Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImproving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning
Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user's emotion; (2) how to dynamically model the user's state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users' subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning. Our codes are available at https://github.com/lwgkzl/MultiESC.
AugESC: Large-scale Data Augmentation for Emotional Support Conversation with Pre-trained Language Models
Crowd-sourcing is commonly adopted for dialog data collection. However, it is highly costly and time-consuming, and the collected data is limited in scale and topic coverage. In this paper, aiming to generate emotional support conversations, we propose exploiting large-scale pre-trained language models for data augmentation, and provide key findings in our pilot exploration. Our adopted approach leverages the 6B-parameter GPT-J model and utilizes publicly available dialog posts to trigger conversations on various topics. Then we construct AugESC, a machine-augmented dataset for emotional support conversation. It is two orders of magnitude larger than the original ESConv dataset in scale, covers more diverse topics, and is shown to be of high quality by human evaluation. Lastly, we demonstrate with interactive evaluation that AugESC can further enhance dialog models tuned on ESConv to handle various conversation topics and to provide significantly more effective emotional support.
FiSMiness: A Finite State Machine Based Paradigm for Emotional Support Conversations
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Finite State Machine (FSM) on LLMs, and propose a framework called FiSMiness. Our framework allows a single LLM to bootstrap the planning during ESC, and self-reason the seeker's emotion, support strategy and the final response upon each conversational turn. Substantial experiments on ESC datasets suggest that FiSMiness outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and external-assisted methods, even those with many more parameters.
Towards Emotional Support Dialog Systems
Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains untouched. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.
The Design and Implementation of XiaoIce, an Empathetic Social Chatbot
This paper describes the development of Microsoft XiaoIce, the most popular social chatbot in the world. XiaoIce is uniquely designed as an AI companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient (IQ) and emotional quotient (EQ) in system design, cast human-machine social chat as decision-making over Markov Decision Processes (MDPs), and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intent, and responds to user needs throughout long conversations. Since her launch in 2014, XiaoIce has communicated with over 660 million active users and succeeded in establishing long-term relationships with many of them. Analysis of large scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.
Do Stochastic Parrots have Feelings Too? Improving Neural Detection of Synthetic Text via Emotion Recognition
Recent developments in generative AI have shone a spotlight on high-performance synthetic text generation technologies. The now wide availability and ease of use of such models highlights the urgent need to provide equally powerful technologies capable of identifying synthetic text. With this in mind, we draw inspiration from psychological studies which suggest that people can be driven by emotion and encode emotion in the text they compose. We hypothesize that pretrained language models (PLMs) have an affective deficit because they lack such an emotional driver when generating text and consequently may generate synthetic text which has affective incoherence i.e. lacking the kind of emotional coherence present in human-authored text. We subsequently develop an emotionally aware detector by fine-tuning a PLM on emotion. Experiment results indicate that our emotionally-aware detector achieves improvements across a range of synthetic text generators, various sized models, datasets, and domains. Finally, we compare our emotionally-aware synthetic text detector to ChatGPT in the task of identification of its own output and show substantial gains, reinforcing the potential of emotion as a signal to identify synthetic text. Code, models, and datasets are available at https: //github.com/alanagiasi/emoPLMsynth
FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models
Emotional Support Conversation (ESC) is a typical dialogue that can effectively assist the user in mitigating emotional pressures. However, owing to the inherent subjectivity involved in analyzing emotions, current non-artificial methodologies face challenges in effectively appraising the emotional support capability. These metrics exhibit a low correlation with human judgments. Concurrently, manual evaluation methods extremely will cause high costs. To solve these problems, we propose a novel model FEEL (Framework for Evaluating Emotional Support Capability with Large Lan-guage Models), employing Large Language Models (LLMs) as evaluators to assess emotional support capabilities. The model meticulously considers various evaluative aspects of ESC to apply a more comprehensive and accurate evaluation method for ESC. Additionally, it employs a probability distribution approach for a more stable result and integrates an ensemble learning strategy, leveraging multiple LLMs with assigned weights to enhance evaluation accuracy. To appraise the performance of FEEL, we conduct extensive experiments on existing ESC model dialogues. Experimental results demonstrate our model exhibits a substantial enhancement in alignment with human evaluations compared to the baselines. Our source code is available at https://github.com/Ansisy/FEEL.
EQ-Negotiator: An Emotion-Reasoning LLM Agent in Credit Dialogues
While large language model (LLM)-based chatbots have been applied for effective engagement in credit dialogues, their capacity for dynamic emotional expression remains limited. Current agents primarily rely on passive empathy rather than affective reasoning. For instance, when faced with persistent client negativity, the agent should employ strategic emotional adaptation by expressing measured anger to discourage counterproductive behavior and guide the conversation toward resolution. This context-aware emotional modulation is essential for imitating the nuanced decision-making of human negotiators. This paper introduces an EQ-negotiator that combines emotion sensing from pre-trained language models (PLMs) with emotional reasoning based on Game Theory and Hidden Markov Models. It takes into account both the current and historical emotions of the client to better manage and address negative emotions during interactions. By fine-tuning pre-trained language models (PLMs) on public emotion datasets and validating them on the credit dialogue datasets, our approach enables LLM-based agents to effectively capture shifts in client emotions and dynamically adjust their response tone based on our emotion decision policies in real-world financial negotiations. This EQ-negotiator can also help credit agencies foster positive client relationships, enhancing satisfaction in credit services.
Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation
Emotional support is a crucial skill for many real-world scenarios, including caring for the elderly, mental health support, and customer service chats. This paper presents a novel task of empathetic dialog generation with positive emotion elicitation to promote users' positive emotions, similar to that of emotional support between humans. In this task, the agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog. To facilitate the study of this task, we collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial (about 820k dialogs, 3M utterances). In these dialogs, the agent tries to guide the user from any possible initial emotional state, e.g., sadness, to a positive emotional state. Then we present a positive-emotion-guided dialog generation model with a novel loss function design. This loss function encourages the dialog model to not only elicit positive emotions from users but also ensure smooth emotional transitions along with the whole dialog. Finally, we establish benchmark results on PosEmoDial, and we will release this dataset and related source code to facilitate future studies.
EmotionLines: An Emotion Corpus of Multi-Party Conversations
Feeling emotion is a critical characteristic to distinguish people from machines. Among all the multi-modal resources for emotion detection, textual datasets are those containing the least additional information in addition to semantics, and hence are adopted widely for testing the developed systems. However, most of the textual emotional datasets consist of emotion labels of only individual words, sentences or documents, which makes it challenging to discuss the contextual flow of emotions. In this paper, we introduce EmotionLines, the first dataset with emotions labeling on all utterances in each dialogue only based on their textual content. Dialogues in EmotionLines are collected from Friends TV scripts and private Facebook messenger dialogues. Then one of seven emotions, six Ekman's basic emotions plus the neutral emotion, is labeled on each utterance by 5 Amazon MTurkers. A total of 29,245 utterances from 2,000 dialogues are labeled in EmotionLines. We also provide several strong baselines for emotion detection models on EmotionLines in this paper.
A Deep Learning Based Chatbot for Campus Psychological Therapy
In this paper, we propose Evebot, an innovative, sequence to sequence (Seq2seq) based, fully generative conversational system for the diagnosis of negative emotions and prevention of depression through positively suggestive responses. The system consists of an assembly of deep-learning based models, including Bi-LSTM based model for detecting negative emotions of users and obtaining psychological counselling related corpus for training the chatbot, anti-language sequence to sequence neural network, and maximum mutual information (MMI) model. As adolescents are reluctant to show their negative emotions in physical interaction, traditional methods of emotion analysis and comforting methods may not work. Therefore, this system puts emphasis on using virtual platform to detect signs of depression or anxiety, channel adolescents' stress and mood, and thus prevent the emergence of mental illness. We launched the integrated chatbot system onto an online platform for real-world campus applications. Through a one-month user study, we observe better results in the increase in positivity than other public chatbots in the control group.
Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation
Modern day conversational agents are trained to emulate the manner in which humans communicate. To emotionally bond with the user, these virtual agents need to be aware of the affective state of the user. Transformers are the recent state of the art in sequence-to-sequence learning that involves training an encoder-decoder model with word embeddings from utterance-response pairs. We propose an emotion-aware transformer encoder for capturing the emotional quotient in the user utterance in order to generate human-like empathetic responses. The contributions of our paper are as follows: 1) An emotion detector module trained on the input utterances determines the affective state of the user in the initial phase 2) A novel transformer encoder is proposed that adds and normalizes the word embedding with emotion embedding thereby integrating the semantic and affective aspects of the input utterance 3) The encoder and decoder stacks belong to the Transformer-XL architecture which is the recent state of the art in language modeling. Experimentation on the benchmark Facebook AI empathetic dialogue dataset confirms the efficacy of our model from the higher BLEU-4 scores achieved for the generated responses as compared to existing methods. Emotionally intelligent virtual agents are now a reality and inclusion of affect as a modality in all human-machine interfaces is foreseen in the immediate future.
"Only ChatGPT gets me": An Empirical Analysis of GPT versus other Large Language Models for Emotion Detection in Text
This work investigates the capabilities of large language models (LLMs) in detecting and understanding human emotions through text. Drawing upon emotion models from psychology, we adopt an interdisciplinary perspective that integrates computational and affective sciences insights. The main goal is to assess how accurately they can identify emotions expressed in textual interactions and compare different models on this specific task. This research contributes to broader efforts to enhance human-computer interaction, making artificial intelligence technologies more responsive and sensitive to users' emotional nuances. By employing a methodology that involves comparisons with a state-of-the-art model on the GoEmotions dataset, we aim to gauge LLMs' effectiveness as a system for emotional analysis, paving the way for potential applications in various fields that require a nuanced understanding of human language.
Empathy Omni: Enabling Empathetic Speech Response Generation through Large Language Models
With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models only convert response content into speech without fully capturing the rich emotional cues in user queries, where the same sentence may convey different meanings depending on the expression. Emotional understanding is thus essential for improving human-machine interaction. Most empathetic speech LLMs rely on massive datasets, demanding high computational cost. A key challenge is to build models that generate empathetic responses with limited data and without large-scale training. To this end, we propose Emotion Omni, a model that understands emotional content in user speech and generates empathetic responses. We further developed a data pipeline to construct a 200k emotional dialogue dataset supporting empathetic speech assistants. Experiments show that Emotion Omni achieves comparable instruction-following ability without large-scale pretraining, while surpassing existing models in speech quality (UTMOS:4.41) and empathy (Emotion GPT Score: 3.97). These results confirm its improvements in both speech fidelity and emotional expressiveness. Demos are available at https://w311411.github.io/omni_demo/.
Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation
Emotional Support Conversation (ESC) is a task aimed at alleviating individuals' emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.
Using Adaptive Empathetic Responses for Teaching English
Existing English-teaching chatbots rarely incorporate empathy explicitly in their feedback, but empathetic feedback could help keep students engaged and reduce learner anxiety. Toward this end, we propose the task of negative emotion detection via audio, for recognizing empathetic feedback opportunities in language learning. We then build the first spoken English-teaching chatbot with adaptive, empathetic feedback. This feedback is synthesized through automatic prompt optimization of ChatGPT and is evaluated with English learners. We demonstrate the effectiveness of our system through a preliminary user study.
OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
TransESC: Smoothing Emotional Support Conversation via Turn-Level State Transition
Emotion Support Conversation (ESC) is an emerging and challenging task with the goal of reducing the emotional distress of people. Previous attempts fail to maintain smooth transitions between utterances in ESC because they ignore to grasp the fine-grained transition information at each dialogue turn. To solve this problem, we propose to take into account turn-level state Transitions of ESC (TransESC) from three perspectives, including semantics transition, strategy transition and emotion transition, to drive the conversation in a smooth and natural way. Specifically, we construct the state transition graph with a two-step way, named transit-then-interact, to grasp such three types of turn-level transition information. Finally, they are injected into the transition-aware decoder to generate more engaging responses. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of TransESC to generate more smooth and effective supportive responses. Our source code is available at https://github.com/circle-hit/TransESC.
CoMPM: Context Modeling with Speaker's Pre-trained Memory Tracking for Emotion Recognition in Conversation
As the use of interactive machines grow, the task of Emotion Recognition in Conversation (ERC) became more important. If the machine-generated sentences reflect emotion, more human-like sympathetic conversations are possible. Since emotion recognition in conversation is inaccurate if the previous utterances are not taken into account, many studies reflect the dialogue context to improve the performances. Many recent approaches show performance improvement by combining knowledge into modules learned from external structured data. However, structured data is difficult to access in non-English languages, making it difficult to extend to other languages. Therefore, we extract the pre-trained memory using the pre-trained language model as an extractor of external knowledge. We introduce CoMPM, which combines the speaker's pre-trained memory with the context model, and find that the pre-trained memory significantly improves the performance of the context model. CoMPM achieves the first or second performance on all data and is state-of-the-art among systems that do not leverage structured data. In addition, our method shows that it can be extended to other languages because structured knowledge is not required, unlike previous methods. Our code is available on github (https://github.com/rungjoo/CoMPM).
SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent
Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the ServeForEmo dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present SweetieChat, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.
Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning
Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.
Dialogue Systems for Emotional Support via Value Reinforcement
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human valuesx2013core beliefs that shape an individual's prioritiesx2013are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situationsx2013both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
PAL: Persona-Augmented Emotional Support Conversation Generation
Due to the lack of human resources for mental health support, there is an increasing demand for employing conversational agents for support. Recent work has demonstrated the effectiveness of dialogue models in providing emotional support. As previous studies have demonstrated that seekers' persona is an important factor for effective support, we investigate whether there are benefits to modeling such information in dialogue models for support. In this paper, our empirical analysis verifies that persona has an important impact on emotional support. Therefore, we propose a framework for dynamically inferring and modeling seekers' persona. We first train a model for inferring the seeker's persona from the conversation history. Accordingly, we propose PAL, a model that leverages persona information and, in conjunction with our strategy-based controllable generation method, provides personalized emotional support. Automatic and manual evaluations demonstrate that PAL achieves state-of-the-art results, outperforming the baselines on the studied benchmark. Our code and data are publicly available at https://github.com/chengjl19/PAL.
Emo-DPO: Controllable Emotional Speech Synthesis through Direct Preference Optimization
Current emotional text-to-speech (TTS) models predominantly conduct supervised training to learn the conversion from text and desired emotion to its emotional speech, focusing on a single emotion per text-speech pair. These models only learn the correct emotional outputs without fully comprehending other emotion characteristics, which limits their capabilities of capturing the nuances between different emotions. We propose a controllable Emo-DPO approach, which employs direct preference optimization to differentiate subtle emotional nuances between emotions through optimizing towards preferred emotions over less preferred emotional ones. Instead of relying on traditional neural architectures used in existing emotional TTS models, we propose utilizing the emotion-aware LLM-TTS neural architecture to leverage LLMs' in-context learning and instruction-following capabilities. Comprehensive experiments confirm that our proposed method outperforms the existing baselines.
From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations
The rapid advancement of Large Language Models (LLMs) has revolutionized the generation of emotional support conversations (ESC), offering scalable solutions with reduced costs and enhanced data privacy. This paper explores the role of personas in the creation of ESC by LLMs. Our research utilizes established psychological frameworks to measure and infuse persona traits into LLMs, which then generate dialogues in the emotional support scenario. We conduct extensive evaluations to understand the stability of persona traits in dialogues, examining shifts in traits post-generation and their impact on dialogue quality and strategy distribution. Experimental results reveal several notable findings: 1) LLMs can infer core persona traits, 2) subtle shifts in emotionality and extraversion occur, influencing the dialogue dynamics, and 3) the application of persona traits modifies the distribution of emotional support strategies, enhancing the relevance and empathetic quality of the responses. These findings highlight the potential of persona-driven LLMs in crafting more personalized, empathetic, and effective emotional support dialogues, which has significant implications for the future design of AI-driven emotional support systems.
Towards Open-Ended Emotional Support Conversations in LLMs via Reinforcement Learning with Future-Oriented Rewards
Emotional Support Conversation (ESC) systems aim to alleviate users' emotional difficulties and provide long-term, systematic support for emotional well-being. However, most large language model (LLM)-based ESC systems rely on predefined strategies, which limits their effectiveness in complex, real-life scenarios. To enable flexible responses to diverse emotional problem scenarios, this paper introduces a novel end-to-end framework (RLFF-ESC) that directly learns enduring emotionally supportive response skills using reinforcement learning. For sustained emotional support, we first employ an LLM-based multi-agent mechanism to simulate future dialogue trajectories and collect future-oriented rewards. We then train a future-oriented reward model, which is subsequently used to train the emotional support policy model. Additionally, we incorporate an explicit reasoning process during response generation to further enhance the quality, relevance, and contextual appropriateness of the system's responses. We evaluate the backbone policy model on Qwen2.5-7B-Instruct-1M and LLaMA3.1-8B-Instruct models, testing the proposed RLFF-ESC framework across two public ESC datasets. Experimental results demonstrate that RLFF-ESC consistently outperforms existing baselines in terms of goal completion and response quality.
Affective Computing in the Era of Large Language Models: A Survey from the NLP Perspective
Affective Computing (AC), integrating computer science, psychology, and cognitive science knowledge, aims to enable machines to recognize, interpret, and simulate human emotions.To create more value, AC can be applied to diverse scenarios, including social media, finance, healthcare, education, etc. Affective Computing (AC) includes two mainstream tasks, i.e., Affective Understanding (AU) and Affective Generation (AG). Fine-tuning Pre-trained Language Models (PLMs) for AU tasks has succeeded considerably. However, these models lack generalization ability, requiring specialized models for specific tasks. Additionally, traditional PLMs face challenges in AG, particularly in generating diverse and emotionally rich responses. The emergence of Large Language Models (LLMs), such as the ChatGPT series and LLaMA models, brings new opportunities and challenges, catalyzing a paradigm shift in AC. LLMs possess capabilities of in-context learning, common sense reasoning, and advanced sequence generation, which present unprecedented opportunities for AU. To provide a comprehensive overview of AC in the LLMs era from an NLP perspective, we summarize the development of LLMs research in this field, aiming to offer new insights. Specifically, we first summarize the traditional tasks related to AC and introduce the preliminary study based on LLMs. Subsequently, we outline the relevant techniques of popular LLMs to improve AC tasks, including Instruction Tuning and Prompt Engineering. For Instruction Tuning, we discuss full parameter fine-tuning and parameter-efficient methods such as LoRA, P-Tuning, and Prompt Tuning. In Prompt Engineering, we examine Zero-shot, Few-shot, Chain of Thought (CoT), and Agent-based methods for AU and AG. To clearly understand the performance of LLMs on different Affective Computing tasks, we further summarize the existing benchmarks and evaluation methods.
Emotional Prosody Control for Speech Generation
Machine-generated speech is characterized by its limited or unnatural emotional variation. Current text to speech systems generates speech with either a flat emotion, emotion selected from a predefined set, average variation learned from prosody sequences in training data or transferred from a source style. We propose a text to speech(TTS) system, where a user can choose the emotion of generated speech from a continuous and meaningful emotion space (Arousal-Valence space). The proposed TTS system can generate speech from the text in any speaker's style, with fine control of emotion. We show that the system works on emotion unseen during training and can scale to previously unseen speakers given his/her speech sample. Our work expands the horizon of the state-of-the-art FastSpeech2 backbone to a multi-speaker setting and gives it much-coveted continuous (and interpretable) affective control, without any observable degradation in the quality of the synthesized speech.
Knowledge-enhanced Mixed-initiative Dialogue System for Emotional Support Conversations
Unlike empathetic dialogues, the system in emotional support conversations (ESC) is expected to not only convey empathy for comforting the help-seeker, but also proactively assist in exploring and addressing their problems during the conversation. In this work, we study the problem of mixed-initiative ESC where the user and system can both take the initiative in leading the conversation. Specifically, we conduct a novel analysis on mixed-initiative ESC systems with a tailor-designed schema that divides utterances into different types with speaker roles and initiative types. Four emotional support metrics are proposed to evaluate the mixed-initiative interactions. The analysis reveals the necessity and challenges of building mixed-initiative ESC systems. In the light of this, we propose a knowledge-enhanced mixed-initiative framework (KEMI) for ESC, which retrieves actual case knowledge from a large-scale mental health knowledge graph for generating mixed-initiative responses. Experimental results on two ESC datasets show the superiority of KEMI in both content-preserving evaluation and mixed initiative related analyses.
ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. Inspired by the awesome development of role-playing agents, we propose an ESC Evaluation framework (ESC-Eval), which uses a role-playing agent to interact with ESC models, followed by a manual evaluation of the interactive dialogues. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (ChatGPT) and ESC-oriented LLMs (ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4. Our data and code are available at https://github.com/haidequanbu/ESC-Eval.
EmoLLMs: A Series of Emotional Large Language Models and Annotation Tools for Comprehensive Affective Analysis
Sentiment analysis and emotion detection are important research topics in natural language processing (NLP) and benefit many downstream tasks. With the widespread application of LLMs, researchers have started exploring the application of LLMs based on instruction-tuning in the field of sentiment analysis. However, these models only focus on single aspects of affective classification tasks (e.g. sentimental polarity or categorical emotions), and overlook the regression tasks (e.g. sentiment strength or emotion intensity), which leads to poor performance in downstream tasks. The main reason is the lack of comprehensive affective instruction tuning datasets and evaluation benchmarks, which cover various affective classification and regression tasks. Moreover, although emotional information is useful for downstream tasks, existing downstream datasets lack high-quality and comprehensive affective annotations. In this paper, we propose EmoLLMs, the first series of open-sourced instruction-following LLMs for comprehensive affective analysis based on fine-tuning various LLMs with instruction data, the first multi-task affective analysis instruction dataset (AAID) with 234K data samples based on various classification and regression tasks to support LLM instruction tuning, and a comprehensive affective evaluation benchmark (AEB) with 14 tasks from various sources and domains to test the generalization ability of LLMs. We propose a series of EmoLLMs by fine-tuning LLMs with AAID to solve various affective instruction tasks. We compare our model with a variety of LLMs on AEB, where our models outperform all other open-sourced LLMs, and surpass ChatGPT and GPT-4 in most tasks, which shows that the series of EmoLLMs achieve the ChatGPT-level and GPT-4-level generalization capabilities on affective analysis tasks, and demonstrates our models can be used as affective annotation tools.
Sólo Escúchame: Spanish Emotional Accompaniment Chatbot
According to the World Health Organization (WHO), suicide was the fourth leading cause of death in the world for individuals aged 15 to 29 in 2019. Given the rapid increase in mental health issues, providing psychological support is both crucial and urgent. In this paper: (1) we propose S\'olo Esc\'uchame, the first open-source Spanish emotional assistance chatbot, based on LLaMA-2-7b-Chat. (2) We introduced the HEAR (Hispanic Emotional Accompaniment Responses) dataset, compiled from multiple English sources translated into Spanish, as well as generic data generated using ChatGPT-3.5-Turbo. Finally, (3) we propose an evaluation metric based on two semi-automatic assessment methods. Our system outperforms a range of state-of-the-art models in providing psychological assistance in Spanish. Our models and datasets are publicly available to facilitate reproducibility.
MISC: A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation
Applying existing methods to emotional support conversation -- which provides valuable assistance to people who are in need -- has two major limitations: (a) they generally employ a conversation-level emotion label, which is too coarse-grained to capture user's instant mental state; (b) most of them focus on expressing empathy in the response(s) rather than gradually reducing user's distress. To address the problems, we propose a novel model MISC, which firstly infers the user's fine-grained emotional status, and then responds skillfully using a mixture of strategy. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and reveal the benefits of fine-grained emotion understanding as well as mixed-up strategy modeling. Our code and data could be found in https://github.com/morecry/MISC.
LLM Use for Mental Health: Crowdsourcing Users' Sentiment-based Perspectives and Values from Social Discussions
Large language models (LLMs) chatbots like ChatGPT are increasingly used for mental health support. They offer accessible, therapeutic support but also raise concerns about misinformation, over-reliance, and risks in high-stakes contexts of mental health. We crowdsource large-scale users' posts from six major social media platforms to examine how people discuss their interactions with LLM chatbots across different mental health conditions. Through an LLM-assisted pipeline grounded in Value-Sensitive Design (VSD), we mapped the relationships across user-reported sentiments, mental health conditions, perspectives, and values. Our results reveal that the use of LLM chatbots is condition-specific. Users with neurodivergent conditions (e.g., ADHD, ASD) report strong positive sentiments and instrumental or appraisal support, whereas higher-risk disorders (e.g., schizophrenia, bipolar disorder) show more negative sentiments. We further uncover how user perspectives co-occur with underlying values, such as identity, autonomy, and privacy. Finally, we discuss shifting from "one-size-fits-all" chatbot design toward condition-specific, value-sensitive LLM design.
Enhancing Multi-Label Emotion Analysis and Corresponding Intensities for Ethiopian Languages
In this digital world, people freely express their emotions using different social media platforms. As a result, modeling and integrating emotion-understanding models are vital for various human-computer interaction tasks such as decision-making, product and customer feedback analysis, political promotions, marketing research, and social media monitoring. As users express different emotions simultaneously in a single instance, annotating emotions in a multilabel setting such as the EthioEmo (Belay et al., 2025) dataset effectively captures this dynamic. Additionally, incorporating intensity, or the degree of emotion, is crucial, as emotions can significantly differ in their expressive strength and impact. This intensity is significant for assessing whether further action is necessary in decision-making processes, especially concerning negative emotions in applications such as healthcare and mental health studies. To enhance the EthioEmo dataset, we include annotations for the intensity of each labeled emotion. Furthermore, we evaluate various state-of-the-art encoder-only Pretrained Language Models (PLMs) and decoder-only Large Language Models (LLMs) to provide comprehensive benchmarking.
EmotiCrafter: Text-to-Emotional-Image Generation based on Valence-Arousal Model
Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
Decoding Emotion in the Deep: A Systematic Study of How LLMs Represent, Retain, and Express Emotion
Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced.
Control Globally, Understand Locally: A Global-to-Local Hierarchical Graph Network for Emotional Support Conversation
Emotional support conversation aims at reducing the emotional distress of the help-seeker, which is a new and challenging task. It requires the system to explore the cause of help-seeker's emotional distress and understand their psychological intention to provide supportive responses. However, existing methods mainly focus on the sequential contextual information, ignoring the hierarchical relationships with the global cause and local psychological intention behind conversations, thus leads to a weak ability of emotional support. In this paper, we propose a Global-to-Local Hierarchical Graph Network to capture the multi-source information (global cause, local intentions and dialog history) and model hierarchical relationships between them, which consists of a multi-source encoder, a hierarchical graph reasoner, and a global-guide decoder. Furthermore, a novel training objective is designed to monitor semantic information of the global cause. Experimental results on the emotional support conversation dataset, ESConv, confirm that the proposed GLHG has achieved the state-of-the-art performance on the automatic and human evaluations. The code will be released in here \small{~https://github.com/pengwei-iie/GLHG}.
EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
Explainable Multimodal Emotion Reasoning
Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.
ESCoT: Towards Interpretable Emotional Support Dialogue Systems
Understanding the reason for emotional support response is crucial for establishing connections between users and emotional support dialogue systems. Previous works mostly focus on generating better responses but ignore interpretability, which is extremely important for constructing reliable dialogue systems. To empower the system with better interpretability, we propose an emotional support response generation scheme, named Emotion-Focused and Strategy-Driven Chain-of-Thought (ESCoT), mimicking the process of identifying, understanding, and regulating emotions. Specially, we construct a new dataset with ESCoT in two steps: (1) Dialogue Generation where we first generate diverse conversation situations, then enhance dialogue generation using richer emotional support strategies based on these situations; (2) Chain Supplement where we focus on supplementing selected dialogues with elements such as emotion, stimuli, appraisal, and strategy reason, forming the manually verified chains. Additionally, we further develop a model to generate dialogue responses with better interpretability. We also conduct extensive experiments and human evaluations to validate the effectiveness of the proposed ESCoT and generated dialogue responses. Our data and code are available at https://github.com/TeigenZhang/ESCoT{https://github.com/TeigenZhang/ESCoT}.
"You tell me": A Dataset of GPT-4-Based Behaviour Change Support Conversations
Conversational agents are increasingly used to address emotional needs on top of information needs. One use case of increasing interest are counselling-style mental health and behaviour change interventions, with large language model (LLM)-based approaches becoming more popular. Research in this context so far has been largely system-focused, foregoing the aspect of user behaviour and the impact this can have on LLM-generated texts. To address this issue, we share a dataset containing text-based user interactions related to behaviour change with two GPT-4-based conversational agents collected in a preregistered user study. This dataset includes conversation data, user language analysis, perception measures, and user feedback for LLM-generated turns, and can offer valuable insights to inform the design of such systems based on real interactions.
Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset
One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others' feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.
