Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- observerw/ChiseLLM-Completion
|
| 5 |
+
- observerw/ChiseLLM-Decompile
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen2.5-Coder-32B-Instruct
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# ChiseLLM-32B
|
| 11 |
+
|
| 12 |
+
<img src="https://raw.githubusercontent.com/observerw/ChiseLLM/refs/heads/main/assets/logo.svg" alt="ChiseLLM" style="width:20%">
|
| 13 |
+
|
| 14 |
+

|
| 15 |
+
|
| 16 |
+
ChiseLLM-32B is a **large reasoning model specifically trained for the [Chisel Hardware Construction language](https://www.chisel-lang.org)**, aimed at revolutionizing HCL-Baed Agile Hardware Development Methodology (AHDM).
|
| 17 |
+
|
| 18 |
+
Built on [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) with domain-adaptive fine-tuning, the model combines high-quality reasoning datasets and specific thinking patterns to significantly enhance performance in hardware design tasks.
|
| 19 |
+
|
| 20 |
+
ChiseLLM-32B can:
|
| 21 |
+
|
| 22 |
+
- **Transform natural language specifications into high-quality Chisel code** (Spec-to-Chisel)
|
| 23 |
+
- **Intelligently translate Verilog code into enhanced Chisel implementations** (Decompile-to-Chisel)
|
| 24 |
+
- **Generate hardware designs with superior variability and extensibility**, surpassing traditional design approaches
|
| 25 |
+
|
| 26 |
+
### Use Cases
|
| 27 |
+
|
| 28 |
+
ChiseLLM-32B is particularly suited for the following applications:
|
| 29 |
+
|
| 30 |
+
- **Rapid Hardware Design Prototyping**: Dramatically shortens the design cycle from specification to implementation
|
| 31 |
+
- **Verilog Code Modernization**: Intelligently converts legacy Verilog code into extensible Chisel implementations
|
| 32 |
+
- **Hardware Architecture Exploration**: Generates multiple design variants for the same functional requirements
|
| 33 |
+
- **Design Refactoring and Optimization**: Leverages Chisel's advanced features to improve existing hardware designs
|
| 34 |
+
- **Agile Hardware Development Education**: Serves as an assistive tool for learning Chisel and modern hardware design methods
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
### Training results
|
| 38 |
+
|
| 39 |
+
Spec-to-Chisel task on VerilogEval:
|
| 40 |
+
|
| 41 |
+
| Models | pass@1 | pass@3 | pass@5 | syntax(%) |
|
| 42 |
+
| ------------------------------- | --------- | --------- | --------- | --------- |
|
| 43 |
+
| Qwen2.5-Coder-32B-Instruct | 41.02 | 53.85 | 58.79 | 73.47 |
|
| 44 |
+
| Qwen2.5-72B-Instruct | 39.74 | 49.30 | 52.90 | 61.31 |
|
| 45 |
+
| Llama-3.3-70B-Instruct | 38.14 | 44.90 | 48.02 | 65.97 |
|
| 46 |
+
| \*Deepseek-R1-Distill-Qwen-32B | 38.50 | 54.58 | 61.16 | 52.19 |
|
| 47 |
+
| \*Deepseek-R1-Distill-Llama-70B | 36.62 | 52.28 | 59.90 | 51.72 |
|
| 48 |
+
| \*ChiseLLM-32B | **51.43** | **68.29** | **72.78** | **76.45** |
|
| 49 |
+
|
| 50 |
+
| Models | pass@1 | pass@3 | pass@5 | syntax(%) |
|
| 51 |
+
| ------------- | --------- | --------- | --------- | --------- |
|
| 52 |
+
| Deepseek-V3 | 50.16 | 63.44 | 67.32 | 76.37 |
|
| 53 |
+
| GPT-4o | 42.04 | 60.16 | 65.17 | 69.76 |
|
| 54 |
+
| \*Deepseek-R1 | **62.74** | **76.05** | **80.16** | **82.85** |
|
| 55 |
+
|
| 56 |
+
Decompile-to-Chisel task on VerilogEval:
|
| 57 |
+
|
| 58 |
+
| Models | pass@1 | pass@3 | pass@5 | syntax(%) |
|
| 59 |
+
| ------------------------------- | --------- | --------- | --------- | --------- |
|
| 60 |
+
| Qwen2.5-Coder-32B-Instruct | 41.19 | 48.96 | 51.59 | 53.93 |
|
| 61 |
+
| Qwen2.5-72B-Instruct | 40.54 | 47.32 | 49.83 | 59.30 |
|
| 62 |
+
| Llama-3.3-70B-Instruct | 38.38 | 46.96 | 51.36 | 48.00 |
|
| 63 |
+
| \*Deepseek-R1-Distill-Qwen-32B | 45.03 | 63.02 | 70.18 | 53.17 |
|
| 64 |
+
| \*Deepseek-R1-Distill-Llama-70B | 37.50 | 55.05 | 63.84 | 45.59 |
|
| 65 |
+
| \*ChiseLLM-32B | **56.41** | **72.00** | **77.67** | **64.71** |
|
| 66 |
+
|
| 67 |
+
| Models | pass@1 | pass@3 | pass@5 | syntax(%) |
|
| 68 |
+
| ------------- | --------- | --------- | --------- | --------- |
|
| 69 |
+
| Deepseek-V3 | **54.57** | 63.19 | 66.71 | **66.19** |
|
| 70 |
+
| GPT-4o | 42.39 | 65.75 | 71.83 | 53.77 |
|
| 71 |
+
| \*Deepseek-R1 | 53.45 | **71.50** | **77.91** | 59.13 |
|
| 72 |
+
|
| 73 |
+
### Framework versions
|
| 74 |
+
|
| 75 |
+
- Transformers 4.51.0
|
| 76 |
+
- Pytorch 2.6.0a0+df5bbc09d1.nv24.12
|
| 77 |
+
- Datasets 3.4.1
|
| 78 |
+
- Tokenizers 0.21.0
|
| 79 |
+
|
| 80 |
+
### Training hyperparameters
|
| 81 |
+
|
| 82 |
+
The following hyperparameters were used during training:
|
| 83 |
+
- learning_rate: 1e-05
|
| 84 |
+
- train_batch_size: 2
|
| 85 |
+
- eval_batch_size: 8
|
| 86 |
+
- seed: 42
|
| 87 |
+
- distributed_type: multi-GPU
|
| 88 |
+
- num_devices: 8
|
| 89 |
+
- gradient_accumulation_steps: 8
|
| 90 |
+
- total_train_batch_size: 128
|
| 91 |
+
- total_eval_batch_size: 64
|
| 92 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08
|
| 93 |
+
- lr_scheduler_type: cosine
|
| 94 |
+
- lr_scheduler_warmup_ratio: 0.05
|
| 95 |
+
- num_epochs: 3.0
|