TurkEmbed4Retrieval: Turkish Embedding Model for Retrieval Task
Abstract
TurkEmbed4Retrieval, a fine-tuned variant of TurkEmbed, achieves state-of-the-art performance in Turkish information retrieval using advanced techniques like Matryoshka representation learning and a tailored multiple negatives ranking loss.
In this work, we introduce TurkEmbed4Retrieval, a retrieval specialized variant of the TurkEmbed model originally designed for Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. By fine-tuning the base model on the MS MARCO TR dataset using advanced training techniques, including Matryoshka representation learning and a tailored multiple negatives ranking loss, we achieve SOTA performance for Turkish retrieval tasks. Extensive experiments demonstrate that our model outperforms Turkish colBERT by 19,26% on key retrieval metrics for the Scifact TR dataset, thereby establishing a new benchmark for Turkish information retrieval.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper