Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems
Machine translation focuses mainly on high-resource languages (HRLs), while low-resource languages (LRLs) like Taiwanese Hokkien are relatively under-explored. The study aims to address this gap by developing a dual translation model between Taiwanese Hokkien and both Traditional Mandarin Chinese and English. We employ a pre-trained LLaMA 2-7B model specialized in Traditional Mandarin Chinese to leverage the orthographic similarities between Taiwanese Hokkien Han and Traditional Mandarin Chinese. Our comprehensive experiments involve translation tasks across various writing systems of Taiwanese Hokkien as well as between Taiwanese Hokkien and other HRLs. We find that the use of a limited monolingual corpus still further improves the model's Taiwanese Hokkien capabilities. We then utilize our translation model to standardize all Taiwanese Hokkien writing systems into Hokkien Han, resulting in further performance improvements. Additionally, we introduce an evaluation method incorporating back-translation and GPT-4 to ensure reliable translation quality assessment even for LRLs. The study contributes to narrowing the resource gap for Taiwanese Hokkien and empirically investigates the advantages and limitations of pre-training and fine-tuning based on LLaMA 2.
Deep Speech 2: End-to-End Speech Recognition in English and Mandarin
We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
Igbo-English Machine Translation: An Evaluation Benchmark
Although researchers and practitioners are pushing the boundaries and enhancing the capacities of NLP tools and methods, works on African languages are lagging. A lot of focus on well resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese etc. Over 97% of the world's 7000 languages, including African languages, are low resourced for NLP i.e. they have little or no data, tools, and techniques for NLP research. For instance, only 5 out of 2965, 0.19% authors of full text papers in the ACL Anthology extracted from the 5 major conferences in 2018 ACL, NAACL, EMNLP, COLING and CoNLL, are affiliated to African institutions. In this work, we discuss our effort toward building a standard machine translation benchmark dataset for Igbo, one of the 3 major Nigerian languages. Igbo is spoken by more than 50 million people globally with over 50% of the speakers are in southeastern Nigeria. Igbo is low resourced although there have been some efforts toward developing IgboNLP such as part of speech tagging and diacritic restoration
SoulX-Singer: Towards High-Quality Zero-Shot Singing Voice Synthesis
While recent years have witnessed rapid progress in speech synthesis, open-source singing voice synthesis (SVS) systems still face significant barriers to industrial deployment, particularly in terms of robustness and zero-shot generalization. In this report, we introduce SoulX-Singer, a high-quality open-source SVS system designed with practical deployment considerations in mind. SoulX-Singer supports controllable singing generation conditioned on either symbolic musical scores (MIDI) or melodic representations, enabling flexible and expressive control in real-world production workflows. Trained on more than 42,000 hours of vocal data, the system supports Mandarin Chinese, English, and Cantonese and consistently achieves state-of-the-art synthesis quality across languages under diverse musical conditions. Furthermore, to enable reliable evaluation of zero-shot SVS performance in practical scenarios, we construct SoulX-Singer-Eval, a dedicated benchmark with strict training-test disentanglement, facilitating systematic assessment in zero-shot settings.
Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition
Speech emotion recognition plays a crucial role in human-computer interactions. However, most speech emotion recognition research is biased toward English-speaking adults, which hinders its applicability to other demographic groups in different languages and age groups. In this work, we analyze the transferability of emotion recognition across three different languages--English, Mandarin Chinese, and Cantonese; and 2 different age groups--adults and the elderly. To conduct the experiment, we develop an English-Mandarin speech emotion benchmark for adults and the elderly, BiMotion, and a Cantonese speech emotion dataset, YueMotion. This study concludes that different language and age groups require specific speech features, thus making cross-lingual inference an unsuitable method. However, cross-group data augmentation is still beneficial to regularize the model, with linguistic distance being a significant influence on cross-lingual transferability. We release publicly release our code at https://github.com/HLTCHKUST/elderly_ser.
Speaking Multiple Languages Affects the Moral Bias of Language Models
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Mandarin Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. To our best knowledge, MultiMed stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes. Secondly, we establish the empirical baselines, present the first reproducible study of multilinguality in medical ASR, conduct a layer-wise ablation study for end-to-end ASR training, and provide the first linguistic analysis for multilingual medical ASR. All code, data, and models are available online https://github.com/leduckhai/MultiMed/tree/master/MultiMed
FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration
We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR.
SoulX-Podcast: Towards Realistic Long-form Podcasts with Dialectal and Paralinguistic Diversity
Recent advances in text-to-speech (TTS) synthesis have significantly improved speech expressiveness and naturalness. However, most existing systems are tailored for single-speaker synthesis and fall short in generating coherent multi-speaker conversational speech. This technical report presents SoulX-Podcast, a system designed for podcast-style multi-turn, multi-speaker dialogic speech generation, while also achieving state-of-the-art performance in conventional TTS tasks. To meet the higher naturalness demands of multi-turn spoken dialogue, SoulX-Podcast integrates a range of paralinguistic controls and supports both Mandarin and English, as well as several Chinese dialects, including Sichuanese, Henanese, and Cantonese, enabling more personalized podcast-style speech generation. Experimental results demonstrate that SoulX-Podcast can continuously produce over 90 minutes of conversation with stable speaker timbre and smooth speaker transitions. Moreover, speakers exhibit contextually adaptive prosody, reflecting natural rhythm and intonation changes as dialogues progress. Across multiple evaluation metrics, SoulX-Podcast achieves state-of-the-art performance in both monologue TTS and multi-turn conversational speech synthesis.
FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
BiSinger: Bilingual Singing Voice Synthesis
Although Singing Voice Synthesis (SVS) has made great strides with Text-to-Speech (TTS) techniques, multilingual singing voice modeling remains relatively unexplored. This paper presents BiSinger, a bilingual pop SVS system for English and Chinese Mandarin. Current systems require separate models per language and cannot accurately represent both Chinese and English, hindering code-switch SVS. To address this gap, we design a shared representation between Chinese and English singing voices, achieved by using the CMU dictionary with mapping rules. We fuse monolingual singing datasets with open-source singing voice conversion techniques to generate bilingual singing voices while also exploring the potential use of bilingual speech data. Experiments affirm that our language-independent representation and incorporation of related datasets enable a single model with enhanced performance in English and code-switch SVS while maintaining Chinese song performance. Audio samples are available at https://bisinger-svs.github.io.
Extending the Pre-Training of BLOOM for Improved Support of Traditional Chinese: Models, Methods and Results
In this paper we present the multilingual language model BLOOM-zh that features enhanced support for Traditional Chinese. BLOOM-zh has its origins in the open-source BLOOM models presented by BigScience in 2022. Starting from released models, we extended the pre-training of BLOOM by additional 7.4 billion tokens in Traditional Chinese and English covering a variety of domains such as news articles, books, encyclopedias, educational materials as well as spoken language. In order to show the properties of BLOOM-zh, both existing and newly created benchmark scenarios are used for evaluating the performance. BLOOM-zh outperforms its predecessor on most Traditional Chinese benchmarks while maintaining its English capability. We release all our models to the research community.
CCAE: A Corpus of Chinese-based Asian Englishes
Language models have been foundations in various scenarios of NLP applications, but it has not been well applied in language variety studies, even for the most popular language like English. This paper represents one of the few initial efforts to utilize the NLP technology in the paradigm of World Englishes, specifically in creating a multi-variety corpus for studying Asian Englishes. We present an overview of the CCAE -- Corpus of Chinese-based Asian English, a suite of corpora comprising six Chinese-based Asian English varieties. It is based on 340 million tokens in 448 thousand web documents from six regions. The ontology of data would make the corpus a helpful resource with enormous research potential for Asian Englishes (especially for Chinese Englishes for which there has not been a publicly accessible corpus yet so far) and an ideal source for variety-specific language modeling and downstream tasks, thus setting the stage for NLP-based World Englishes studies. And preliminary experiments on this corpus reveal the practical value of CCAE. Finally, we make CCAE available at https://huggingface.co/datasets/CCAE/CCAE-Corpus{this https URL}.
Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model
In the realm of language models, the nuanced linguistic and cultural intricacies of Traditional Chinese, as spoken in Taiwan, have been largely overlooked. This paper introduces Taiwan LLM, a pioneering Large Language Model that specifically caters to the Traditional Chinese language, with a focus on the variant used in Taiwan. Leveraging a comprehensive pretraining corpus and instruction-finetuning datasets, we have developed a model that not only understands the complexities of Traditional Chinese but also embodies the cultural context of Taiwan. Taiwan LLM represents the first of its kind, a model that is not only linguistically accurate but also culturally resonant with its user base. Our evaluations demonstrate that Taiwan LLM achieves superior performance in understanding and generating Traditional Chinese text, outperforming existing models that are predominantly trained on Simplified Chinese or English. The open-source release of Taiwan LLM invites collaboration and further innovation, ensuring that the linguistic diversity of Chinese speakers is embraced and well-served. The model, datasets, and further resources are made publicly available to foster ongoing research and development in this field.
Measuring Taiwanese Mandarin Language Understanding
The evaluation of large language models (LLMs) has drawn substantial attention in the field recently. This work focuses on evaluating LLMs in a Chinese context, specifically, for Traditional Chinese which has been largely underrepresented in existing benchmarks. We present TMLU, a holistic evaluation suit tailored for assessing the advanced knowledge and reasoning capability in LLMs, under the context of Taiwanese Mandarin. TMLU consists of an array of 37 subjects across social science, STEM, humanities, Taiwan-specific content, and others, ranging from middle school to professional levels. In addition, we curate chain-of-thought-like few-shot explanations for each subject to facilitate the evaluation of complex reasoning skills. To establish a comprehensive baseline, we conduct extensive experiments and analysis on 24 advanced LLMs. The results suggest that Chinese open-weight models demonstrate inferior performance comparing to multilingual proprietary ones, and open-weight models tailored for Taiwanese Mandarin lag behind the Simplified-Chinese counterparts. The findings indicate great headrooms for improvement, and emphasize the goal of TMLU to foster the development of localized Taiwanese-Mandarin LLMs. We release the benchmark and evaluation scripts for the community to promote future research.
Characterizing Bias: Benchmarking Large Language Models in Simplified versus Traditional Chinese
While the capabilities of Large Language Models (LLMs) have been studied in both Simplified and Traditional Chinese, it is yet unclear whether LLMs exhibit differential performance when prompted in these two variants of written Chinese. This understanding is critical, as disparities in the quality of LLM responses can perpetuate representational harms by ignoring the different cultural contexts underlying Simplified versus Traditional Chinese, and can exacerbate downstream harms in LLM-facilitated decision-making in domains such as education or hiring. To investigate potential LLM performance disparities, we design two benchmark tasks that reflect real-world scenarios: regional term choice (prompting the LLM to name a described item which is referred to differently in Mainland China and Taiwan), and regional name choice (prompting the LLM to choose who to hire from a list of names in both Simplified and Traditional Chinese). For both tasks, we audit the performance of 11 leading commercial LLM services and open-sourced models -- spanning those primarily trained on English, Simplified Chinese, or Traditional Chinese. Our analyses indicate that biases in LLM responses are dependent on both the task and prompting language: while most LLMs disproportionately favored Simplified Chinese responses in the regional term choice task, they surprisingly favored Traditional Chinese names in the regional name choice task. We find that these disparities may arise from differences in training data representation, written character preferences, and tokenization of Simplified and Traditional Chinese. These findings highlight the need for further analysis of LLM biases; as such, we provide an open-sourced benchmark dataset to foster reproducible evaluations of future LLM behavior across Chinese language variants (https://github.com/brucelyu17/SC-TC-Bench).
Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the {\it glyph} and {\it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert.
Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral
Mixtral, a representative sparse mixture of experts (SMoE) language model, has received significant attention due to its unique model design and superior performance. Based on Mixtral-8x7B-v0.1, in this paper, we propose Chinese-Mixtral and Chinese-Mixtral-Instruct with improved Chinese language abilities by adopting further pre-training and instruction fine-tuning. Experimental results show that our Chinese-Mixtral and Chinese-Mixtral-Instruct successfully improve Chinese understanding and generation performance while retaining the original English abilities. Then, we discuss several key questions when performing language adaptation on large language models, including the necessity of extending the language-specific vocabulary and the choice of the initialization model (foundation model v.s. instruction model), by providing empirical results and analysis. We also present the visualizations of each expert to examine their importance on downstream tasks. Our resources are publicly available through https://github.com/ymcui/Chinese-Mixtral.
JoyHallo: Digital human model for Mandarin
In audio-driven video generation, creating Mandarin videos presents significant challenges. Collecting comprehensive Mandarin datasets is difficult, and the complex lip movements in Mandarin further complicate model training compared to English. In this study, we collected 29 hours of Mandarin speech video from JD Health International Inc. employees, resulting in the jdh-Hallo dataset. This dataset includes a diverse range of ages and speaking styles, encompassing both conversational and specialized medical topics. To adapt the JoyHallo model for Mandarin, we employed the Chinese wav2vec2 model for audio feature embedding. A semi-decoupled structure is proposed to capture inter-feature relationships among lip, expression, and pose features. This integration not only improves information utilization efficiency but also accelerates inference speed by 14.3%. Notably, JoyHallo maintains its strong ability to generate English videos, demonstrating excellent cross-language generation capabilities. The code and models are available at https://jdh-algo.github.io/JoyHallo.
Chinese Open Instruction Generalist: A Preliminary Release
Instruction tuning is widely recognized as a key technique for building generalist language models, which comes to the attention of researchers and the public with the release of InstructGPT ouyang2022training and ChatGPT [ https://chat.openai.com/ ]. Despite impressive progress in English-oriented large-scale language models (LLMs), it is still under-explored whether English-based foundation LLMs can perform similarly on multilingual tasks compared to English tasks with well-designed instruction tuning and how we can construct the corpora needed for the tuning. To remedy this gap, we propose the project as an attempt to create a Chinese instruction dataset by various methods adapted to the intrinsic characteristics of 4 sub-tasks. We collect around 200k Chinese instruction tuning samples, which have been manually checked to guarantee high quality. We also summarize the existing English and Chinese instruction corpora and brief some potential applications of the newly constructed Chinese instruction corpora.
Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference
Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing.
Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model
In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models.
Character-level Chinese-English Translation through ASCII Encoding
Character-level Neural Machine Translation (NMT) models have recently achieved impressive results on many language pairs. They mainly do well for Indo-European language pairs, where the languages share the same writing system. However, for translating between Chinese and English, the gap between the two different writing systems poses a major challenge because of a lack of systematic correspondence between the individual linguistic units. In this paper, we enable character-level NMT for Chinese, by breaking down Chinese characters into linguistic units similar to that of Indo-European languages. We use the Wubi encoding scheme, which preserves the original shape and semantic information of the characters, while also being reversible. We show promising results from training Wubi-based models on the character- and subword-level with recurrent as well as convolutional models.
C-Pack: Packaged Resources To Advance General Chinese Embedding
We introduce C-Pack, a package of resources that significantly advance the field of general Chinese embeddings. C-Pack includes three critical resources. 1) C-MTEB is a comprehensive benchmark for Chinese text embeddings covering 6 tasks and 35 datasets. 2) C-MTP is a massive text embedding dataset curated from labeled and unlabeled Chinese corpora for training embedding models. 3) C-TEM is a family of embedding models covering multiple sizes. Our models outperform all prior Chinese text embeddings on C-MTEB by up to +10% upon the time of the release. We also integrate and optimize the entire suite of training methods for C-TEM. Along with our resources on general Chinese embedding, we release our data and models for English text embeddings. The English models achieve state-of-the-art performance on MTEB benchmark; meanwhile, our released English data is 2 times larger than the Chinese data. All these resources are made publicly available at https://github.com/FlagOpen/FlagEmbedding.
Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation
Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}.
Towards Natural Bilingual and Code-Switched Speech Synthesis Based on Mix of Monolingual Recordings and Cross-Lingual Voice Conversion
Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a challenge. The main reason is that it is not easy to obtain a bilingual corpus from a speaker who achieves native-level fluency in both languages. In this paper, we explore the use of Mandarin speech recordings from a Mandarin speaker, and English speech recordings from another English speaker to build high-quality bilingual and code-switched TTS for both speakers. A Tacotron2-based cross-lingual voice conversion system is employed to generate the Mandarin speaker's English speech and the English speaker's Mandarin speech, which show good naturalness and speaker similarity. The obtained bilingual data are then augmented with code-switched utterances synthesized using a Transformer model. With these data, three neural TTS models -- Tacotron2, Transformer and FastSpeech are applied for building bilingual and code-switched TTS. Subjective evaluation results show that all the three systems can produce (near-)native-level speech in both languages for each of the speaker.
CLiMP: A Benchmark for Chinese Language Model Evaluation
Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of these models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP), which can be used to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1,000 minimal pairs (MPs) for 16 syntactic contrasts in Mandarin, covering 9 major Mandarin linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluated 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier-noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.
Investigating Hallucination in Conversations for Low Resource Languages
Large Language Models (LLMs) have demonstrated remarkable proficiency in generating text that closely resemble human writing. However, they often generate factually incorrect statements, a problem typically referred to as 'hallucination'. Addressing hallucination is crucial for enhancing the reliability and effectiveness of LLMs. While much research has focused on hallucinations in English, our study extends this investigation to conversational data in three languages: Hindi, Farsi, and Mandarin. We offer a comprehensive analysis of a dataset to examine both factual and linguistic errors in these languages for GPT-3.5, GPT-4o, Llama-3.1, Gemma-2.0, DeepSeek-R1 and Qwen-3. We found that LLMs produce very few hallucinated responses in Mandarin but generate a significantly higher number of hallucinations in Hindi and Farsi.
CMB: A Comprehensive Medical Benchmark in Chinese
Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. It is worth noting that our benchmark is not devised as a leaderboard competition but as an instrument for self-assessment of model advancements. We hope this benchmark could facilitate the widespread adoption and enhancement of medical LLMs within China. Check details in https://cmedbenchmark.llmzoo.com/.
HKGAI-V1: Towards Regional Sovereign Large Language Model for Hong Kong
This paper presents the development of HKGAI-V1, a foundational sovereign large language model (LLM), developed as part of an initiative to establish value-aligned AI infrastructure specifically tailored for Hong Kong. Addressing the region's unique multilingual environment (Cantonese, Mandarin, and English), its distinct socio-legal context under the "one country, two systems" framework, and specific local cultural and value considerations, the model is built upon the DeepSeek architecture and systematically aligned with regional norms through a multifaceted full parameter fine-tuning process. It is further integrated with a retrieval-augmented generation (RAG) system to ensure timely and factually grounded information access. The core contribution lies in the design and implementation of a comprehensive, region-specific AI alignment and safety framework, demonstrated through two key achievements: 1) The successful development of HKGAI-V1 itself - which outper-forms general-purpose models in handling Hong Kong-specific culturally sensitive queries, and embodies a "governance-embedded" approach to digital sovereignty - empowers Hong Kong to exercise control over AI applications in critical sectors including public services, legal systems, and edu-cation. 2) The development of the proprietary Adversarial HK Value Benchmark, a rigorous tool for evaluating model alignment with local ethical and legal stand-ards under challenging conditions. By documenting these achievements, the paper provides not only a technological artifact but also a replicable blueprint for developing advanced, regionally focused AI systems deeply rooted in their local identities.
Chinese Grammatical Error Correction: A Survey
Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC.
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu
In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT, as it can readily take advantage of linguistic resources such as grammar books and dictionaries. Such resources are usually selectively integrated into the prompt so that LLMs can directly perform translation without any specific training, via their in-context learning capability (ICL). However, the relative importance of each type of resource e.g., dictionary, grammar book, and retrieved parallel examples, is not entirely clear. To address this gap, this study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language as our case study. To remove any prior knowledge of Manchu encoded in the LLM parameters and single out the effect of ICL, we also experiment with an encrypted version of Manchu texts. Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help. In a follow-up study, we showcase a promising application of in-context MT: parallel data augmentation as a way to bootstrap the conventional MT model. When monolingual data abound, generating synthetic parallel data through in-context MT offers a pathway to mitigate data scarcity and build effective and efficient low-resource neural MT systems.
Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence
Nowadays, foundation models become one of fundamental infrastructures in artificial intelligence, paving ways to the general intelligence. However, the reality presents two urgent challenges: existing foundation models are dominated by the English-language community; users are often given limited resources and thus cannot always use foundation models. To support the development of the Chinese-language community, we introduce an open-source project, called Fengshenbang, which leads by the research center for Cognitive Computing and Natural Language (CCNL). Our project has comprehensive capabilities, including large pre-trained models, user-friendly APIs, benchmarks, datasets, and others. We wrap all these in three sub-projects: the Fengshenbang Model, the Fengshen Framework, and the Fengshen Benchmark. An open-source roadmap, Fengshenbang, aims to re-evaluate the open-source community of Chinese pre-trained large-scale models, prompting the development of the entire Chinese large-scale model community. We also want to build a user-centered open-source ecosystem to allow individuals to access the desired models to match their computing resources. Furthermore, we invite companies, colleges, and research institutions to collaborate with us to build the large-scale open-source model-based ecosystem. We hope that this project will be the foundation of Chinese cognitive intelligence.
OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training
Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.
Measuring Hong Kong Massive Multi-Task Language Understanding
Multilingual understanding is crucial for the cross-cultural applicability of Large Language Models (LLMs). However, evaluation benchmarks designed for Hong Kong's unique linguistic landscape, which combines Traditional Chinese script with Cantonese as the spoken form and its cultural context, remain underdeveloped. To address this gap, we introduce HKMMLU, a multi-task language understanding benchmark that evaluates Hong Kong's linguistic competence and socio-cultural knowledge. The HKMMLU includes 26,698 multi-choice questions across 66 subjects, organized into four categories: Science, Technology, Engineering, and Mathematics (STEM), Social Sciences, Humanities, and Other. To evaluate the multilingual understanding ability of LLMs, 90,550 Mandarin-Cantonese translation tasks were additionally included. We conduct comprehensive experiments on GPT-4o, Claude 3.7 Sonnet, and 18 open-source LLMs of varying sizes on HKMMLU. The results show that the best-performing model, DeepSeek-V3, struggles to achieve an accuracy of 75\%, significantly lower than that of MMLU and CMMLU. This performance gap highlights the need to improve LLMs' capabilities in Hong Kong-specific language and knowledge domains. Furthermore, we investigate how question language, model size, prompting strategies, and question and reasoning token lengths affect model performance. We anticipate that HKMMLU will significantly advance the development of LLMs in multilingual and cross-cultural contexts, thereby enabling broader and more impactful applications.
