Tessellations and Speiser graphs arising from meromorphic functions on simply connected Riemann surfaces
Abstract
Motivated by W. P. Thurston, we ask: What is the shape of a meromorphic function on a simply connected Riemann surface Ω_z? We consider Speiser functions, i.e. meromorphic functions on a simply connected Riemann surface, that have a finite number q at least 2 of singular (critical or asymptotic) values. As a first result, we make precise the correspondence between: Speiser functions w(z), Speiser Riemann surfaces R_w(z), Speiser q-tessellation, and analytic Speiser graphs of index q. As the second main result, we characterize tessellations with alternating colors (equivalently abstract pre-Speiser graphs) that are realized by Speiser functions on Ω_z. The characterization is in terms of the q-regular extension problem of bipartite planar graphs. As third main results, the Speiser Riemann surface R_w(z) can be constructed by isometric glueing of a finite number of types of sheets, where each sheet is a maximal domain of single-valuedness of the inverse of w(z). Furthermore, a unique decomposition of R_w(z) into maximal logarithmic towers and a soul is provided. Using vector fields we recognize that logarithmic towers come in two flavors: exponential or h-tangent blocks, directly related to the exponential or the hyperbolic tangent functions on the upper half plane. The surface R_w(z) of a finite Speiser function is characterized by surgery of a rational block and a finite number of exponential or h-tangent blocks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper