π€ Igbo-Phi3-Bilingual-Chat (Master Weights)
A specialized bilingual AI assistant trained to converse fluently in Igbo and English.
This is the full-precision merged model (SafeTensors format). It contains the complete fine-tuned weights of the Microsoft Phi-3 Mini model, optimized for Igbo language understanding, translation, and cultural context.
π₯ Which version should I download?
| Version | Description | Link |
|---|---|---|
| GGUF (Recommended) | For Users. Best for Ollama, LM Studio, and local laptops. Fast & small. | π Go to GGUF Repo |
| Merged (This Repo) | For Developers. Best for Python coding (Transformers), PyTorch, or further fine-tuning. | You are here. |
π Usage (Python / Transformers)
To use this model in a Python script using Hugging Face Transformers:
1. Install Dependencies
pip install transformers torch accelerate
2. Inference Code
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "nwokikeonyeka/Igbo-Phi3-Bilingual-Chat-v1-merged"
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use float16 to save memory
device_map="auto",
trust_remote_code=True
)
# Define a prompt (Bilingual Chat)
user_input = "Kedu ka m ga-esi sα» 'Good morning' n'asα»₯sα»₯ Igbo?"
# Format with the correct Phi-3 template
prompt = f"<s><|user|>\n{user_input}<|end|>\n<|assistant|>\n"
# Tokenize and Generate
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=128,
temperature=0.3
)
# Decode result
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
π Training Data
This model was trained on a robust mix of 700,000+ examples to ensure it can translate accurately while remaining a smart chatbot:
- Fluency (522k pairs): ccibeekeoc42/english_to_igbo
- Sentence-level translation pairs.
- Vocabulary (5k definitions): nkowaokwu/ibo-dict (Text only)
- Deep dictionary definitions for semantic understanding.
- General Memory (200k chats): HuggingFaceH4/ultrachat_200k
- General English conversation to prevent "catastrophic forgetting" of logic and reasoning.
βοΈ Training Details
- Base Architecture: Microsoft Phi-3 Mini 4K Instruct
- Framework: Unsloth (LoRA) + Hugging Face TRL
- Epochs: 1 full pass over combined data.
- Max Sequence Length: 2048 tokens.
- Optimizer: AdamW 8-bit.
Developed by nwokikeonyeka using the Unsloth library for faster fine-tuning.
- Downloads last month
- 39