimizer is best suited for each scenario. For researchers, our work highlights promising directions for future optimization research. Finally, by releasing our code and making all experiments fully reproducible, we hope our efforts can help the development and rigorous benchmarking of future methods.
Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient beta playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter beta' in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning
Masked video modeling, such as VideoMAE, is an effective paradigm for video self-supervised learning (SSL). However, they are primarily based on reconstructing pixel-level details on natural videos which have substantial temporal redundancy, limiting their capability for semantic representation and sufficient encoding of motion dynamics. To address these issues, this paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics. In SMILE, we leverage image-language pretrained models, such as CLIP, to guide the learning process with their high-level spatial semantics. We enhance the representation of motion by introducing synthetic motion patterns in the training data, allowing the model to capture more complex and dynamic content. Furthermore, using SMILE, we establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data. We have carried out extensive experiments on 7 datasets with various downstream scenarios. SMILE surpasses current state-of-the-art SSL methods, showcasing its effectiveness in learning more discriminative and generalizable video representations. Code is available: https://github.com/fmthoker/SMILE
Robust Model-Based Optimization for Challenging Fitness Landscapes
Protein design, a grand challenge of the day, involves optimization on a fitness landscape, and leading methods adopt a model-based approach where a model is trained on a training set (protein sequences and fitness) and proposes candidates to explore next. These methods are challenged by sparsity of high-fitness samples in the training set, a problem that has been in the literature. A less recognized but equally important problem stems from the distribution of training samples in the design space: leading methods are not designed for scenarios where the desired optimum is in a region that is not only poorly represented in training data, but also relatively far from the highly represented low-fitness regions. We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools and propose a new approach that uses a novel VAE as its search model to overcome the problem. We demonstrate its advantage over prior methods in robustly finding improved samples, regardless of the imbalance and separation between low- and high-fitness training samples. Our comprehensive benchmark on real and semi-synthetic protein datasets as well as solution design for physics-informed neural networks, showcases the generality of our approach in discrete and continuous design spaces. Our implementation is available at https://github.com/sabagh1994/PGVAE.
Bayesian Optimization for Selecting Efficient Machine Learning Models
The performance of many machine learning models depends on their hyper-parameter settings. Bayesian Optimization has become a successful tool for hyper-parameter optimization of machine learning algorithms, which aims to identify optimal hyper-parameters during an iterative sequential process. However, most of the Bayesian Optimization algorithms are designed to select models for effectiveness only and ignore the important issue of model training efficiency. Given that both model effectiveness and training time are important for real-world applications, models selected for effectiveness may not meet the strict training time requirements necessary to deploy in a production environment. In this work, we present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency. We propose an objective that captures the tradeoff between these two metrics and demonstrate how we can jointly optimize them in a principled Bayesian Optimization framework. Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency while maintaining strong effectiveness as compared to state-of-the-art Bayesian Optimization algorithms.
Scalable Nested Optimization for Deep Learning
Gradient-based optimization has been critical to the success of machine learning, updating a single set of parameters to minimize a single loss. A growing number of applications rely on a generalization of this, where we have a bilevel or nested optimization of which subsets of parameters update on different objectives nested inside each other. We focus on motivating examples of hyperparameter optimization and generative adversarial networks. However, naively applying classical methods often fails when we look at solving these nested problems on a large scale. In this thesis, we build tools for nested optimization that scale to deep learning setups.
An SDE for Modeling SAM: Theory and Insights
We study the SAM (Sharpness-Aware Minimization) optimizer which has recently attracted a lot of interest due to its increased performance over more classical variants of stochastic gradient descent. Our main contribution is the derivation of continuous-time models (in the form of SDEs) for SAM and two of its variants, both for the full-batch and mini-batch settings. We demonstrate that these SDEs are rigorous approximations of the real discrete-time algorithms (in a weak sense, scaling linearly with the learning rate). Using these models, we then offer an explanation of why SAM prefers flat minima over sharp ones~--~by showing that it minimizes an implicitly regularized loss with a Hessian-dependent noise structure. Finally, we prove that SAM is attracted to saddle points under some realistic conditions. Our theoretical results are supported by detailed experiments.
Self-Play with Adversarial Critic: Provable and Scalable Offline Alignment for Language Models
This work studies the challenge of aligning large language models (LLMs) with offline preference data. We focus on alignment by Reinforcement Learning from Human Feedback (RLHF) in particular. While popular preference optimization methods exhibit good empirical performance in practice, they are not theoretically guaranteed to converge to the optimal policy and can provably fail when the data coverage is sparse by classical offline reinforcement learning (RL) results. On the other hand, a recent line of work has focused on theoretically motivated preference optimization methods with provable guarantees, but these are not computationally efficient for large-scale applications like LLM alignment. To bridge this gap, we propose SPAC, a new offline preference optimization method with self-play, inspired by the on-average pessimism technique from the offline RL literature, to be the first provable and scalable approach to LLM alignment. We both provide theoretical analysis for its convergence under single-policy concentrability for the general function approximation setting and demonstrate its competitive empirical performance for LLM alignment on a 7B Mistral model with Open LLM Leaderboard evaluations.
Learning to Act Greedily: Polymatroid Semi-Bandits
Many important optimization problems, such as the minimum spanning tree and minimum-cost flow, can be solved optimally by a greedy method. In this work, we study a learning variant of these problems, where the model of the problem is unknown and has to be learned by interacting repeatedly with the environment in the bandit setting. We formalize our learning problem quite generally, as learning how to maximize an unknown modular function on a known polymatroid. We propose a computationally efficient algorithm for solving our problem and bound its expected cumulative regret. Our gap-dependent upper bound is tight up to a constant and our gap-free upper bound is tight up to polylogarithmic factors. Finally, we evaluate our method on three problems and demonstrate that it is practical.
ACCORD: Autoregressive Constraint-satisfying Generation for COmbinatorial Optimization with Routing and Dynamic attention
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, yet their direct application to NP-hard combinatorial problems (CPs) remains underexplored. In this work, we systematically investigate the reasoning abilities of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial optimization with Routing and Dynamic attention. ACCORD features a novel dataset representation and model architecture that leverage the autoregressive nature of LLMs to dynamically enforce feasibility constraints, coupled with attention-based routing to activate problem-specific LoRA modules. We also present the ACCORD-90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP, Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate that our ACCORD model, built on an 8B-parameter Llama backbone, consistently outperforms standard prompting and input-output methods, even when compared to much larger LLMs, such as gpt-4. Ablation studies further show that our output structure enhances solution feasibility. To the best of our knowledge, this is the first large-scale, end-to-end framework for exploring the applications of LLMs to a broad spectrum of combinatorial optimization problems. The codes are publicly available at https://github.com/starjob42/ACCORD
Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
Algorithms for Caching and MTS with reduced number of predictions
ML-augmented algorithms utilize predictions to achieve performance beyond their worst-case bounds. Producing these predictions might be a costly operation -- this motivated Im et al. '22 to introduce the study of algorithms which use predictions parsimoniously. We design parsimonious algorithms for caching and MTS with action predictions, proposed by Antoniadis et al. '20, focusing on the parameters of consistency (performance with perfect predictions) and smoothness (dependence of their performance on the prediction error). Our algorithm for caching is 1-consistent, robust, and its smoothness deteriorates with the decreasing number of available predictions. We propose an algorithm for general MTS whose consistency and smoothness both scale linearly with the decreasing number of predictions. Without the restriction on the number of available predictions, both algorithms match the earlier guarantees achieved by Antoniadis et al. '20.
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings.