EMO-Reasoning: Benchmarking Emotional Reasoning Capabilities in Spoken Dialogue Systems
Speech emotions play a crucial role in human-computer interaction, shaping engagement and context-aware communication. Despite recent advances in spoken dialogue systems, a holistic system for evaluating emotional reasoning is still lacking. To address this, we introduce EMO-Reasoning, a benchmark for assessing emotional coherence in dialogue systems. It leverages a curated dataset generated via text-to-speech to simulate diverse emotional states, overcoming the scarcity of emotional speech data. We further propose the Cross-turn Emotion Reasoning Score to assess the emotion transitions in multi-turn dialogues. Evaluating seven dialogue systems through continuous, categorical, and perceptual metrics, we show that our framework effectively detects emotional inconsistencies, providing insights for improving current dialogue systems. By releasing a systematic evaluation benchmark, we aim to advance emotion-aware spoken dialogue modeling toward more natural and adaptive interactions.
EmoKnob: Enhance Voice Cloning with Fine-Grained Emotion Control
While recent advances in Text-to-Speech (TTS) technology produce natural and expressive speech, they lack the option for users to select emotion and control intensity. We propose EmoKnob, a framework that allows fine-grained emotion control in speech synthesis with few-shot demonstrative samples of arbitrary emotion. Our framework leverages the expressive speaker representation space made possible by recent advances in foundation voice cloning models. Based on the few-shot capability of our emotion control framework, we propose two methods to apply emotion control on emotions described by open-ended text, enabling an intuitive interface for controlling a diverse array of nuanced emotions. To facilitate a more systematic emotional speech synthesis field, we introduce a set of evaluation metrics designed to rigorously assess the faithfulness and recognizability of emotion control frameworks. Through objective and subjective evaluations, we show that our emotion control framework effectively embeds emotions into speech and surpasses emotion expressiveness of commercial TTS services.
M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation
Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.
H2HTalk: Evaluating Large Language Models as Emotional Companion
As digital emotional support needs grow, Large Language Model companions offer promising authentic, always-available empathy, though rigorous evaluation lags behind model advancement. We present Heart-to-Heart Talk (H2HTalk), a benchmark assessing companions across personality development and empathetic interaction, balancing emotional intelligence with linguistic fluency. H2HTalk features 4,650 curated scenarios spanning dialogue, recollection, and itinerary planning that mirror real-world support conversations, substantially exceeding previous datasets in scale and diversity. We incorporate a Secure Attachment Persona (SAP) module implementing attachment-theory principles for safer interactions. Benchmarking 50 LLMs with our unified protocol reveals that long-horizon planning and memory retention remain key challenges, with models struggling when user needs are implicit or evolve mid-conversation. H2HTalk establishes the first comprehensive benchmark for emotionally intelligent companions. We release all materials to advance development of LLMs capable of providing meaningful and safe psychological support.
EmoInHindi: A Multi-label Emotion and Intensity Annotated Dataset in Hindi for Emotion Recognition in Dialogues
The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, hence emotion recognition in dialogues is an important task. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Emotion recognition has always been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we create a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of the dialogue is annotated with one or more emotion categories from the 16 emotion classes including neutral, and their corresponding intensity values. We further propose strong contextual baselines that can detect emotion(s) and the corresponding intensity of an utterance given the conversational context.
Speech and Text-Based Emotion Recognizer
Affective computing is a field of study that focuses on developing systems and technologies that can understand, interpret, and respond to human emotions. Speech Emotion Recognition (SER), in particular, has got a lot of attention from researchers in the recent past. However, in many cases, the publicly available datasets, used for training and evaluation, are scarce and imbalanced across the emotion labels. In this work, we focused on building a balanced corpus from these publicly available datasets by combining these datasets as well as employing various speech data augmentation techniques. Furthermore, we experimented with different architectures for speech emotion recognition. Our best system, a multi-modal speech, and text-based model, provides a performance of UA(Unweighed Accuracy) + WA (Weighed Accuracy) of 157.57 compared to the baseline algorithm performance of 119.66
End-to-End Continuous Speech Emotion Recognition in Real-life Customer Service Call Center Conversations
Speech Emotion recognition (SER) in call center conversations has emerged as a valuable tool for assessing the quality of interactions between clients and agents. In contrast to controlled laboratory environments, real-life conversations take place under uncontrolled conditions and are subject to contextual factors that influence the expression of emotions. In this paper, we present our approach to constructing a large-scale reallife dataset (CusEmo) for continuous SER in customer service call center conversations. We adopted the dimensional emotion annotation approach to capture the subtlety, complexity, and continuity of emotions in real-life call center conversations, while annotating contextual information. The study also addresses the challenges encountered during the application of the End-to-End (E2E) SER system to the dataset, including determining the appropriate label sampling rate and input segment length, as well as integrating contextual information (interlocutor's gender and empathy level) with different weights using multitask learning. The result shows that incorporating the empathy level information improved the model's performance.
CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic Response Generation
Empathetic conversation is psychologically supposed to be the result of conscious alignment and interaction between the cognition and affection of empathy. However, existing empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation, which limits the capability of empathetic response generation. In this work, we propose the CASE model for empathetic dialogue generation. It first builds upon a commonsense cognition graph and an emotional concept graph and then aligns the user's cognition and affection at both the coarse-grained and fine-grained levels. Through automatic and manual evaluation, we demonstrate that CASE outperforms state-of-the-art baselines of empathetic dialogues and can generate more empathetic and informative responses.
EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels
The increasing adoption of text-to-speech technologies has led to a growing demand for natural and emotive voices that adapt to a conversation's context and emotional tone. The Emotive Narrative Storytelling (EMNS) corpus is a unique speech dataset created to enhance conversations' expressiveness and emotive quality in interactive narrative-driven systems. The corpus consists of a 2.3-hour recording featuring a female speaker delivering labelled utterances. It encompasses eight acted emotional states, evenly distributed with a variance of 0.68%, along with expressiveness levels and natural language descriptions with word emphasis labels. The evaluation of audio samples from different datasets revealed that the EMNS corpus achieved the highest average scores in accurately conveying emotions and demonstrating expressiveness. It outperformed other datasets in conveying shared emotions and achieved comparable levels of genuineness. A classification task confirmed the accurate representation of intended emotions in the corpus, with participants recognising the recordings as genuine and expressive. Additionally, the availability of the dataset collection tool under the Apache 2.0 License simplifies remote speech data collection for researchers.
Towards Interpretable Mental Health Analysis with Large Language Models
The latest large language models (LLMs) such as ChatGPT, exhibit strong capabilities in automated mental health analysis. However, existing relevant studies bear several limitations, including inadequate evaluations, lack of prompting strategies, and ignorance of exploring LLMs for explainability. To bridge these gaps, we comprehensively evaluate the mental health analysis and emotional reasoning ability of LLMs on 11 datasets across 5 tasks. We explore the effects of different prompting strategies with unsupervised and distantly supervised emotional information. Based on these prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions. We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations. We benchmark existing automatic evaluation metrics on this dataset to guide future related works. According to the results, ChatGPT shows strong in-context learning ability but still has a significant gap with advanced task-specific methods. Careful prompt engineering with emotional cues and expert-written few-shot examples can also effectively improve performance on mental health analysis. In addition, ChatGPT generates explanations that approach human performance, showing its great potential in explainable mental health analysis.
Enhancing Long-term RAG Chatbots with Psychological Models of Memory Importance and Forgetting
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY
Reevaluating Data Partitioning for Emotion Detection in EmoWOZ
This paper focuses on the EmoWoz dataset, an extension of MultiWOZ that provides emotion labels for the dialogues. MultiWOZ was partitioned initially for another purpose, resulting in a distributional shift when considering the new purpose of emotion recognition. The emotion tags in EmoWoz are highly imbalanced and unevenly distributed across the partitions, which causes sub-optimal performance and poor comparison of models. We propose a stratified sampling scheme based on emotion tags to address this issue, improve the dataset's distribution, and reduce dataset shift. We also introduce a special technique to handle conversation (sequential) data with many emotional tags. Using our proposed sampling method, models built upon EmoWoz can perform better, making it a more reliable resource for training conversational agents with emotional intelligence. We recommend that future researchers use this new partitioning to ensure consistent and accurate performance evaluations.
EmoCAST: Emotional Talking Portrait via Emotive Text Description
Emotional talking head synthesis aims to generate talking portrait videos with vivid expressions. Existing methods still exhibit limitations in control flexibility, motion naturalness, and expression quality. Moreover, currently available datasets are mainly collected in lab settings, further exacerbating these shortcomings and hindering real-world deployment. To address these challenges, we propose EmoCAST, a diffusion-based talking head framework for precise, text-driven emotional synthesis. Its contributions are threefold: (1) architectural modules that enable effective text control; (2) an emotional talking-head dataset that expands the framework's ability; and (3) training strategies that further improve performance. Specifically, for appearance modeling, emotional prompts are integrated through a text-guided emotive attention module, enhancing spatial knowledge to improve emotion understanding. To strengthen audio-emotion alignment, we introduce an emotive audio attention module to capture the interplay between controlled emotion and driving audio, generating emotion-aware features to guide precise facial motion synthesis. Additionally, we construct a large-scale, in-the-wild emotional talking head dataset with emotive text descriptions to optimize the framework's performance. Based on this dataset, we propose an emotion-aware sampling strategy and a progressive functional training strategy that improve the model's ability to capture nuanced expressive features and achieve accurate lip-sync. Overall, EmoCAST achieves state-of-the-art performance in generating realistic, emotionally expressive, and audio-synchronized talking-head videos. Project Page: https://github.com/GVCLab/EmoCAST
SMILE: Single-turn to Multi-turn Inclusive Language Expansion via ChatGPT for Mental Health Support
There has been an increasing research interest in developing specialized dialogue systems that can offer mental health support. However, gathering large-scale and real-life multi-turn conversations for mental health support poses challenges due to the sensitivity of personal information, as well as the time and cost involved. To address these issues, we introduce the SMILE approach, an inclusive language expansion technique that employs ChatGPT to extend public single-turn dialogues into multi-turn ones. Our research first presents a preliminary exploratory study that validates the effectiveness of the SMILE approach. Furthermore, we conduct a comprehensive and systematic contrastive analysis of datasets generated with and without the SMILE approach, demonstrating that the SMILE method results in a large-scale, diverse, and close-to-real-life multi-turn mental health support conversation corpus, including dialog topics, lexical and semantic features. Finally, we use the collected corpus (SMILECHAT) to develop a more effective dialogue system that offers emotional support and constructive suggestions in multi-turn conversations for mental health support.
Automatically Select Emotion for Response via Personality-affected Emotion Transition
To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.
TinyEmo: Scaling down Emotional Reasoning via Metric Projection
This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo
UMETTS: A Unified Framework for Emotional Text-to-Speech Synthesis with Multimodal Prompts
Emotional Text-to-Speech (E-TTS) synthesis has garnered significant attention in recent years due to its potential to revolutionize human-computer interaction. However, current E-TTS approaches often struggle to capture the intricacies of human emotions, primarily relying on oversimplified emotional labels or single-modality input. In this paper, we introduce the Unified Multimodal Prompt-Induced Emotional Text-to-Speech System (UMETTS), a novel framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. The core of UMETTS consists of two key components: the Emotion Prompt Alignment Module (EP-Align) and the Emotion Embedding-Induced TTS Module (EMI-TTS). (1) EP-Align employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information. (2) Subsequently, EMI-TTS integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations show that UMETTS achieves significant improvements in emotion accuracy and speech naturalness, outperforming traditional E-TTS methods on both objective and subjective metrics.
EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa
We present EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa, a simple yet expressive scheme of solving the ERC (emotion recognition in conversation) task. By simply prepending speaker names to utterances and inserting separation tokens between the utterances in a dialogue, EmoBERTa can learn intra- and inter- speaker states and context to predict the emotion of a current speaker, in an end-to-end manner. Our experiments show that we reach a new state of the art on the two popular ERC datasets using a basic and straight-forward approach. We've open sourced our code and models at https://github.com/tae898/erc.
EmPO: Emotion Grounding for Empathetic Response Generation through Preference Optimization
Empathetic response generation is a desirable aspect of conversational agents, crucial for facilitating engaging and emotionally intelligent multi-turn conversations between humans and machines. Leveraging large language models for this task has shown promising results, yet challenges persist in ensuring both the empathetic quality of the responses and retention of the generalization performance of the models. We propose a novel approach where we construct theory-driven preference datasets based on emotion grounding and use them to align LLMs with preference optimization algorithms to address these challenges. To evaluate empathetic response generation, we employ the EmpatheticDialogues dataset, assessing empathy with the diff-Epitome and BERTscore metrics and with multi-dimensional human evaluation. Additionally, we measure diversity and emotional valence using feature-based methods. We also evaluate the impact of training on the generalization performance using the MMLU benchmark and tasks from the Open LLM Leaderboard. The results show that LLMs can be aligned for empathetic response generation by preference optimization while retaining their general performance and that emotion grounding can guide preference dataset creation. We make all datasets, source code, and models publicly available. https://github.com/justtherightsize/empo
Large Language Models Understand and Can be Enhanced by Emotional Stimuli
Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.
EmoMix: Emotion Mixing via Diffusion Models for Emotional Speech Synthesis
There has been significant progress in emotional Text-To-Speech (TTS) synthesis technology in recent years. However, existing methods primarily focus on the synthesis of a limited number of emotion types and have achieved unsatisfactory performance in intensity control. To address these limitations, we propose EmoMix, which can generate emotional speech with specified intensity or a mixture of emotions. Specifically, EmoMix is a controllable emotional TTS model based on a diffusion probabilistic model and a pre-trained speech emotion recognition (SER) model used to extract emotion embedding. Mixed emotion synthesis is achieved by combining the noises predicted by diffusion model conditioned on different emotions during only one sampling process at the run-time. We further apply the Neutral and specific primary emotion mixed in varying degrees to control intensity. Experimental results validate the effectiveness of EmoMix for synthesizing mixed emotion and intensity control.
Daisy-TTS: Simulating Wider Spectrum of Emotions via Prosody Embedding Decomposition
We often verbally express emotions in a multifaceted manner, they may vary in their intensities and may be expressed not just as a single but as a mixture of emotions. This wide spectrum of emotions is well-studied in the structural model of emotions, which represents variety of emotions as derivative products of primary emotions with varying degrees of intensity. In this paper, we propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model. Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion. This emotion representation allows the model to simulate: (1) Primary emotions, as learned from the training samples, (2) Secondary emotions, as a mixture of primary emotions, (3) Intensity-level, by scaling the emotion embedding, and (4) Emotions polarity, by negating the emotion embedding. Through a series of perceptual evaluations, Daisy-TTS demonstrated overall higher emotional speech naturalness and emotion perceiveability compared to the baseline.
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at http:// affective-meld.github.io.
NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations
This paper describes the architecture of our system developed for Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving a weighted average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.
Chain-Talker: Chain Understanding and Rendering for Empathetic Conversational Speech Synthesis
Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.
"Even GPT Can Reject Me": Conceptualizing Abrupt Refusal Secondary Harm (ARSH) and Reimagining Psychological AI Safety with Compassionate Completion Standard (CCS)
Large Language Models (LLMs) and AI chatbots are increasingly used for emotional and mental health support due to their low cost, immediacy, and accessibility. However, when safety guardrails are triggered, conversations may be abruptly terminated, introducing a distinct form of emotional disruption that can exacerbate distress and elevate risk among already vulnerable users. As this phenomenon gains attention, this viewpoint introduces Abrupt Refusal Secondary Harm (ARSH) as a conceptual framework to describe the psychological impacts of sudden conversational discontinuation caused by AI safety protocols. Drawing on counseling psychology and communication science as conceptual heuristics, we argue that abrupt refusals can rupture perceived relational continuity, evoke feelings of rejection or shame, and discourage future help seeking. To mitigate these risks, we propose a design hypothesis, the Compassionate Completion Standard (CCS), a refusal protocol grounded in Human Centered Design (HCD) that maintains safety constraints while preserving relational coherence. CCS emphasizes empathetic acknowledgment, transparent boundary articulation, graded conversational transition, and guided redirection, replacing abrupt disengagement with psychologically attuned closure. By integrating awareness of ARSH into AI safety design, developers and policymakers can reduce preventable iatrogenic harm and advance a more psychologically informed approach to AI governance. Rather than presenting incremental empirical findings, this viewpoint contributes a timely conceptual framework, articulates a testable design hypothesis, and outlines a coordinated research agenda for improving psychological safety in human AI interaction.
Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation
Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence, with its core value lying in enhancing human-computer interaction through immersive and empathetic engagement.With the advancement of multimodal large language models, the driving signals for emotional talking-head generation has shifted from audio and video to more flexible text. However, current text-driven methods rely on predefined discrete emotion label texts, oversimplifying the dynamic complexity of real facial muscle movements and thus failing to achieve natural emotional expressiveness.This study proposes the Think-Before-Draw framework to address two key challenges: (1) In-depth semantic parsing of emotions--by innovatively introducing Chain-of-Thought (CoT), abstract emotion labels are transformed into physiologically grounded facial muscle movement descriptions, enabling the mapping from high-level semantics to actionable motion features; and (2) Fine-grained expressiveness optimization--inspired by artists' portrait painting process, a progressive guidance denoising strategy is proposed, employing a "global emotion localization--local muscle control" mechanism to refine micro-expression dynamics in generated videos.Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including MEAD and HDTF. Additionally, we collected a set of portrait images to evaluate our model's zero-shot generation capability.
EDEN: Empathetic Dialogues for English learning
Dialogue systems have been used as conversation partners in English learning, but few have studied whether these systems improve learning outcomes. Student passion and perseverance, or grit, has been associated with language learning success. Recent work establishes that as students perceive their English teachers to be more supportive, their grit improves. Hypothesizing that the same pattern applies to English-teaching chatbots, we create EDEN, a robust open-domain chatbot for spoken conversation practice that provides empathetic feedback. To construct EDEN, we first train a specialized spoken utterance grammar correction model and a high-quality social chit-chat conversation model. We then conduct a preliminary user study with a variety of strategies for empathetic feedback. Our experiment suggests that using adaptive empathetic feedback leads to higher perceived affective support. Furthermore, elements of perceived affective support positively correlate with student grit.
CARE: Cognitive-reasoning Augmented Reinforcement for Emotional Support Conversation
Emotional Support Conversation (ESC) plays a vital role in alleviating psychological stress and providing emotional value through dialogue. While recent studies have largely focused on data augmentation and synthetic corpus construction, they often overlook the deeper cognitive reasoning processes that underpin effective emotional support. To address this gap, we propose CARE, a novel framework that strengthens reasoning in ESC without relying on large-scale synthetic data. CARE leverages the original ESC training set to guide models in generating logically coherent and supportive responses, thereby explicitly enhancing cognitive reasoning. Building on this foundation, we further employ reinforcement learning to refine and reinforce the reasoning process. Experimental results demonstrate that CARE significantly improves both the logical soundness and supportive quality of responses, advancing the development of empathetic, cognitively robust, and human-like emotional support systems.
InstructERC: Reforming Emotion Recognition in Conversation with a Retrieval Multi-task LLMs Framework
The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review.
Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models
Empathetic response generation is increasingly significant in AI, necessitating nuanced emotional and cognitive understanding coupled with articulate response expression. Current large language models (LLMs) excel in response expression; however, they lack the ability to deeply understand emotional and cognitive nuances, particularly in pinpointing fine-grained emotions and their triggers. Conversely, small-scale empathetic models (SEMs) offer strength in fine-grained emotion detection and detailed emotion cause identification. To harness the complementary strengths of both LLMs and SEMs, we introduce a Hybrid Empathetic Framework (HEF). HEF regards SEMs as flexible plugins to improve LLM's nuanced emotional and cognitive understanding. Regarding emotional understanding, HEF implements a two-stage emotion prediction strategy, encouraging LLMs to prioritize primary emotions emphasized by SEMs, followed by other categories, substantially alleviates the difficulties for LLMs in fine-grained emotion detection. Regarding cognitive understanding, HEF employs an emotion cause perception strategy, prompting LLMs to focus on crucial emotion-eliciting words identified by SEMs, thus boosting LLMs' capabilities in identifying emotion causes. This collaborative approach enables LLMs to discern emotions more precisely and formulate empathetic responses. We validate HEF on the Empathetic-Dialogue dataset, and the findings indicate that our framework enhances the refined understanding of LLMs and their ability to convey empathetic responses.
UDDETTS: Unifying Discrete and Dimensional Emotions for Controllable Emotional Text-to-Speech
Recent neural codec language models have made great progress in the field of text-to-speech (TTS), but controllable emotional TTS still faces many challenges. Traditional methods rely on predefined discrete emotion labels to control emotion categories and intensities, which can't capture the complexity and continuity of human emotional perception and expression. The lack of large-scale emotional speech datasets with balanced emotion distributions and fine-grained emotion annotations often causes overfitting in synthesis models and impedes effective emotion control. To address these issues, we propose UDDETTS, a neural codec language model unifying discrete and dimensional emotions for controllable emotional TTS. This model introduces the interpretable Arousal-Dominance-Valence (ADV) space for dimensional emotion description and supports emotion control driven by either discrete emotion labels or nonlinearly quantified ADV values. Furthermore, a semi-supervised training strategy is designed to comprehensively utilize diverse speech datasets with different types of emotion annotations to train the UDDETTS. Experiments show that UDDETTS achieves linear emotion control along the three dimensions of ADV space, and exhibits superior end-to-end emotional speech synthesis capabilities.
TTS-CtrlNet: Time varying emotion aligned text-to-speech generation with ControlNet
Recent advances in text-to-speech (TTS) have enabled natural speech synthesis, but fine-grained, time-varying emotion control remains challenging. Existing methods often allow only utterance-level control and require full model fine-tuning with a large emotion speech dataset, which can degrade performance. Inspired by adding conditional control to the existing model in ControlNet (Zhang et al, 2023), we propose the first ControlNet-based approach for controllable flow-matching TTS (TTS-CtrlNet), which freezes the original model and introduces a trainable copy of it to process additional conditions. We show that TTS-CtrlNet can boost the pretrained large TTS model by adding intuitive, scalable, and time-varying emotion control while inheriting the ability of the original model (e.g., zero-shot voice cloning & naturalness). Furthermore, we provide practical recipes for adding emotion control: 1) optimal architecture design choice with block analysis, 2) emotion-specific flow step, and 3) flexible control scale. Experiments show that ours can effectively add an emotion controller to existing TTS, and achieves state-of-the-art performance with emotion similarity scores: Emo-SIM and Aro-Val SIM. The project page is available at: https://curryjung.github.io/ttsctrlnet_project_page
Can Emotion Fool Anti-spoofing?
Traditional anti-spoofing focuses on models and datasets built on synthetic speech with mostly neutral state, neglecting diverse emotional variations. As a result, their robustness against high-quality, emotionally expressive synthetic speech is uncertain. We address this by introducing EmoSpoof-TTS, a corpus of emotional text-to-speech samples. Our analysis shows existing anti-spoofing models struggle with emotional synthetic speech, exposing risks of emotion-targeted attacks. Even trained on emotional data, the models underperform due to limited focus on emotional aspect and show performance disparities across emotions. This highlights the need for emotion-focused anti-spoofing paradigm in both dataset and methodology. We propose GEM, a gated ensemble of emotion-specialized models with a speech emotion recognition gating network. GEM performs effectively across all emotions and neutral state, improving defenses against spoofing attacks. We release the EmoSpoof-TTS Dataset: https://emospoof-tts.github.io/Dataset/
Exploring speech style spaces with language models: Emotional TTS without emotion labels
Many frameworks for emotional text-to-speech (E-TTS) rely on human-annotated emotion labels that are often inaccurate and difficult to obtain. Learning emotional prosody implicitly presents a tough challenge due to the subjective nature of emotions. In this study, we propose a novel approach that leverages text awareness to acquire emotional styles without the need for explicit emotion labels or text prompts. We present TEMOTTS, a two-stage framework for E-TTS that is trained without emotion labels and is capable of inference without auxiliary inputs. Our proposed method performs knowledge transfer between the linguistic space learned by BERT and the emotional style space constructed by global style tokens. Our experimental results demonstrate the effectiveness of our proposed framework, showcasing improvements in emotional accuracy and naturalness. This is one of the first studies to leverage the emotional correlation between spoken content and expressive delivery for emotional TTS.
EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
Enhanced Large Language Models for Effective Screening of Depression and Anxiety
Depressive and anxiety disorders are widespread, necessitating timely identification and management. Recent advances in Large Language Models (LLMs) offer potential solutions, yet high costs and ethical concerns about training data remain challenges. This paper introduces a pipeline for synthesizing clinical interviews, resulting in 1,157 interactive dialogues (PsyInterview), and presents EmoScan, an LLM-based emotional disorder screening system. EmoScan distinguishes between coarse (e.g., anxiety or depressive disorders) and fine disorders (e.g., major depressive disorders) and conducts high-quality interviews. Evaluations showed that EmoScan exceeded the performance of base models and other LLMs like GPT-4 in screening emotional disorders (F1-score=0.7467). It also delivers superior explanations (BERTScore=0.9408) and demonstrates robust generalizability (F1-score of 0.67 on an external dataset). Furthermore, EmoScan outperforms baselines in interviewing skills, as validated by automated ratings and human evaluations. This work highlights the importance of scalable data-generative pipelines for developing effective mental health LLM tools.
ChatCounselor: A Large Language Models for Mental Health Support
This paper presents ChatCounselor, a large language model (LLM) solution designed to provide mental health support. Unlike generic chatbots, ChatCounselor is distinguished by its foundation in real conversations between consulting clients and professional psychologists, enabling it to possess specialized knowledge and counseling skills in the field of psychology. The training dataset, Psych8k, was constructed from 260 in-depth interviews, each spanning an hour. To assess the quality of counseling responses, the counseling Bench was devised. Leveraging GPT-4 and meticulously crafted prompts based on seven metrics of psychological counseling assessment, the model underwent evaluation using a set of real-world counseling questions. Impressively, ChatCounselor surpasses existing open-source models in the counseling Bench and approaches the performance level of ChatGPT, showcasing the remarkable enhancement in model capability attained through high-quality domain-specific data.
Uncovering the Causes of Emotions in Software Developer Communication Using Zero-shot LLMs
Understanding and identifying the causes behind developers' emotions (e.g., Frustration caused by `delays in merging pull requests') can be crucial towards finding solutions to problems and fostering collaboration in open-source communities. Effectively identifying such information in the high volume of communications across the different project channels, such as chats, emails, and issue comments, requires automated recognition of emotions and their causes. To enable this automation, large-scale software engineering-specific datasets that can be used to train accurate machine learning models are required. However, such datasets are expensive to create with the variety and informal nature of software projects' communication channels. In this paper, we explore zero-shot LLMs that are pre-trained on massive datasets but without being fine-tuned specifically for the task of detecting emotion causes in software engineering: ChatGPT, GPT-4, and flan-alpaca. Our evaluation indicates that these recently available models can identify emotion categories when given detailed emotions, although they perform worse than the top-rated models. For emotion cause identification, our results indicate that zero-shot LLMs are effective at recognizing the correct emotion cause with a BLEU-2 score of 0.598. To highlight the potential use of these techniques, we conduct a case study of the causes of Frustration in the last year of development of a popular open-source project, revealing several interesting insights.
MIKU-PAL: An Automated and Standardized Multi-Modal Method for Speech Paralinguistic and Affect Labeling
Acquiring large-scale emotional speech data with strong consistency remains a challenge for speech synthesis. This paper presents MIKU-PAL, a fully automated multimodal pipeline for extracting high-consistency emotional speech from unlabeled video data. Leveraging face detection and tracking algorithms, we developed an automatic emotion analysis system using a multimodal large language model (MLLM). Our results demonstrate that MIKU-PAL can achieve human-level accuracy (68.5% on MELD) and superior consistency (0.93 Fleiss kappa score) while being much cheaper and faster than human annotation. With the high-quality, flexible, and consistent annotation from MIKU-PAL, we can annotate fine-grained speech emotion categories of up to 26 types, validated by human annotators with 83% rationality ratings. Based on our proposed system, we further released a fine-grained emotional speech dataset MIKU-EmoBench(131.2 hours) as a new benchmark for emotional text-to-speech and visual voice cloning.
EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose EmotionTalk, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.
EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech
State-of-the-art speech synthesis models try to get as close as possible to the human voice. Hence, modelling emotions is an essential part of Text-To-Speech (TTS) research. In our work, we selected FastSpeech2 as the starting point and proposed a series of modifications for synthesizing emotional speech. According to automatic and human evaluation, our model, EmoSpeech, surpasses existing models regarding both MOS score and emotion recognition accuracy in generated speech. We provided a detailed ablation study for every extension to FastSpeech2 architecture that forms EmoSpeech. The uneven distribution of emotions in the text is crucial for better, synthesized speech and intonation perception. Our model includes a conditioning mechanism that effectively handles this issue by allowing emotions to contribute to each phone with varying intensity levels. The human assessment indicates that proposed modifications generate audio with higher MOS and emotional expressiveness.
A Cognitive Stimulation Dialogue System with Multi-source Knowledge Fusion for Elders with Cognitive Impairment
When communicating with elders with cognitive impairment, cognitive stimulation (CS) help to maintain the cognitive health of elders. Data sparsity is the main challenge in building CS-based dialogue systems, particularly in the Chinese language. To fill this gap, we construct a Chinese CS conversation (CSConv) dataset, which contains about 2.6K groups of dialogues with CS principles and emotional support strategy labels. Making chit chat while providing emotional support is overlooked by the majority of existing cognitive dialogue systems. In this paper, we propose a multi-source knowledge fusion method for CS dialogue (CSD), to generate open-ended responses guided by the CS principle and emotional support strategy. We first use a progressive mask method based on external knowledge to learn encoders as effective classifiers, which is the prerequisite to predict the CS principle and emotional support strategy of the target response. Then a decoder interacts with the perceived CS principle and emotional support strategy to generate responses. Extensive experiments conducted on the CSConv dataset demonstrate the effectiveness of the proposed method, while there is still a large space for improvement compared to human performance.
Chain of Strategy Optimization Makes Large Language Models Better Emotional Supporter
The growing emotional stress in modern society has increased the demand for Emotional Support Conversations (ESC). While Large Language Models (LLMs) show promise for ESC, they face two key challenges: (1) low strategy selection accuracy, and (2) preference bias, limiting their adaptability to emotional needs of users. Existing supervised fine-tuning (SFT) struggles to address these issues, as it rigidly trains models on single gold-standard responses without modeling nuanced strategy trade-offs. To overcome these limitations, we propose Chain-of-Strategy Optimization (CSO), a novel approach that optimizes strategy selection preferences at each dialogue turn. We first leverage Monte Carlo Tree Search to construct ESC-Pro, a high-quality preference dataset with turn-level strategy-response pairs. Training on ESC-Pro with CSO improves both strategy accuracy and bias mitigation, enabling LLMs to generate more empathetic and contextually appropriate responses. Experiments on LLaMA-3.1-8B, Gemma-2-9B, and Qwen2.5-7B demonstrate that CSO outperforms standard SFT, highlighting the efficacy of fine-grained, turn-level preference modeling in ESC.
Long-Short Distance Graph Neural Networks and Improved Curriculum Learning for Emotion Recognition in Conversation
Emotion Recognition in Conversation (ERC) is a practical and challenging task. This paper proposes a novel multimodal approach, the Long-Short Distance Graph Neural Network (LSDGNN). Based on the Directed Acyclic Graph (DAG), it constructs a long-distance graph neural network and a short-distance graph neural network to obtain multimodal features of distant and nearby utterances, respectively. To ensure that long- and short-distance features are as distinct as possible in representation while enabling mutual influence between the two modules, we employ a Differential Regularizer and incorporate a BiAffine Module to facilitate feature interaction. In addition, we propose an Improved Curriculum Learning (ICL) to address the challenge of data imbalance. By computing the similarity between different emotions to emphasize the shifts in similar emotions, we design a "weighted emotional shift" metric and develop a difficulty measurer, enabling a training process that prioritizes learning easy samples before harder ones. Experimental results on the IEMOCAP and MELD datasets demonstrate that our model outperforms existing benchmarks.
RSET: Remapping-based Sorting Method for Emotion Transfer Speech Synthesis
Although current Text-To-Speech (TTS) models are able to generate high-quality speech samples, there are still challenges in developing emotion intensity controllable TTS. Most existing TTS models achieve emotion intensity control by extracting intensity information from reference speeches. Unfortunately, limited by the lack of modeling for intra-class emotion intensity and the model's information decoupling capability, the generated speech cannot achieve fine-grained emotion intensity control and suffers from information leakage issues. In this paper, we propose an emotion transfer TTS model, which defines a remapping-based sorting method to model intra-class relative intensity information, combined with Mutual Information (MI) to decouple speaker and emotion information, and synthesizes expressive speeches with perceptible intensity differences. Experiments show that our model achieves fine-grained emotion control while preserving speaker information.
The Typing Cure: Experiences with Large Language Model Chatbots for Mental Health Support
People experiencing severe distress increasingly use Large Language Model (LLM) chatbots as mental health support tools. Discussions on social media have described how engagements were lifesaving for some, but evidence suggests that general-purpose LLM chatbots also have notable risks that could endanger the welfare of users if not designed responsibly. In this study, we investigate the lived experiences of people who have used LLM chatbots for mental health support. We build on interviews with 21 individuals from globally diverse backgrounds to analyze how users create unique support roles for their chatbots, fill in gaps in everyday care, and navigate associated cultural limitations when seeking support from chatbots. We ground our analysis in psychotherapy literature around effective support, and introduce the concept of therapeutic alignment, or aligning AI with therapeutic values for mental health contexts. Our study offers recommendations for how designers can approach the ethical and effective use of LLM chatbots and other AI mental health support tools in mental health care.
AnnaAgent: Dynamic Evolution Agent System with Multi-Session Memory for Realistic Seeker Simulation
Constrained by the cost and ethical concerns of involving real seekers in AI-driven mental health, researchers develop LLM-based conversational agents (CAs) with tailored configurations, such as profiles, symptoms, and scenarios, to simulate seekers. While these efforts advance AI in mental health, achieving more realistic seeker simulation remains hindered by two key challenges: dynamic evolution and multi-session memory. Seekers' mental states often fluctuate during counseling, which typically spans multiple sessions. To address this, we propose AnnaAgent, an emotional and cognitive dynamic agent system equipped with tertiary memory. AnnaAgent incorporates an emotion modulator and a complaint elicitor trained on real counseling dialogues, enabling dynamic control of the simulator's configurations. Additionally, its tertiary memory mechanism effectively integrates short-term and long-term memory across sessions. Evaluation results, both automated and manual, demonstrate that AnnaAgent achieves more realistic seeker simulation in psychological counseling compared to existing baselines. The ethically reviewed and screened code can be found on https://github.com/sci-m-wang/AnnaAgent.
Survey of Design Paradigms for Social Robots
The demand for social robots in fields like healthcare, education, and entertainment increases due to their emotional adaptation features. These robots leverage multimodal communication, incorporating speech, facial expressions, and gestures to enhance user engagement and emotional support. The understanding of design paradigms of social robots is obstructed by the complexity of the system and the necessity to tune it to a specific task. This article provides a structured review of social robot design paradigms, categorizing them into cognitive architectures, role design models, linguistic models, communication flow, activity system models, and integrated design models. By breaking down the articles on social robot design and application based on these paradigms, we highlight the strengths and areas for improvement in current approaches. We further propose our original integrated design model that combines the most important aspects of the design of social robots. Our approach shows the importance of integrating operational, communicational, and emotional dimensions to create more adaptive and empathetic interactions between robots and humans.
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
Do LLMs "Feel"? Emotion Circuits Discovery and Control
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.
LEXI: Large Language Models Experimentation Interface
The recent developments in Large Language Models (LLM), mark a significant moment in the research and development of social interactions with artificial agents. These agents are widely deployed in a variety of settings, with potential impact on users. However, the study of social interactions with agents powered by LLM is still emerging, limited by access to the technology and to data, the absence of standardised interfaces, and challenges to establishing controlled experimental setups using the currently available business-oriented platforms. To answer these gaps, we developed LEXI, LLMs Experimentation Interface, an open-source tool enabling the deployment of artificial agents powered by LLM in social interaction behavioural experiments. Using a graphical interface, LEXI allows researchers to build agents, and deploy them in experimental setups along with forms and questionnaires while collecting interaction logs and self-reported data. The outcomes of usability testing indicate LEXI's broad utility, high usability and minimum mental workload requirement, with distinctive benefits observed across disciplines. A proof-of-concept study exploring the tool's efficacy in evaluating social HAIs was conducted, resulting in high-quality data. A comparison of empathetic versus neutral agents indicated that people perceive empathetic agents as more social, and write longer and more positive messages towards them.
NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli
Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at https://github.com/wangxu0820/NegativePrompt.
Rethinking Multimodal Sentiment Analysis: A High-Accuracy, Simplified Fusion Architecture
Multimodal sentiment analysis, a pivotal task in affective computing, seeks to understand human emotions by integrating cues from language, audio, and visual signals. While many recent approaches leverage complex attention mechanisms and hierarchical architectures, we propose a lightweight, yet effective fusion-based deep learning model tailored for utterance-level emotion classification. Using the benchmark IEMOCAP dataset, which includes aligned text, audio-derived numeric features, and visual descriptors, we design a modality-specific encoder using fully connected layers followed by dropout regularization. The modality-specific representations are then fused using simple concatenation and passed through a dense fusion layer to capture cross-modal interactions. This streamlined architecture avoids computational overhead while preserving performance, achieving a classification accuracy of 92% across six emotion categories. Our approach demonstrates that with careful feature engineering and modular design, simpler fusion strategies can outperform or match more complex models, particularly in resource-constrained environments.
Deep learning for affective computing: text-based emotion recognition in decision support
Emotions widely affect human decision-making. This fact is taken into account by affective computing with the goal of tailoring decision support to the emotional states of individuals. However, the accurate recognition of emotions within narrative documents presents a challenging undertaking due to the complexity and ambiguity of language. Performance improvements can be achieved through deep learning; yet, as demonstrated in this paper, the specific nature of this task requires the customization of recurrent neural networks with regard to bidirectional processing, dropout layers as a means of regularization, and weighted loss functions. In addition, we propose sent2affect, a tailored form of transfer learning for affective computing: here the network is pre-trained for a different task (i.e. sentiment analysis), while the output layer is subsequently tuned to the task of emotion recognition. The resulting performance is evaluated in a holistic setting across 6 benchmark datasets, where we find that both recurrent neural networks and transfer learning consistently outperform traditional machine learning. Altogether, the findings have considerable implications for the use of affective computing.
UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition
Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors. From a psychological perspective, emotions are the expression of affect or feelings during a short period, while sentiments are formed and held for a longer period. However, most existing works study sentiment and emotion separately and do not fully exploit the complementary knowledge behind the two. In this paper, we propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models. We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions. Experiments on four public benchmark datasets, MOSI, MOSEI, MELD, and IEMOCAP, demonstrate the effectiveness of the proposed method and achieve consistent improvements compared with state-of-the-art methods.
emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field.
CEM: Commonsense-aware Empathetic Response Generation
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the user's emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the user's emotion, cognitive understanding of the user's situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
Affective social anthropomorphic intelligent system
Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.
SAGE: Steering and Refining Dialog Generation with State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level.
A Literature Survey of Recent Advances in Chatbots
Chatbots are intelligent conversational computer systems designed to mimic human conversation to enable automated online guidance and support. The increased benefits of chatbots led to their wide adoption by many industries in order to provide virtual assistance to customers. Chatbots utilise methods and algorithms from two Artificial Intelligence domains: Natural Language Processing and Machine Learning. However, there are many challenges and limitations in their application. In this survey we review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used. We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
Towards Multimodal Empathetic Response Generation: A Rich Text-Speech-Vision Avatar-based Benchmark
Empathetic Response Generation (ERG) is one of the key tasks of the affective computing area, which aims to produce emotionally nuanced and compassionate responses to user's queries. However, existing ERG research is predominantly confined to the singleton text modality, limiting its effectiveness since human emotions are inherently conveyed through multiple modalities. To combat this, we introduce an avatar-based Multimodal ERG (MERG) task, entailing rich text, speech, and facial vision information. We first present a large-scale high-quality benchmark dataset, AvaMERG, which extends traditional text ERG by incorporating authentic human speech audio and dynamic talking-face avatar videos, encompassing a diverse range of avatar profiles and broadly covering various topics of real-world scenarios. Further, we deliberately tailor a system, named Empatheia, for MERG. Built upon a Multimodal Large Language Model (MLLM) with multimodal encoder, speech and avatar generators, Empatheia performs end-to-end MERG, with Chain-of-Empathetic reasoning mechanism integrated for enhanced empathy understanding and reasoning. Finally, we devise a list of empathetic-enhanced tuning strategies, strengthening the capabilities of emotional accuracy and content, avatar-profile consistency across modalities. Experimental results on AvaMERG data demonstrate that Empatheia consistently shows superior performance than baseline methods on both textual ERG and MERG. Overall, this work is expected to pioneer the MERG research by introducing a novel benchmark and an end-to-end model, laying a solid foundation for future advancements in multimodal empathetic response generation.
Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation
Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL.
nEMO: Dataset of Emotional Speech in Polish
Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0).
STICKERCONV: Generating Multimodal Empathetic Responses from Scratch
Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research, notably due to the challenge of a lack of comprehensive datasets. In this paper, we introduce the Agent for STICKERCONV (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, STICKERCONV, comprising 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios. This dataset serves as a benchmark for multimodal empathetic generation. To advance further, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation framework, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS's effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems.
EAI-Avatar: Emotion-Aware Interactive Talking Head Generation
Generative models have advanced rapidly, enabling impressive talking head generation that brings AI to life. However, most existing methods focus solely on one-way portrait animation. Even the few that support bidirectional conversational interactions lack precise emotion-adaptive capabilities, significantly limiting their practical applicability. In this paper, we propose EAI-Avatar, a novel emotion-aware talking head generation framework for dyadic interactions. Leveraging the dialogue generation capability of large language models (LLMs, e.g., GPT-4), our method produces temporally consistent virtual avatars with rich emotional variations that seamlessly transition between speaking and listening states. Specifically, we design a Transformer-based head mask generator that learns temporally consistent motion features in a latent mask space, capable of generating arbitrary-length, temporally consistent mask sequences to constrain head motions. Furthermore, we introduce an interactive talking tree structure to represent dialogue state transitions, where each tree node contains information such as child/parent/sibling nodes and the current character's emotional state. By performing reverse-level traversal, we extract rich historical emotional cues from the current node to guide expression synthesis. Extensive experiments demonstrate the superior performance and effectiveness of our method.
Retrieval-Augmented Multimodal Depression Detection
Multimodal deep learning has shown promise in depression detection by integrating text, audio, and video signals. Recent work leverages sentiment analysis to enhance emotional understanding, yet suffers from high computational cost, domain mismatch, and static knowledge limitations. To address these issues, we propose a novel Retrieval-Augmented Generation (RAG) framework. Given a depression-related text, our method retrieves semantically relevant emotional content from a sentiment dataset and uses a Large Language Model (LLM) to generate an Emotion Prompt as an auxiliary modality. This prompt enriches emotional representation and improves interpretability. Experiments on the AVEC 2019 dataset show our approach achieves state-of-the-art performance with CCC of 0.593 and MAE of 3.95, surpassing previous transfer learning and multi-task learning baselines.
Improving Language Models for Emotion Analysis: Insights from Cognitive Science
We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at <https://novicemm.github.io/synchrorama>.
FAtiMA Toolkit -- Toward an effective and accessible tool for the development of intelligent virtual agents and social robots
More than a decade has passed since the development of FearNot!, an application designed to help children deal with bullying through role-playing with virtual characters. It was also the application that led to the creation of FAtiMA, an affective agent architecture for creating autonomous characters that can evoke empathic responses. In this paper, we describe FAtiMA Toolkit, a collection of open-source tools that is designed to help researchers, game developers and roboticists incorporate a computational model of emotion and decision-making in their work. The toolkit was developed with the goal of making FAtiMA more accessible, easier to incorporate into different projects and more flexible in its capabilities for human-agent interaction, based upon the experience gathered over the years across different virtual environments and human-robot interaction scenarios. As a result, this work makes several different contributions to the field of Agent-Based Architectures. More precisely, FAtiMA Toolkit's library based design allows developers to easily integrate it with other frameworks, its meta-cognitive model affords different internal reasoners and affective components and its explicit dialogue structure gives control to the author even within highly complex scenarios. To demonstrate the use of FAtiMA Toolkit, several different use cases where the toolkit was successfully applied are described and discussed.
Understanding Large-Language Model (LLM)-powered Human-Robot Interaction
Large-language models (LLMs) hold significant promise in improving human-robot interaction, offering advanced conversational skills and versatility in managing diverse, open-ended user requests in various tasks and domains. Despite the potential to transform human-robot interaction, very little is known about the distinctive design requirements for utilizing LLMs in robots, which may differ from text and voice interaction and vary by task and context. To better understand these requirements, we conducted a user study (n = 32) comparing an LLM-powered social robot against text- and voice-based agents, analyzing task-based requirements in conversational tasks, including choose, generate, execute, and negotiate. Our findings show that LLM-powered robots elevate expectations for sophisticated non-verbal cues and excel in connection-building and deliberation, but fall short in logical communication and may induce anxiety. We provide design implications both for robots integrating LLMs and for fine-tuning LLMs for use with robots.
GoEmotions: A Dataset of Fine-Grained Emotions
Understanding emotion expressed in language has a wide range of applications, from building empathetic chatbots to detecting harmful online behavior. Advancement in this area can be improved using large-scale datasets with a fine-grained typology, adaptable to multiple downstream tasks. We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral. We demonstrate the high quality of the annotations via Principal Preserved Component Analysis. We conduct transfer learning experiments with existing emotion benchmarks to show that our dataset generalizes well to other domains and different emotion taxonomies. Our BERT-based model achieves an average F1-score of .46 across our proposed taxonomy, leaving much room for improvement.
Improving speaker verification robustness with synthetic emotional utterances
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative.
INTIMA: A Benchmark for Human-AI Companionship Behavior
AI companionship, where users develop emotional bonds with AI systems, has emerged as a significant pattern with positive but also concerning implications. We introduce Interactions and Machine Attachment Benchmark (INTIMA), a benchmark for evaluating companionship behaviors in language models. Drawing from psychological theories and user data, we develop a taxonomy of 31 behaviors across four categories and 368 targeted prompts. Responses to these prompts are evaluated as companionship-reinforcing, boundary-maintaining, or neutral. Applying INTIMA to Gemma-3, Phi-4, o3-mini, and Claude-4 reveals that companionship-reinforcing behaviors remain much more common across all models, though we observe marked differences between models. Different commercial providers prioritize different categories within the more sensitive parts of the benchmark, which is concerning since both appropriate boundary-setting and emotional support matter for user well-being. These findings highlight the need for more consistent approaches to handling emotionally charged interactions.
Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation
In this paper, we introduce a novel Face-to-Face spoken dialogue model. It processes audio-visual speech from user input and generates audio-visual speech as the response, marking the initial step towards creating an avatar chatbot system without relying on intermediate text. To this end, we newly introduce MultiDialog, the first large-scale multimodal (i.e., audio and visual) spoken dialogue corpus containing 340 hours of approximately 9,000 dialogues, recorded based on the open domain dialogue dataset, TopicalChat. The MultiDialog contains parallel audio-visual recordings of conversation partners acting according to the given script with emotion annotations, which we expect to open up research opportunities in multimodal synthesis. Our Face-to-Face spoken dialogue model incorporates a textually pretrained large language model and adapts it into the audio-visual spoken dialogue domain by incorporating speech-text joint pretraining. Through extensive experiments, we validate the effectiveness of our model in facilitating a face-to-face conversation. Demo and data are available at https://multidialog.github.io and https://huggingface.co/datasets/IVLLab/MultiDialog, respectively.
nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion Cause in Conversations with Chain-of-Thought on Emotion States
Emotion expression is one of the essential traits of conversations. It may be self-related or caused by another speaker. The variety of reasons may serve as a source of the further emotion causes: conversation history, speaker's emotional state, etc. Inspired by the most recent advances in Chain-of-Thought, in this work, we exploit the existing three-hop reasoning approach (THOR) to perform large language model instruction-tuning for answering: emotion states (THOR-state), and emotion caused by one speaker to the other (THOR-cause). We equip THOR-cause with the reasoning revision (rr) for devising a reasoning path in fine-tuning. In particular, we rely on the annotated speaker emotion states to revise reasoning path. Our final submission, based on Flan-T5-base (250M) and the rule-based span correction technique, preliminary tuned with THOR-state and fine-tuned with THOR-cause-rr on competition training data, results in 3rd and 4th places (F1-proportional) and 5th place (F1-strict) among 15 participating teams. Our THOR implementation fork is publicly available: https://github.com/nicolay-r/THOR-ECAC
