- A numerical Bernstein splines approach for nonlinear initial value problems with Hilfer fractional derivative The Hilfer fractional derivative generalizes and interpolates between the commonly used Riemann-Liouville and Caputo fractional derivative. In general, solutions to Hilfer fractional derivative initial value problems are singular for t downarrow t_0, providing a challenge in numerical approximation. In this work, we present a Bernstein splines method to obtain accurate approximations to solutions of nonlinear Hilfer fractional derivative initial value problems, including solutions with singular behavior. We provide explicit convergence requirements and asymptotic convergence rates to analytical solutions. Moreover, the method is efficiently implemented, using a vectorized approach and parallelization in polynomial order. Numerical experiments show empirical convergence corresponding to analytical results and a significantly higher accuracy compared to the commonly used fractional Adams-Bashforth-Moulton predictor-corrector method. Furthermore, our method is able to simulate nonlinear systems with Hilfer fractional derivatives, as demonstrated by the application to the fractional Van der Pol oscillator. 2 authors · Mar 28, 2025
- Unleashing the Potential of Fractional Calculus in Graph Neural Networks with FROND We introduce the FRactional-Order graph Neural Dynamical network (FROND), a new continuous graph neural network (GNN) framework. Unlike traditional continuous GNNs that rely on integer-order differential equations, FROND employs the Caputo fractional derivative to leverage the non-local properties of fractional calculus. This approach enables the capture of long-term dependencies in feature updates, moving beyond the Markovian update mechanisms in conventional integer-order models and offering enhanced capabilities in graph representation learning. We offer an interpretation of the node feature updating process in FROND from a non-Markovian random walk perspective when the feature updating is particularly governed by a diffusion process. We demonstrate analytically that oversmoothing can be mitigated in this setting. Experimentally, we validate the FROND framework by comparing the fractional adaptations of various established integer-order continuous GNNs, demonstrating their consistently improved performance and underscoring the framework's potential as an effective extension to enhance traditional continuous GNNs. The code is available at https://github.com/zknus/ICLR2024-FROND. 8 authors · Apr 25, 2024
- Discrete Galerkin Method for Fractional Integro-Differential Equations In this paper, we develop a fully discrete Galerkin method for solving initial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(GJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. 1 authors · Jan 6, 2015
- On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p. 4 authors · Jun 28, 2021
- On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz matrix-sequences arising from fractional problems The analysis of the spectral features of a Toeplitz matrix-sequence left{T_{n}(f)right}_{ninmathbb N}, generated by a symbol fin L^1([-π,π]), real-valued almost everywhere (a.e.), has been provided in great detail in the last century, as well as the study of the conditioning, when f is nonnegative a.e. Here we consider a novel type of problem arising in the numerical approximation of distributed-order fractional differential equations (FDEs), where the matrices under consideration take the form \[ T_{n}=c_0T_{n}(f_0)+c_{1} h^h T_{n}(f_{1})+c_{2} h^{2h} T_{n}(f_{2})+\cdots+c_{n-1} h^{(n-1)h}T_{n}(f_{n-1}), \] c_0,c_{1},ldots, c_{n-1} in [c_*,c^*], c^*ge c_*>0, independent of n, h=1{n}, f_jsim g_j, g_j=|θ|^{2-jh}, j=0,ldots,n-1. Since the resulting generating function depends on n, the standard theory cannot be applied and the analysis has to be performed using new ideas. Few selected numerical experiments are presented, also in connection with matrices that come from distributed-order FDE problems, and the adherence with the theoretical analysis is discussed together with open questions and future investigations. 4 authors · Dec 5, 2021
- Time-Fractional Approach to the Electrochemical Impedance: The Displacement Current We establish, in general terms, the conditions to be satisfied by a time-fractional approach formulation of the Poisson-Nernst-Planck model in order to guarantee that the total current across the sample be solenoidal, as required by the Maxwell equation. Only in this case the electric impedance of a cell can be determined as the ratio between the applied difference of potential and the current across the cell. We show that in the case of anomalous diffusion, the model predicts for the electric impedance of the cell a constant phase element behaviour in the low frequency region. In the parametric curve of the reactance versus the resistance, the slope coincides with the order of the fractional time derivative. 3 authors · Jan 3, 2022
- Unification of popular artificial neural network activation functions We present a unified representation of the most popular neural network activation functions. Adopting Mittag-Leffler functions of fractional calculus, we propose a flexible and compact functional form that is able to interpolate between various activation functions and mitigate common problems in training neural networks such as vanishing and exploding gradients. The presented gated representation extends the scope of fixed-shape activation functions to their adaptive counterparts whose shape can be learnt from the training data. The derivatives of the proposed functional form can also be expressed in terms of Mittag-Leffler functions making it a suitable candidate for gradient-based backpropagation algorithms. By training multiple neural networks of different complexities on various datasets with different sizes, we demonstrate that adopting a unified gated representation of activation functions offers a promising and affordable alternative to individual built-in implementations of activation functions in conventional machine learning frameworks. 1 authors · Feb 21, 2023
- Fractional WKB Approximation Wentzel, Kramers, Brillouin (WKB) approximation for fractional systems is investigated in this paper using the fractional calculus. In the fractional case the wave function is constructed such that the phase factor is the same as the Hamilton's principle function "S". To demonstrate our proposed approach two examples are investigated in details. 4 authors · Apr 4, 2007
- Concentrating solutions of the fractional (p,q)-Choquard equation with exponential growth This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results. 3 authors · May 31, 2025
- Variational Inference for SDEs Driven by Fractional Noise We present a novel variational framework for performing inference in (neural) stochastic differential equations (SDEs) driven by Markov-approximate fractional Brownian motion (fBM). SDEs offer a versatile tool for modeling real-world continuous-time dynamic systems with inherent noise and randomness. Combining SDEs with the powerful inference capabilities of variational methods, enables the learning of representative function distributions through stochastic gradient descent. However, conventional SDEs typically assume the underlying noise to follow a Brownian motion (BM), which hinders their ability to capture long-term dependencies. In contrast, fractional Brownian motion (fBM) extends BM to encompass non-Markovian dynamics, but existing methods for inferring fBM parameters are either computationally demanding or statistically inefficient. In this paper, building upon the Markov approximation of fBM, we derive the evidence lower bound essential for efficient variational inference of posterior path measures, drawing from the well-established field of stochastic analysis. Additionally, we provide a closed-form expression to determine optimal approximation coefficients. Furthermore, we propose the use of neural networks to learn the drift, diffusion and control terms within our variational posterior, leading to the variational training of neural-SDEs. In this framework, we also optimize the Hurst index, governing the nature of our fractional noise. Beyond validation on synthetic data, we contribute a novel architecture for variational latent video prediction,-an approach that, to the best of our knowledge, enables the first variational neural-SDE application to video perception. 4 authors · Oct 19, 2023
- Fractional divergence-measure fields, Leibniz rule and Gauss-Green formula Given alphain(0,1] and pin[1,+infty], we define the space DM^{alpha,p}(mathbb R^n) of L^p vector fields whose alpha-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the alpha-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss-Green formula. The sharpness of our results is discussed via some explicit examples. 2 authors · Mar 1, 2023