OptiMind: Teaching LLMs to Think Like Optimization Experts
Mathematical programming -- the task of expressing operations and decision-making problems in precise mathematical language -- is fundamental across domains, yet remains a skill-intensive process requiring operations research expertise. Recent advances in large language models for complex reasoning have spurred interest in automating this task, translating natural language into executable optimization models. Current approaches, however, achieve limited accuracy, hindered by scarce and noisy training data without leveraging domain knowledge. In this work, we systematically integrate optimization expertise to improve formulation accuracy for mixed-integer linear programming, a key family of mathematical programs. Our approach first cleans training data through class-based error analysis to explicitly prevent common mistakes within each optimization class. We then develop multi-turn inference strategies that guide LLMs with class-specific error summaries and solver feedback, enabling iterative refinement. Experiments across multiple base LLMs demonstrate that combining cleaned data with domain-informed prompting and feedback improves formulation accuracy by 14 percentage points on average, enabling further progress toward robust LLM-assisted optimization formulation.
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
Optimization problems with nonlinear cost functions and combinatorial constraints appear in many real-world applications but remain challenging to solve efficiently compared to their linear counterparts. To bridge this gap, we propose SurCo that learns linear text{Sur}rogate costs which can be used in existing text{Co}mbinatorial solvers to output good solutions to the original nonlinear combinatorial optimization problem. The surrogate costs are learned end-to-end with nonlinear loss by differentiating through the linear surrogate solver, combining the flexibility of gradient-based methods with the structure of linear combinatorial optimization. We propose three SurCo variants: SurCo-zero for individual nonlinear problems, SurCo-prior for problem distributions, and SurCo-hybrid to combine both distribution and problem-specific information. We give theoretical intuition motivating SurCo, and evaluate it empirically. Experiments show that SurCo finds better solutions faster than state-of-the-art and domain expert approaches in real-world optimization problems such as embedding table sharding, inverse photonic design, and nonlinear route planning.
Hyperparameter optimization with approximate gradient
Most models in machine learning contain at least one hyperparameter to control for model complexity. Choosing an appropriate set of hyperparameters is both crucial in terms of model accuracy and computationally challenging. In this work we propose an algorithm for the optimization of continuous hyperparameters using inexact gradient information. An advantage of this method is that hyperparameters can be updated before model parameters have fully converged. We also give sufficient conditions for the global convergence of this method, based on regularity conditions of the involved functions and summability of errors. Finally, we validate the empirical performance of this method on the estimation of regularization constants of L2-regularized logistic regression and kernel Ridge regression. Empirical benchmarks indicate that our approach is highly competitive with respect to state of the art methods.
Feasible Learning
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles
In this study, we delve into an emerging optimization challenge involving a black-box objective function that can only be gauged via a ranking oracle-a situation frequently encountered in real-world scenarios, especially when the function is evaluated by human judges. Such challenge is inspired from Reinforcement Learning with Human Feedback (RLHF), an approach recently employed to enhance the performance of Large Language Models (LLMs) using human guidance. We introduce ZO-RankSGD, an innovative zeroth-order optimization algorithm designed to tackle this optimization problem, accompanied by theoretical assurances. Our algorithm utilizes a novel rank-based random estimator to determine the descent direction and guarantees convergence to a stationary point. Moreover, ZO-RankSGD is readily applicable to policy optimization problems in Reinforcement Learning (RL), particularly when only ranking oracles for the episode reward are available. Last but not least, we demonstrate the effectiveness of ZO-RankSGD in a novel application: improving the quality of images generated by a diffusion generative model with human ranking feedback. Throughout experiments, we found that ZO-RankSGD can significantly enhance the detail of generated images with only a few rounds of human feedback. Overall, our work advances the field of zeroth-order optimization by addressing the problem of optimizing functions with only ranking feedback, and offers a new and effective approach for aligning Artificial Intelligence (AI) with human intentions.
ROAD: Reflective Optimization via Automated Debugging for Zero-Shot Agent Alignment
Automatic Prompt Optimization (APO) has emerged as a critical technique for enhancing Large Language Model (LLM) performance, yet current state-of-the-art methods typically rely on large, labeled gold-standard development sets to compute fitness scores for evolutionary or Reinforcement Learning (RL) approaches. In real-world software engineering, however, such curated datasets are rarely available during the initial cold start of agent development, where engineers instead face messy production logs and evolving failure modes. We present ROAD (Reflective Optimization via Automated Debugging), a novel framework that bypasses the need for refined datasets by treating optimization as a dynamic debugging investigation rather than a stochastic search. Unlike traditional mutation strategies, ROAD utilizes a specialized multi-agent architecture, comprising an Analyzer for root-cause analysis, an Optimizer for pattern aggregation, and a Coach for strategy integration, to convert unstructured failure logs into robust, structured Decision Tree Protocols. We evaluated ROAD across both a standardized academic benchmark and a live production Knowledge Management engine. Experimental results demonstrate that ROAD is highly sample-efficient, achieving a 5.6 percent increase in success rate (73.6 percent to 79.2 percent) and a 3.8 percent increase in search accuracy within just three automated iterations. Furthermore, on complex reasoning tasks in the retail domain, ROAD improved agent performance by approximately 19 percent relative to the baseline. These findings suggest that mimicking the human engineering loop of failure analysis and patching offers a viable, data-efficient alternative to resource-intensive RL training for deploying reliable LLM agents.
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
The core challenge of high-dimensional and expensive black-box optimization (BBO) is how to obtain better performance faster with little function evaluation cost. The essence of the problem is how to design an efficient optimization strategy tailored to the target task. This paper designs a powerful optimization framework to automatically learn the optimization strategies from the target or cheap surrogate task without human intervention. However, current methods are weak for this due to poor representation of optimization strategy. To achieve this, 1) drawing on the mechanism of genetic algorithm, we propose a deep neural network framework called B2Opt, which has a stronger representation of optimization strategies based on survival of the fittest; 2) B2Opt can utilize the cheap surrogate functions of the target task to guide the design of the efficient optimization strategies. Compared to the state-of-the-art BBO baselines, B2Opt can achieve multiple orders of magnitude performance improvement with less function evaluation cost. We validate our proposal on high-dimensional synthetic functions and two real-world applications. We also find that deep B2Opt performs better than shallow ones.
metaTextGrad: Automatically optimizing language model optimizers
Large language models (LLMs) are increasingly used in learning algorithms, evaluations, and optimization tasks. Recent studies have shown that using LLM-based optimizers to automatically optimize model prompts, demonstrations, predictions themselves, or other components can significantly enhance the performance of AI systems, as demonstrated by frameworks such as DSPy and TextGrad. However, optimizers built on language models themselves are usually designed by humans with manual design choices; optimizers themselves are not optimized. Moreover, these optimizers are general purpose by design, to be useful to a broad audience, and are not tailored for specific tasks. To address these challenges, we propose metaTextGrad, which focuses on designing a meta-optimizer to further enhance existing optimizers and align them to be good optimizers for a given task. Our approach consists of two key components: a meta prompt optimizer and a meta structure optimizer. The combination of these two significantly improves performance across multiple benchmarks, achieving an average absolute performance improvement of up to 6% compared to the best baseline.
ε-shotgun: ε-greedy Batch Bayesian Optimisation
Bayesian optimisation is a popular, surrogate model-based approach for optimising expensive black-box functions. Given a surrogate model, the next location to expensively evaluate is chosen via maximisation of a cheap-to-query acquisition function. We present an epsilon-greedy procedure for Bayesian optimisation in batch settings in which the black-box function can be evaluated multiple times in parallel. Our epsilon-shotgun algorithm leverages the model's prediction, uncertainty, and the approximated rate of change of the landscape to determine the spread of batch solutions to be distributed around a putative location. The initial target location is selected either in an exploitative fashion on the mean prediction, or -- with probability epsilon -- from elsewhere in the design space. This results in locations that are more densely sampled in regions where the function is changing rapidly and in locations predicted to be good (i.e close to predicted optima), with more scattered samples in regions where the function is flatter and/or of poorer quality. We empirically evaluate the epsilon-shotgun methods on a range of synthetic functions and two real-world problems, finding that they perform at least as well as state-of-the-art batch methods and in many cases exceed their performance.
Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer
Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.
Kernel-Based Reinforcement Learning: A Finite-Time Analysis
We consider the exploration-exploitation dilemma in finite-horizon reinforcement learning problems whose state-action space is endowed with a metric. We introduce Kernel-UCBVI, a model-based optimistic algorithm that leverages the smoothness of the MDP and a non-parametric kernel estimator of the rewards and transitions to efficiently balance exploration and exploitation. For problems with K episodes and horizon H, we provide a regret bound of Oleft( H^3 K^{2d{2d+1}}right), where d is the covering dimension of the joint state-action space. This is the first regret bound for kernel-based RL using smoothing kernels, which requires very weak assumptions on the MDP and has been previously applied to a wide range of tasks. We empirically validate our approach in continuous MDPs with sparse rewards.
Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment
The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.
Discovering Preference Optimization Algorithms with and for Large Language Models
Offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs. Typically, preference optimization is approached as an offline supervised learning task using manually-crafted convex loss functions. While these methods are based on theoretical insights, they are inherently constrained by human creativity, so the large search space of possible loss functions remains under explored. We address this by performing LLM-driven objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention. Specifically, we iteratively prompt an LLM to propose and implement new preference optimization loss functions based on previously-evaluated performance metrics. This process leads to the discovery of previously-unknown and performant preference optimization algorithms. The best performing of these we call Discovered Preference Optimization (DiscoPOP), a novel algorithm that adaptively blends logistic and exponential losses. Experiments demonstrate the state-of-the-art performance of DiscoPOP and its successful transfer to held-out tasks.
Hardest Monotone Functions for Evolutionary Algorithms
The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime.
BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization
Despite the success of neural-based combinatorial optimization methods for end-to-end heuristic learning, out-of-distribution generalization remains a challenge. In this paper, we present a novel formulation of Combinatorial Optimization Problems (COPs) as Markov Decision Processes (MDPs) that effectively leverages common symmetries of COPs to improve out-of-distribution robustness. Starting from a direct MDP formulation of a constructive method, we introduce a generic way to reduce the state space, based on Bisimulation Quotienting (BQ) in MDPs. Then, for COPs with a recursive nature, we specialize the bisimulation and show how the reduced state exploits the symmetries of these problems and facilitates MDP solving. Our approach is principled and we prove that an optimal policy for the proposed BQ-MDP actually solves the associated COPs. We illustrate our approach on five classical problems: the Euclidean and Asymmetric Traveling Salesman, Capacitated Vehicle Routing, Orienteering and Knapsack Problems. Furthermore, for each problem, we introduce a simple attention-based policy network for the BQ-MDPs, which we train by imitation of (near) optimal solutions of small instances from a single distribution. We obtain new state-of-the-art results for the five COPs on both synthetic and realistic benchmarks. Notably, in contrast to most existing neural approaches, our learned policies show excellent generalization performance to much larger instances than seen during training, without any additional search procedure.
Scalable Second Order Optimization for Deep Learning
Optimization in machine learning, both theoretical and applied, is presently dominated by first-order gradient methods such as stochastic gradient descent. Second-order optimization methods, that involve second derivatives and/or second order statistics of the data, are far less prevalent despite strong theoretical properties, due to their prohibitive computation, memory and communication costs. In an attempt to bridge this gap between theoretical and practical optimization, we present a scalable implementation of a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that along with several critical algorithmic and numerical improvements, provides significant convergence and wall-clock time improvements compared to conventional first-order methods on state-of-the-art deep models. Our novel design effectively utilizes the prevalent heterogeneous hardware architecture for training deep models, consisting of a multicore CPU coupled with multiple accelerator units. We demonstrate superior performance compared to state-of-the-art on very large learning tasks such as machine translation with Transformers, language modeling with BERT, click-through rate prediction on Criteo, and image classification on ImageNet with ResNet-50.
Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
μLO: Compute-Efficient Meta-Generalization of Learned Optimizers
Learned optimizers (LOs) can significantly reduce the wall-clock training time of neural networks, substantially reducing training costs. However, they often suffer from poor meta-generalization, especially when training networks larger than those seen during meta-training. To address this, we use the recently proposed Maximal Update Parametrization (muP), which allows zero-shot generalization of optimizer hyperparameters from smaller to larger models. We extend muP theory to learned optimizers, treating the meta-training problem as finding the learned optimizer under muP. Our evaluation shows that LOs meta-trained with muP substantially improve meta-generalization as compared to LOs trained under standard parametrization (SP). Notably, when applied to large-width models, our best muLO, trained for 103 GPU-hours, matches or exceeds the performance of VeLO, the largest publicly available learned optimizer, meta-trained with 4000 TPU-months of compute. Moreover, muLOs demonstrate better generalization than their SP counterparts to deeper networks and to much longer training horizons (25 times longer) than those seen during meta-training.
HyperFace: Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere
Face recognition datasets are often collected by crawling Internet and without individuals' consents, raising ethical and privacy concerns. Generating synthetic datasets for training face recognition models has emerged as a promising alternative. However, the generation of synthetic datasets remains challenging as it entails adequate inter-class and intra-class variations. While advances in generative models have made it easier to increase intra-class variations in face datasets (such as pose, illumination, etc.), generating sufficient inter-class variation is still a difficult task. In this paper, we formulate the dataset generation as a packing problem on the embedding space (represented on a hypersphere) of a face recognition model and propose a new synthetic dataset generation approach, called HyperFace. We formalize our packing problem as an optimization problem and solve it with a gradient descent-based approach. Then, we use a conditional face generator model to synthesize face images from the optimized embeddings. We use our generated datasets to train face recognition models and evaluate the trained models on several benchmarking real datasets. Our experimental results show that models trained with HyperFace achieve state-of-the-art performance in training face recognition using synthetic datasets.
Using Large Language Models for Hyperparameter Optimization
This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
Lipschitzness Is All You Need To Tame Off-policy Generative Adversarial Imitation Learning
Despite the recent success of reinforcement learning in various domains, these approaches remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled with essential engineering feats allowing their success. We consider the case of off-policy generative adversarial imitation learning, and perform an in-depth review, qualitative and quantitative, of the method. We show that forcing the learned reward function to be local Lipschitz-continuous is a sine qua non condition for the method to perform well. We then study the effects of this necessary condition and provide several theoretical results involving the local Lipschitzness of the state-value function. We complement these guarantees with empirical evidence attesting to the strong positive effect that the consistent satisfaction of the Lipschitzness constraint on the reward has on imitation performance. Finally, we tackle a generic pessimistic reward preconditioning add-on spawning a large class of reward shaping methods, which makes the base method it is plugged into provably more robust, as shown in several additional theoretical guarantees. We then discuss these through a fine-grained lens and share our insights. Crucially, the guarantees derived and reported in this work are valid for any reward satisfying the Lipschitzness condition, nothing is specific to imitation. As such, these may be of independent interest.
Pre-trained knowledge elevates large language models beyond traditional chemical reaction optimizers
Modern optimization in experimental chemistry employs algorithmic search through black-box parameter spaces. Here we demonstrate that pre-trained knowledge in large language models (LLMs) fundamentally changes this paradigm. Using six fully enumerated categorical reaction datasets (768 - 5,684 experiments), we benchmark LLM-guided optimization (LLM-GO) against Bayesian optimization (BO) and random sampling. Frontier LLMs consistently match or exceed BO performance across five single-objective datasets, with advantages growing as parameter complexity increases and high-performing conditions become scarce (<5% of space). BO retains superiority only for explicit multi-objective trade-offs. To understand these contrasting behaviors, we introduce a topology-agnostic information theory framework quantifying sampling diversity throughout optimization campaigns. This analysis reveals that LLMs maintain systematically higher exploration entropy than BO across all datasets while achieving superior performance, with advantages most pronounced in solution-scarce parameter spaces where high-entropy exploration typically fails - suggesting that pre-trained domain knowledge enables more effective navigation of chemical parameter space rather than replacing structured exploration strategies. To enable transparent benchmarking and community validation, we release Iron Mind (https://gomes.andrew.cmu.edu/iron-mind), a no-code platform for side-by-side evaluation of human, algorithmic, and LLM optimization campaigns with public leaderboards and complete trajectories. Our findings establish that LLM-GO excels precisely where traditional methods struggle: complex categorical spaces requiring domain understanding rather than mathematical optimization.
