Update README.md
Browse files
README.md
CHANGED
|
@@ -6,4 +6,80 @@ pipeline_tag: keypoint-detection
|
|
| 6 |
|
| 7 |
https://huggingface.co/nielsr/vitpose-base-simple with ONNX weights to be compatible with Transformers.js.
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
|
| 6 |
|
| 7 |
https://huggingface.co/nielsr/vitpose-base-simple with ONNX weights to be compatible with Transformers.js.
|
| 8 |
|
| 9 |
+
|
| 10 |
+
## Usage (Transformers.js)
|
| 11 |
+
|
| 12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 13 |
+
```bash
|
| 14 |
+
npm i @huggingface/transformers
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
**Example:** Pose estimation w/ `onnx-community/vitpose-base-simple`.
|
| 18 |
+
```js
|
| 19 |
+
import { AutoModel, AutoImageProcessor, RawImage } from '@huggingface/transformers';
|
| 20 |
+
|
| 21 |
+
// Load model and processor
|
| 22 |
+
const model_id = 'onnx-community/vitpose-base-simple';
|
| 23 |
+
const model = await AutoModel.from_pretrained(model_id);
|
| 24 |
+
const processor = await AutoImageProcessor.from_pretrained(model_id);
|
| 25 |
+
|
| 26 |
+
// Load image and prepare inputs
|
| 27 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ryan-gosling.jpg';
|
| 28 |
+
const image = await RawImage.read(url);
|
| 29 |
+
const inputs = await processor(image);
|
| 30 |
+
|
| 31 |
+
// Predict heatmaps
|
| 32 |
+
const { heatmaps } = await model(inputs);
|
| 33 |
+
|
| 34 |
+
// Post-process heatmaps to get keypoints and scores
|
| 35 |
+
const boxes = [[[0, 0, image.width, image.height]]];
|
| 36 |
+
const results = processor.post_process_pose_estimation(heatmaps, boxes)[0][0];
|
| 37 |
+
console.log(results);
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
Optionally, visualize the outputs (Node.js usage shown here, using the [`canvas`](https://www.npmjs.com/package/canvas) library):
|
| 41 |
+
```js
|
| 42 |
+
import { createCanvas, createImageData } from 'canvas';
|
| 43 |
+
|
| 44 |
+
// Create canvas and draw image
|
| 45 |
+
const canvas = createCanvas(image.width, image.height);
|
| 46 |
+
const ctx = canvas.getContext('2d');
|
| 47 |
+
const imageData = createImageData(image.rgba().data, image.width, image.height);
|
| 48 |
+
ctx.putImageData(imageData, 0, 0);
|
| 49 |
+
|
| 50 |
+
// Draw edges between keypoints
|
| 51 |
+
const points = results.keypoints;
|
| 52 |
+
ctx.lineWidth = 4;
|
| 53 |
+
ctx.strokeStyle = 'blue';
|
| 54 |
+
for (const [i, j] of model.config.edges) {
|
| 55 |
+
const [x1, y1] = points[i];
|
| 56 |
+
const [x2, y2] = points[j];
|
| 57 |
+
ctx.beginPath();
|
| 58 |
+
ctx.moveTo(x1, y1);
|
| 59 |
+
ctx.lineTo(x2, y2);
|
| 60 |
+
ctx.stroke();
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
// Draw circle at each keypoint
|
| 64 |
+
ctx.fillStyle = 'red';
|
| 65 |
+
for (const [x, y] of points) {
|
| 66 |
+
ctx.beginPath();
|
| 67 |
+
ctx.arc(x, y, 8, 0, 2 * Math.PI);
|
| 68 |
+
ctx.fill();
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
// Save image to file
|
| 72 |
+
import fs from 'fs';
|
| 73 |
+
const out = fs.createWriteStream('pose.png');
|
| 74 |
+
const stream = canvas.createPNGStream();
|
| 75 |
+
stream.pipe(out)
|
| 76 |
+
out.on('finish', () => console.log('The PNG file was created.'));
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
| Input image | Output image |
|
| 80 |
+
| :----------:|:------------:|
|
| 81 |
+
|  |  |
|
| 82 |
+
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|