new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities

Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84%. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning and instruction following capabilities.

  • 9 authors
·
Jun 17, 2024 1

DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment

We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.

  • 28 authors
·
Jul 3, 2025

SeaLLMs-Audio: Large Audio-Language Models for Southeast Asia

We introduce SeaLLMs-Audio, the first large audio-language model (LALM) tailored for multiple Southeast Asian (SEA) languages-Indonesian (id), Thai (th), and Vietnamese (vi)-alongside English (en) and Chinese (zh). Trained on a large-scale audio corpus, SeaLLMs-Audio exhibits strong performance across diverse audio-centric tasks, spanning fine-grained audio understanding and voice-based interaction. Its key features include: 1) Multilingual: the model primarily supports 5 languages, namely Indonesian, Thai, Vietnamese, English, and Chinese; 2) Multimodal: the model accepts flexible input modalities, including audio only, text only, as well as audio with text; 3) Multi-task: the model supports a wide range of tasks, including audio analysis tasks such as Audio Captioning, Automatic Speech Recognition, Speech-to-Text Translation, Speech Emotion Recognition, Speech Question Answering, and Speech Summarization. It also enables voice-based dialogue, including answering factual, mathematical, and general knowledge queries. As a significant step towards advancing audio LLMs in Southeast Asia, we expect SeaLLMs-Audio to benefit both the regional research community and industry. To automate LALM evaluation for Southeast Asia, we introduce SeaBench-Audio, a benchmark spanning multiple tasks. Experiments show that SeaLLMs-Audio achieves competitive performance compared with other LALMs on SEA languages.

  • 7 authors
·
Nov 3, 2025

SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning

Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.

  • 5 authors
·
Apr 22, 2025

EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge

Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on EmergentTTS, we introduce EmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation https://github.com/boson-ai/EmergentTTS-Eval-public{code} and the https://huggingface.co/datasets/bosonai/EmergentTTS-Eval{dataset}.

  • 5 authors
·
May 28, 2025 2

VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions

Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at https://junzhan2000.github.io/VStyle.github.io/{project's homepage}.

  • 14 authors
·
Sep 9, 2025 2

Measuring Audio's Impact on Correctness: Audio-Contribution-Aware Post-Training of Large Audio Language Models

Large Audio Language Models (LALMs) represent an important frontier in multimodal AI, addressing diverse audio tasks. Recently, post-training of LALMs has received increasing attention due to significant performance improvements over foundation models. While single-stage post-training such as reinforcement learning (RL) has demonstrated promising results, multi-stage approaches such as supervised fine-tuning (SFT) followed by RL remain suboptimal. The allocation of data across multiple training stages to maximize LALM capabilities has not been fully explored, and large-scale, high-quality datasets for such research are also lacking. To address these problems, we firstly present AudioMCQ, a comprehensive audio multiple-choice question dataset comprising 571k samples with two kinds of chain-of-thought annotations. Secondly, we investigate the prevalent zero audio-contribution phenomenon in LALMs, where models derive correct answers solely from textual information without processing audio content. We propose Audio-Contribution Filtering to partition data into weak and strong audio-contribution subsets. Based on these insights, we develop two effective post-training paradigms: Weak-to-Strong (SFT on weak audio-contribution data followed by RL on strong audio-contribution data) and Mixed-to-Strong (SFT on mixed audio-contribution data followed by RL on strong audio-contribution data). We achieve first place in the DCASE 2025 Audio-Question-Answering challenge by using AudioMCQ. Additionally, leveraging our dataset with different training strategies, we achieve 78.2\% on MMAU-test-mini, 75.6\% on MMAU, 67.1\% on MMAR, and 70.7\% on MMSU, establishing new state-of-the-art performance across these benchmarks.

  • 19 authors
·
Sep 25, 2025

DIFFA: Large Language Diffusion Models Can Listen and Understand

Recent advances in Large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce DIFFA, the first diffusion-based Large Audio-Language Model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git.

  • 12 authors
·
Jul 24, 2025

Music Flamingo: Scaling Music Understanding in Audio Language Models

We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do.

nvidia NVIDIA
·
Nov 13, 2025 2

Fun-Audio-Chat Technical Report

Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.

  • 12 authors
·
Dec 23, 2025

Qwen2-Audio Technical Report

We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. In contrast to complex hierarchical tags, we have simplified the pre-training process by utilizing natural language prompts for different data and tasks, and have further expanded the data volume. We have boosted the instruction-following capability of Qwen2-Audio and implemented two distinct audio interaction modes for voice chat and audio analysis. In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input. In the audio analysis mode, users could provide audio and text instructions for analysis during the interaction. Note that we do not use any system prompts to switch between voice chat and audio analysis modes. Qwen2-Audio is capable of intelligently comprehending the content within audio and following voice commands to respond appropriately. For instance, in an audio segment that simultaneously contains sounds, multi-speaker conversations, and a voice command, Qwen2-Audio can directly understand the command and provide an interpretation and response to the audio. Additionally, DPO has optimized the model's performance in terms of factuality and adherence to desired behavior. According to the evaluation results from AIR-Bench, Qwen2-Audio outperformed previous SOTAs, such as Gemini-1.5-pro, in tests focused on audio-centric instruction-following capabilities. Qwen2-Audio is open-sourced with the aim of fostering the advancement of the multi-modal language community.

  • 12 authors
·
Jul 15, 2024 7