FineWeb-zhtw: Scalable Curation of Traditional Chinese Text Data from the Web
The quality and size of a pretraining dataset significantly influence the performance of large language models (LLMs). While there have been numerous efforts in the curation of such a dataset for English users, there is a relative lack of similar initiatives for Traditional Chinese. Building upon this foundation of FineWeb, we introduce FineWeb-zhtw, a dataset tailored specifically for Traditional Chinese users. We came up with multiple stages of meticulously designed filters to cater to the linguistic difference between English and Traditional Chinese, to ensure comprehensiveness and quality. We determined effectiveness from querying dataset samples with three main objectives. Our code and datasets are publicly available.
NEZHA: Neural Contextualized Representation for Chinese Language Understanding
The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks. The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy, Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti) and natural language inference (XNLI).
COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
Recently, there have been significant advancements in large language models (LLMs), particularly focused on the English language. These advancements have enabled these LLMs to understand and execute complex instructions with unprecedented accuracy and fluency. However, despite these advancements, there remains a noticeable gap in the development of Chinese instruction tuning. The unique linguistic features and cultural depth of the Chinese language pose challenges for instruction tuning tasks. Existing datasets are either derived from English-centric LLMs or are ill-suited for aligning with the interaction patterns of real-world Chinese users. To bridge this gap, we introduce COIG-CQIA, a high-quality Chinese instruction tuning dataset. Our aim is to build a diverse, wide-ranging instruction-tuning dataset to better align model behavior with human interactions. To this end, we collect a high-quality human-written corpus from various sources on the Chinese Internet, including Q&A communities, Wikis, examinations, and existing NLP datasets. This corpus was rigorously filtered and carefully processed to form the COIG-CQIA dataset. Furthermore, we train models of various scales on different subsets of CQIA, following in-depth evaluation and analyses. The findings from our experiments offer valuable insights for selecting and developing Chinese instruction-tuning datasets. We also find that models trained on CQIA-Subset achieve competitive results in human assessment as well as knowledge and security benchmarks. Data are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA
SLING: Sino Linguistic Evaluation of Large Language Models
To understand what kinds of linguistic knowledge are encoded by pretrained Chinese language models (LMs), we introduce the benchmark of Sino LINGuistics (SLING), which consists of 38K minimal sentence pairs in Mandarin Chinese grouped into 9 high-level linguistic phenomena. Each pair demonstrates the acceptability contrast of a specific syntactic or semantic phenomenon (e.g., The keys are lost vs. The keys is lost), and an LM should assign lower perplexity to the acceptable sentence. In contrast to the CLiMP dataset (Xiang et al., 2021), which also contains Chinese minimal pairs and was created by translating the vocabulary of the English BLiMP dataset, the minimal pairs in SLING are derived primarily by applying syntactic and lexical transformations to naturally-occurring, linguist-annotated sentences from the Chinese Treebank 9.0, thus addressing severe issues in CLiMP's data generation process. We test 18 publicly available pretrained monolingual (e.g., BERT-base-zh, CPM) and multi-lingual (e.g., mT5, XLM) language models on SLING. Our experiments show that the average accuracy for LMs is far below human performance (69.7% vs. 97.1%), while BERT-base-zh achieves the highest accuracy (84.8%) of all tested LMs, even much larger ones. Additionally, we find that most LMs have a strong gender and number (singular/plural) bias, and they perform better on local phenomena than hierarchical ones.
A Progressive Framework of Vision-language Knowledge Distillation and Alignment for Multilingual Scene
Pre-trained vision-language (V-L) models such as CLIP have shown excellent performance in many downstream cross-modal tasks. However, most of them are only applicable to the English context. Subsequent research has focused on this problem and proposed improved models, such as CN-CLIP and AltCLIP, to facilitate their applicability to Chinese and even other languages. Nevertheless, these models suffer from high latency and a large memory footprint in inference, which limits their further deployment on resource-constrained edge devices. In this work, we propose a conceptually simple yet effective multilingual CLIP Compression framework and train a lightweight multilingual vision-language model, called DC-CLIP, for both Chinese and English context. In this framework, we collect high-quality Chinese and English text-image pairs and design two training stages, including multilingual vision-language feature distillation and alignment. During the first stage, lightweight image/text student models are designed to learn robust visual/multilingual textual feature representation ability from corresponding teacher models, respectively. Subsequently, the multilingual vision-language alignment stage enables effective alignment of visual and multilingual textual features to further improve the model's multilingual performance. Comprehensive experiments in zero-shot image classification, conducted based on the ELEVATER benchmark, showcase that DC-CLIP achieves superior performance in the English context and competitive performance in the Chinese context, even with less training data, when compared to existing models of similar parameter magnitude. The evaluation demonstrates the effectiveness of our designed training mechanism.
VisTW: Benchmarking Vision-Language Models for Traditional Chinese in Taiwan
In this paper, we propose a comprehensive evaluation benchmark for Visual Language Models (VLM) in Traditional Chinese. Our evaluation suite, the first of its kind, contains two complementary components: (1) VisTW-MCQ, a collection of manually curated exam multi-choice questions from 21 academic subjects designed to test the broad knowledge and reasoning capabilities of VLMs; and (2) VisTW-Dialogue, an open dialogue benchmark comprising 131 image-question pairs manually created to evaluate VLMs' ability in free-form dialogue generation within Taiwanese cultural contexts. These benchmarks address a critical gap in the evaluation landscape, where existing benchmarks predominantly focus on English or Simplified Chinese, neglecting the unique linguistic and cultural aspects of Traditional Chinese used in regions like Taiwan and Hong Kong. Our analysis reveals significant performance differences across various VLMs and highlights specific challenges in processing Traditional Chinese visual content.
OCNLI: Original Chinese Natural Language Inference
Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g., SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world's languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.
