3 Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis Recent advancements in neural vocoding are predominantly driven by Generative Adversarial Networks (GANs) operating in the time-domain. While effective, this approach neglects the inductive bias offered by time-frequency representations, resulting in reduntant and computionally-intensive upsampling operations. Fourier-based time-frequency representation is an appealing alternative, aligning more accurately with human auditory perception, and benefitting from well-established fast algorithms for its computation. Nevertheless, direct reconstruction of complex-valued spectrograms has been historically problematic, primarily due to phase recovery issues. This study seeks to close this gap by presenting Vocos, a new model that directly generates Fourier spectral coefficients. Vocos not only matches the state-of-the-art in audio quality, as demonstrated in our evaluations, but it also substantially improves computational efficiency, achieving an order of magnitude increase in speed compared to prevailing time-domain neural vocoding approaches. The source code and model weights have been open-sourced at https://github.com/charactr-platform/vocos. 1 authors · Jun 1, 2023
1 Learnable Adaptive Time-Frequency Representation via Differentiable Short-Time Fourier Transform The short-time Fourier transform (STFT) is widely used for analyzing non-stationary signals. However, its performance is highly sensitive to its parameters, and manual or heuristic tuning often yields suboptimal results. To overcome this limitation, we propose a unified differentiable formulation of the STFT that enables gradient-based optimization of its parameters. This approach addresses the limitations of traditional STFT parameter tuning methods, which often rely on computationally intensive discrete searches. It enables fine-tuning of the time-frequency representation (TFR) based on any desired criterion. Moreover, our approach integrates seamlessly with neural networks, allowing joint optimization of the STFT parameters and network weights. The efficacy of the proposed differentiable STFT in enhancing TFRs and improving performance in downstream tasks is demonstrated through experiments on both simulated and real-world data. 5 authors · Jun 26
3 Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder Generative Adversarial Network (GAN) based vocoders are superior in inference speed and synthesis quality when reconstructing an audible waveform from an acoustic representation. This study focuses on improving the discriminator to promote GAN-based vocoders. Most existing time-frequency-representation-based discriminators are rooted in Short-Time Fourier Transform (STFT), whose time-frequency resolution in a spectrogram is fixed, making it incompatible with signals like singing voices that require flexible attention for different frequency bands. Motivated by that, our study utilizes the Constant-Q Transform (CQT), which owns dynamic resolution among frequencies, contributing to a better modeling ability in pitch accuracy and harmonic tracking. Specifically, we propose a Multi-Scale Sub-Band CQT (MS-SB-CQT) Discriminator, which operates on the CQT spectrogram at multiple scales and performs sub-band processing according to different octaves. Experiments conducted on both speech and singing voices confirm the effectiveness of our proposed method. Moreover, we also verified that the CQT-based and the STFT-based discriminators could be complementary under joint training. Specifically, enhanced by the proposed MS-SB-CQT and the existing MS-STFT Discriminators, the MOS of HiFi-GAN can be boosted from 3.27 to 3.87 for seen singers and from 3.40 to 3.78 for unseen singers. 4 authors · Nov 25, 2023