Bayesian Optimization through Gaussian Cox Process Models for Spatio-temporal Data
Bayesian optimization (BO) has established itself as a leading strategy for efficiently optimizing expensive-to-evaluate functions. Existing BO methods mostly rely on Gaussian process (GP) surrogate models and are not applicable to (doubly-stochastic) Gaussian Cox processes, where the observation process is modulated by a latent intensity function modeled as a GP. In this paper, we propose a novel maximum a posteriori inference of Gaussian Cox processes. It leverages the Laplace approximation and change of kernel technique to transform the problem into a new reproducing kernel Hilbert space, where it becomes more tractable computationally. It enables us to obtain both a functional posterior of the latent intensity function and the covariance of the posterior, thus extending existing works that often focus on specific link functions or estimating the posterior mean. Using the result, we propose a BO framework based on the Gaussian Cox process model and further develop a Nystr\"om approximation for efficient computation. Extensive evaluations on various synthetic and real-world datasets demonstrate significant improvement over state-of-the-art inference solutions for Gaussian Cox processes, as well as effective BO with a wide range of acquisition functions designed through the underlying Gaussian Cox process model.
Dynamic Search for Inference-Time Alignment in Diffusion Models
Diffusion models have shown promising generative capabilities across diverse domains, yet aligning their outputs with desired reward functions remains a challenge, particularly in cases where reward functions are non-differentiable. Some gradient-free guidance methods have been developed, but they often struggle to achieve optimal inference-time alignment. In this work, we newly frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch), which subsamples from denoising processes and approximates intermediate node rewards. It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations. To refine intermediate decisions, DSearch incorporates adaptive scheduling based on noise levels and a lookahead heuristic function. We validate DSearch across multiple domains, including biological sequence design, molecular optimization, and image generation, demonstrating superior reward optimization compared to existing approaches.
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Reinforcement learning from human feedback (RLHF) has demonstrated great promise in aligning large language models (LLMs) with human preference. Depending on the availability of preference data, both online and offline RLHF are active areas of investigation. A key bottleneck is understanding how to incorporate uncertainty estimation in the reward function learned from the preference data for RLHF, regardless of how the preference data is collected. While the principles of optimism or pessimism under uncertainty are well-established in standard reinforcement learning (RL), a practically-implementable and theoretically-grounded form amenable to large language models is not yet available, as standard techniques for constructing confidence intervals become intractable under arbitrary policy parameterizations. In this paper, we introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO) -- which regularizes the maximum-likelihood estimate of the reward function with the corresponding value function, modulated by a sign to indicate whether the optimism or pessimism is chosen. VPO also directly optimizes the policy with implicit reward modeling, and therefore shares a simpler RLHF pipeline similar to direct preference optimization. Theoretical guarantees of VPO are provided for both online and offline settings, matching the rates of their standard RL counterparts. Moreover, experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
Nested Learning: The Illusion of Deep Learning Architectures
Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Small Molecule Optimization with Large Language Models
Recent advancements in large language models have opened new possibilities for generative molecular drug design. We present Chemlactica and Chemma, two language models fine-tuned on a novel corpus of 110M molecules with computed properties, totaling 40B tokens. These models demonstrate strong performance in generating molecules with specified properties and predicting new molecular characteristics from limited samples. We introduce a novel optimization algorithm that leverages our language models to optimize molecules for arbitrary properties given limited access to a black box oracle. Our approach combines ideas from genetic algorithms, rejection sampling, and prompt optimization. It achieves state-of-the-art performance on multiple molecular optimization benchmarks, including an 8% improvement on Practical Molecular Optimization compared to previous methods. We publicly release the training corpus, the language models and the optimization algorithm.