Towards Comprehensive Semantic Speech Embeddings for Chinese Dialects
Despite having hundreds of millions of speakers, Chinese dialects lag behind Mandarin in speech and language technologies. Most varieties are primarily spoken, making dialect-to-Mandarin speech-LLMs (large language models) more practical than dialect LLMs. Building dialect-to-Mandarin speech-LLMs requires speech representations with cross-dialect semantic alignment between Chinese dialects and Mandarin. In this paper, we achieve such a cross-dialect semantic alignment by training a speech encoder with ASR (automatic speech recognition)-only data, as demonstrated by speech-to-speech retrieval on a new benchmark of spoken Chinese varieties that we contribute. Our speech encoder further demonstrates state-of-the-art ASR performance on Chinese dialects. Together, our Chinese dialect benchmark, semantically aligned speech representations, and speech-to-speech retrieval evaluation lay the groundwork for future Chinese dialect speech-LLMs. We release the benchmark at https://github.com/kalvinchang/yubao.
Kanbun-LM: Reading and Translating Classical Chinese in Japanese Methods by Language Models
Recent studies in natural language processing (NLP) have focused on modern languages and achieved state-of-the-art results in many tasks. Meanwhile, little attention has been paid to ancient texts and related tasks. Classical Chinese first came to Japan approximately 2,000 years ago. It was gradually adapted to a Japanese form called Kanbun-Kundoku (Kanbun) in Japanese reading and translating methods, which has significantly impacted Japanese literature. However, compared to the rich resources for ancient texts in mainland China, Kanbun resources remain scarce in Japan. To solve this problem, we construct the first Classical-Chinese-to-Kanbun dataset in the world. Furthermore, we introduce two tasks, character reordering and machine translation, both of which play a significant role in Kanbun comprehension. We also test the current language models on these tasks and discuss the best evaluation method by comparing the results with human scores. We release our code and dataset on GitHub.
Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and Cross-Language Voice Cloning
We present a multispeaker, multilingual text-to-speech (TTS) synthesis model based on Tacotron that is able to produce high quality speech in multiple languages. Moreover, the model is able to transfer voices across languages, e.g. synthesize fluent Spanish speech using an English speaker's voice, without training on any bilingual or parallel examples. Such transfer works across distantly related languages, e.g. English and Mandarin. Critical to achieving this result are: 1. using a phonemic input representation to encourage sharing of model capacity across languages, and 2. incorporating an adversarial loss term to encourage the model to disentangle its representation of speaker identity (which is perfectly correlated with language in the training data) from the speech content. Further scaling up the model by training on multiple speakers of each language, and incorporating an autoencoding input to help stabilize attention during training, results in a model which can be used to consistently synthesize intelligible speech for training speakers in all languages seen during training, and in native or foreign accents.
Taiyi-Diffusion-XL: Advancing Bilingual Text-to-Image Generation with Large Vision-Language Model Support
Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at https://huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/{this https URL}, fostering further research and collaboration in this domain.
Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese
The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). We have released our codes, models, and demos in https://github.com/OFA-Sys/Chinese-CLIP
ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models
With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark.
AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines
In this paper, we present AISHELL-3, a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. The corpus contains roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers. Their auxiliary attributes such as gender, age group and native accents are explicitly marked and provided in the corpus. Accordingly, transcripts in Chinese character-level and pinyin-level are provided along with the recordings. We present a baseline system that uses AISHELL-3 for multi-speaker Madarin speech synthesis. The multi-speaker speech synthesis system is an extension on Tacotron-2 where a speaker verification model and a corresponding loss regarding voice similarity are incorporated as the feedback constraint. We aim to use the presented corpus to build a robust synthesis model that is able to achieve zero-shot voice cloning. The system trained on this dataset also generalizes well on speakers that are never seen in the training process. Objective evaluation results from our experiments show that the proposed multi-speaker synthesis system achieves high voice similarity concerning both speaker embedding similarity and equal error rate measurement. The dataset, baseline system code and generated samples are available online.
How Far Can Cantonese NLP Go? Benchmarking Cantonese Capabilities of Large Language Models
The rapid evolution of large language models (LLMs) has transformed the competitive landscape in natural language processing (NLP), particularly for English and other data-rich languages. However, underrepresented languages like Cantonese, spoken by over 85 million people, face significant development gaps, which is particularly concerning given the economic significance of the Guangdong-Hong Kong-Macau Greater Bay Area, and in substantial Cantonese-speaking populations in places like Singapore and North America. Despite its wide use, Cantonese has scant representation in NLP research, especially compared to other languages from similarly developed regions. To bridge these gaps, we outline current Cantonese NLP methods and introduce new benchmarks designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology. We also propose future research directions and recommended models to enhance Cantonese LLM development.
No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem
Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.
Synchronous Bidirectional Learning for Multilingual Lip Reading
Lip reading has received increasing attention in recent years. This paper focuses on the synergy of multilingual lip reading. There are about as many as 7000 languages in the world, which implies that it is impractical to train separate lip reading models with large-scale data for each language. Although each language has its own linguistic and pronunciation rules, the lip movements of all languages share similar patterns due to the common structures of human organs. Based on this idea, we try to explore the synergized learning of multilingual lip reading in this paper, and further propose a synchronous bidirectional learning (SBL) framework for effective synergy of multilingual lip reading. We firstly introduce phonemes as our modeling units for the multilingual setting here. Phonemes are more closely related with the lip movements than the alphabet letters. At the same time, similar phonemes always lead to similar visual patterns no matter which type the target language is. Then, a novel SBL block is proposed to learn the rules for each language in a fill-in-the-blank way. Specifically, the model has to learn to infer the target unit given its bidirectional context, which could represent the composition rules of phonemes for each language. To make the learning process more targeted at each particular language, an extra task of predicting the language identity is introduced in the learning process. Finally, a thorough comparison on LRW (English) and LRW-1000 (Mandarin) is performed, which shows the promising benefits from the synergized learning of different languages and also reports a new state-of-the-art result on both datasets.
Solving the unsolvable: Translating case law in Hong Kong
This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.
The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on Llama with Vision-Aware and Function-Calling Capabilities
Breeze 2 is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation. Building upon the Llama 3, Breeze 2 continues pretraining on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese. It incorporates vision-aware capabilities through a visual encoder and a bridge module, and supports function-calling via prompt templates and post-training on function-calling data. The effectiveness of Breeze 2 is benchmarked across various tasks, including Taiwan general knowledge, instruction-following, long context, function calling, and vision understanding. Furthermore, we showcase the capabilities of the its 3B model in a mobile application. We are publicly releasing all Breeze 2 models under the Llama 3 Community License.
CMMLU: Measuring massive multitask language understanding in Chinese
As the capabilities of large language models (LLMs) continue to advance, evaluating their performance becomes increasingly crucial and challenging. This paper aims to bridge this gap by introducing CMMLU, a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities. We conduct a thorough evaluation of 18 advanced multilingual- and Chinese-oriented LLMs, assessing their performance across different subjects and settings. The results reveal that most existing LLMs struggle to achieve an average accuracy of 50%, even when provided with in-context examples and chain-of-thought prompts, whereas the random baseline stands at 25%. This highlights significant room for improvement in LLMs. Additionally, we conduct extensive experiments to identify factors impacting the models' performance and propose directions for enhancing LLMs. CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
Advancing the Evaluation of Traditional Chinese Language Models: Towards a Comprehensive Benchmark Suite
The evaluation of large language models is an essential task in the field of language understanding and generation. As language models continue to advance, the need for effective benchmarks to assess their performance has become imperative. In the context of Traditional Chinese, there is a scarcity of comprehensive and diverse benchmarks to evaluate the capabilities of language models, despite the existence of certain benchmarks such as DRCD, TTQA, CMDQA, and FGC dataset. To address this gap, we propose a novel set of benchmarks that leverage existing English datasets and are tailored to evaluate language models in Traditional Chinese. These benchmarks encompass a wide range of tasks, including contextual question-answering, summarization, classification, and table understanding. The proposed benchmarks offer a comprehensive evaluation framework, enabling the assessment of language models' capabilities across different tasks. In this paper, we evaluate the performance of GPT-3.5, Taiwan-LLaMa-v1.0, and Model 7-C, our proprietary model, on these benchmarks. The evaluation results highlight that our model, Model 7-C, achieves performance comparable to GPT-3.5 with respect to a part of the evaluated capabilities. In an effort to advance the evaluation of language models in Traditional Chinese and stimulate further research in this field, we have open-sourced our benchmark and opened the model for trial.
FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark
Pretrained Language Models (PLMs) have achieved tremendous success in natural language understanding tasks. While different learning schemes -- fine-tuning, zero-shot, and few-shot learning -- have been widely explored and compared for languages such as English, there is comparatively little work in Chinese to fairly and comprehensively evaluate and compare these methods and thus hinders cumulative progress. In this paper, we introduce the Chinese Few-shot Learning Evaluation Benchmark (FewCLUE), the first comprehensive few-shot evaluation benchmark in Chinese. It includes nine tasks, ranging from single-sentence and sentence-pair classification tasks to machine reading comprehension tasks. We systematically evaluate five state-of-the-art (SOTA) few-shot learning methods (including PET, ADAPET, LM-BFF, P-tuning and EFL), and compare their performance with fine-tuning and zero-shot learning schemes on the newly constructed FewCLUE benchmark. Experimental results reveal that: 1) The effect of different few-shot learning methods is sensitive to the pre-trained model to which the methods are applied; 2) PET and P-tuning achieve the best overall performance with RoBERTa and ERNIE respectively. Our benchmark is used in the few-shot learning contest of NLPCC 2021. In addition, we provide a user-friendly toolkit, as well as an online leaderboard to help facilitate further progress on Chinese few-shot learning. We provide a baseline performance on different learning methods, a reference for future research.
An Improved Traditional Chinese Evaluation Suite for Foundation Model
We present TMMLU+, a new benchmark designed for Traditional Chinese language understanding. TMMLU+ is a multi-choice question-answering dataset with 66 subjects from elementary to professional level. It is six times larger and boasts a more balanced subject distribution than its predecessor, Taiwan Massive Multitask Language Understanding (TMMLU). We also benchmark closed-source models and 26 open-weight Chinese large language models (LLMs) of parameters ranging from 1.8B to 72B on the proposed TMMLU+. Our findings reveal that (1.) Traditional Chinese models still trail behind their Simplified Chinese counterparts, highlighting a need for more focused advancements in LLMs catering to Traditional Chinese. (2.) Current LLMs still fall short of human performance in average scores, indicating a potential need for future research to delve deeper into social science and humanities subjects. (3.) Among all the tokenization compression metrics examined, we identify that only the fertility score uniquely demonstrates strong correlations with our benchmark results. We foresee that TMMLU+ will pinpoint areas for future model improvement, thereby narrowing the gap between machine and human linguistic capabilities and supporting researchers in developing Traditional Chinese LLMs. Our dataset, along with the benchmark source code, is accessible at huggingface.co/datasets/ikala/tmmluplus.
Can MLLMs Understand the Deep Implication Behind Chinese Images?
As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images. CII-Bench stands out in several ways compared to existing benchmarks. Firstly, to ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model's understanding of Chinese traditional culture. Through extensive experiments on CII-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on CII-Bench. The highest accuracy of MLLMs attains 64.4%, where as human accuracy averages 78.2%, peaking at an impressive 81.0%. Subsequently, MLLMs perform worse on Chinese traditional culture images, suggesting limitations in their ability to understand high-level semantics and lack a deep knowledge base of Chinese traditional culture. Finally, it is observed that most models exhibit enhanced accuracy when image emotion hints are incorporated into the prompts. We believe that CII-Bench will enable MLLMs to gain a better understanding of Chinese semantics and Chinese-specific images, advancing the journey towards expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io/.
AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline
An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising.
FFN: a Fine-grained Chinese-English Financial Domain Parallel Corpus
Large Language Models (LLMs) have stunningly advanced the field of machine translation, though their effectiveness within the financial domain remains largely underexplored. To probe this issue, we constructed a fine-grained Chinese-English parallel corpus of financial news called FFN. We acquired financial news articles spanning between January 1st, 2014, to December 31, 2023, from mainstream media websites such as CNN, FOX, and China Daily. The dataset consists of 1,013 main text and 809 titles, all of which have been manually corrected. We measured the translation quality of two LLMs -- ChatGPT and ERNIE-bot, utilizing BLEU, TER and chrF scores as the evaluation metrics. For comparison, we also trained an OpenNMT model based on our dataset. We detail problems of LLMs and provide in-depth analysis, intending to stimulate further research and solutions in this largely uncharted territory. Our research underlines the need to optimize LLMs within the specific field of financial translation to ensure accuracy and quality.
Are Large Language Models True Healthcare Jacks-of-All-Trades? Benchmarking Across Health Professions Beyond Physician Exams
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in delivering accurate answers to questions about world knowledge. Despite this, existing benchmarks for evaluating LLMs in healthcare predominantly focus on medical doctors, leaving other critical healthcare professions underrepresented. To fill this research gap, we introduce the Examinations for Medical Personnel in Chinese (EMPEC), a pioneering large-scale healthcare knowledge benchmark in traditional Chinese. EMPEC consists of 157,803 exam questions across 124 subjects and 20 healthcare professions, including underrepresented occupations like Optometrists and Audiologists. Each question is tagged with its release time and source, ensuring relevance and authenticity. We conducted extensive experiments on 17 LLMs, including proprietary, open-source models, general domain models and medical specific models, evaluating their performance under various settings. Our findings reveal that while leading models like GPT-4 achieve over 75\% accuracy, they still struggle with specialized fields and alternative medicine. Surprisingly, general-purpose LLMs outperformed medical-specific models, and incorporating EMPEC's training data significantly enhanced performance. Additionally, the results on questions released after the models' training cutoff date were consistent with overall performance trends, suggesting that the models' performance on the test set can predict their effectiveness in addressing unseen healthcare-related queries. The transition from traditional to simplified Chinese characters had a negligible impact on model performance, indicating robust linguistic versatility. Our study underscores the importance of expanding benchmarks to cover a broader range of healthcare professions to better assess the applicability of LLMs in real-world healthcare scenarios.
CMHG: A Dataset and Benchmark for Headline Generation of Minority Languages in China
Minority languages in China, such as Tibetan, Uyghur, and Traditional Mongolian, face significant challenges due to their unique writing systems, which differ from international standards. This discrepancy has led to a severe lack of relevant corpora, particularly for supervised tasks like headline generation. To address this gap, we introduce a novel dataset, Chinese Minority Headline Generation (CMHG), which includes 100,000 entries for Tibetan, and 50,000 entries each for Uyghur and Mongolian, specifically curated for headline generation tasks. Additionally, we propose a high-quality test set annotated by native speakers, designed to serve as a benchmark for future research in this domain. We hope this dataset will become a valuable resource for advancing headline generation in Chinese minority languages and contribute to the development of related benchmarks.
CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models
The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following. Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (CIF-Bench), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate evaluation bias, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances. Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9%, highlighting the limitations of LLMs in less familiar language and task contexts. This work aims to uncover the current limitations of LLMs in handling Chinese tasks, pushing towards the development of more culturally informed and linguistically diverse models with the released data and benchmark (https://yizhilll.github.io/CIF-Bench/).
Mergen: The First Manchu-Korean Machine Translation Model Trained on Augmented Data
The Manchu language, with its roots in the historical Manchurian region of Northeast China, is now facing a critical threat of extinction, as there are very few speakers left. In our efforts to safeguard the Manchu language, we introduce Mergen, the first-ever attempt at a Manchu-Korean Machine Translation (MT) model. To develop this model, we utilize valuable resources such as the Manwen Laodang(a historical book) and a Manchu-Korean dictionary. Due to the scarcity of a Manchu-Korean parallel dataset, we expand our data by employing word replacement guided by GloVe embeddings, trained on both monolingual and parallel texts. Our approach is built around an encoder-decoder neural machine translation model, incorporating a bi-directional Gated Recurrent Unit (GRU) layer. The experiments have yielded promising results, showcasing a significant enhancement in Manchu-Korean translation, with a remarkable 20-30 point increase in the BLEU score.
Shared Heritage, Distinct Writing: Rethinking Resource Selection for East Asian Historical Documents
Historical documents in the Sinosphere are known to share common formats and practices, particularly in veritable records compiled by court historians. This shared linguistic heritage has led researchers to use Classical Chinese resources for cross-lingual transfer when processing historical documents from Korea and Japan, which remain relatively low-resource. In this paper, we question the assumption of cross-lingual transferability from Classical Chinese to Hanja and Kanbun, the ancient written languages of Korea and Japan, respectively. Our experiments across machine translation, named entity recognition, and punctuation restoration tasks show minimal impact of Classical Chinese datasets on language model performance for ancient Korean documents written in Hanja, with performance differences within 0.0068 F1-score for sequence labeling tasks and up to +0.84 BLEU score for translation. These limitations persist consistently across various model sizes, architectures, and domain-specific datasets. Our analysis reveals that the benefits of Classical Chinese resources diminish rapidly as local language data increases for Hanja, while showing substantial improvements only in extremely low-resource scenarios for both Korean and Japanese historical documents. These findings emphasize the need for careful empirical validation rather than assuming benefits from indiscriminate cross-lingual transfer.
Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset
This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset.
