Update README.md
Browse files
README.md
CHANGED
|
@@ -3,14 +3,14 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Nemotron-
|
| 7 |
|
| 8 |
-
Nemotron-
|
| 9 |
|
| 10 |
Docker path: `/lustre/fsw/portfolios/nvr/users/yongganf/docker/megatron_py25_fast_slm.sqsh` on NRT.
|
| 11 |
|
| 12 |
|
| 13 |
-
## Chat with Nemotron-
|
| 14 |
|
| 15 |
We wrap the model into CUDA Graph for fast generation:
|
| 16 |
|
|
@@ -18,7 +18,7 @@ We wrap the model into CUDA Graph for fast generation:
|
|
| 18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 19 |
import torch
|
| 20 |
|
| 21 |
-
repo_name = "nvidia/Nemotron-
|
| 22 |
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Nemotron-Flash-3B-Instruct
|
| 7 |
|
| 8 |
+
Nemotron-Flash is a new hybrid SLM model family that outperforms Qwen models in accuracy (math, coding, and commonsense), batch-size-1 latency, and throughput. More details are in our NeurIPS 2025 [paper](https://drive.google.com/drive/folders/17vOGktwUfUpRAJPGJUV6oX8XwLSczZtv?usp=sharing).
|
| 9 |
|
| 10 |
Docker path: `/lustre/fsw/portfolios/nvr/users/yongganf/docker/megatron_py25_fast_slm.sqsh` on NRT.
|
| 11 |
|
| 12 |
|
| 13 |
+
## Chat with Nemotron-Flash-3B-Instruct
|
| 14 |
|
| 15 |
We wrap the model into CUDA Graph for fast generation:
|
| 16 |
|
|
|
|
| 18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 19 |
import torch
|
| 20 |
|
| 21 |
+
repo_name = "nvidia/Nemotron-Flash-3B-Instruct"
|
| 22 |
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|