nikhilrayaprolu commited on
Commit
0c529b9
·
verified ·
1 Parent(s): 89ed0bc

Upload MoE Transformer model

Browse files
Files changed (3) hide show
  1. config.json +23 -0
  2. moe_transformer.py +252 -0
  3. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "d_model": 256,
3
+ "num_heads": 8,
4
+ "num_encoder_layers": 6,
5
+ "num_decoder_layers": 6,
6
+ "d_ff": 1024,
7
+ "num_experts": 8,
8
+ "top_k": 2,
9
+ "dropout": 0.1,
10
+ "max_input_length": 512,
11
+ "max_target_length": 64,
12
+ "batch_size": 64,
13
+ "learning_rate": 0.0001,
14
+ "early_stopping_patience": 3,
15
+ "architectures": [
16
+ "MoETransformer"
17
+ ],
18
+ "model_type": "moe_transformer",
19
+ "vocab_size": 32100,
20
+ "auto_map": {
21
+ "AutoModel": "moe_transformer.MoETransformer"
22
+ }
23
+ }
moe_transformer.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # moe_transformer.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import math
6
+
7
+ class SparseMoE(nn.Module):
8
+ """Sparse Mixture-of-Experts layer."""
9
+ def __init__(self, d_model, num_experts, top_k, routing_algorithm, d_ff):
10
+ super().__init__()
11
+ self.d_model = d_model
12
+ self.num_experts = num_experts
13
+ self.top_k = top_k
14
+ self.routing_algorithm = routing_algorithm
15
+
16
+ self.experts = nn.ModuleList([
17
+ nn.Sequential(
18
+ nn.Linear(d_model, d_ff),
19
+ nn.ReLU(),
20
+ nn.Linear(d_ff, d_model)
21
+ ) for _ in range(num_experts)
22
+ ])
23
+
24
+ if self.routing_algorithm == 'top_k':
25
+ self.gate = nn.Linear(d_model, num_experts)
26
+
27
+ self.load_balancing_loss = 0.0
28
+
29
+ def hash_routing(self, x):
30
+ token_hashes = x.sum(dim=-1).long().abs()
31
+ expert_indices = token_hashes % self.num_experts
32
+ return F.one_hot(expert_indices, num_classes=self.num_experts).float()
33
+
34
+ def top_k_routing(self, x):
35
+ gate_logits = self.gate(x)
36
+ top_k_logits, top_k_indices = torch.topk(gate_logits, self.top_k, dim=-1)
37
+ gate_scores = F.softmax(top_k_logits, dim=-1)
38
+
39
+ router_mask = torch.zeros_like(gate_logits).scatter_(-1, top_k_indices, gate_scores)
40
+
41
+ if self.training:
42
+ probs_per_expert = gate_logits.softmax(dim=-1)
43
+ tokens_per_batch_seq = router_mask.shape[0]
44
+ fraction_tokens_per_expert = router_mask.sum(dim=0) / tokens_per_batch_seq
45
+ mean_prob_per_expert = probs_per_expert.mean(dim=0)
46
+ self.load_balancing_loss = self.num_experts * torch.sum(fraction_tokens_per_expert * mean_prob_per_expert)
47
+
48
+ return router_mask
49
+
50
+ def forward(self, x):
51
+ batch_size, seq_len, _ = x.shape
52
+ x_flat = x.view(-1, self.d_model)
53
+
54
+ if self.routing_algorithm == 'top_k':
55
+ router_output = self.top_k_routing(x_flat)
56
+ elif self.routing_algorithm == 'hash':
57
+ router_output = self.hash_routing(x_flat)
58
+ else:
59
+ raise ValueError(f"Unknown routing algorithm: {self.routing_algorithm}")
60
+
61
+ final_output = torch.zeros_like(x_flat)
62
+ for i, expert in enumerate(self.experts):
63
+ expert_mask = router_output[:, i].unsqueeze(1)
64
+ active_tokens_indices = torch.where(expert_mask.squeeze() > 0)[0]
65
+ if active_tokens_indices.numel() > 0:
66
+ active_tokens = x_flat[active_tokens_indices]
67
+ expert_out = expert(active_tokens)
68
+ weighted_out = expert_out * expert_mask[active_tokens_indices]
69
+ final_output.index_add_(0, active_tokens_indices, weighted_out)
70
+
71
+ return final_output.view(batch_size, seq_len, self.d_model)
72
+
73
+ class GroupedQueryAttention(nn.Module):
74
+ """
75
+ Implements Grouped-Query Attention (GQA).
76
+ - MHA is a special case of GQA where num_kv_heads == num_heads.
77
+ - MQA is a special case of GQA where num_kv_heads == 1.
78
+ """
79
+ def __init__(self, d_model, num_heads, num_kv_heads):
80
+ super().__init__()
81
+ assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
82
+ assert num_heads % num_kv_heads == 0, "num_heads must be divisible by num_kv_heads"
83
+
84
+ self.d_model = d_model
85
+ self.num_heads = num_heads
86
+ self.num_kv_heads = num_kv_heads
87
+ self.num_key_value_groups = num_heads // num_kv_heads
88
+ self.d_k = d_model // num_heads
89
+
90
+ self.W_q = nn.Linear(d_model, d_model)
91
+ self.W_k = nn.Linear(d_model, self.num_kv_heads * self.d_k)
92
+ self.W_v = nn.Linear(d_model, self.num_kv_heads * self.d_k)
93
+ self.W_o = nn.Linear(d_model, d_model)
94
+
95
+ def scaled_dot_product_attention(self, Q, K, V, mask=None):
96
+ attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
97
+ if mask is not None:
98
+ attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
99
+ attn_probs = F.softmax(attn_scores, dim=-1)
100
+ output = torch.matmul(attn_probs, V)
101
+ return output
102
+
103
+ def forward(self, q, k, v, mask=None):
104
+ batch_size = q.size(0)
105
+
106
+ Q = self.W_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
107
+ K = self.W_k(k).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
108
+ V = self.W_v(v).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
109
+
110
+ if self.num_key_value_groups > 1:
111
+ K = K.repeat_interleave(self.num_key_value_groups, dim=1)
112
+ V = V.repeat_interleave(self.num_key_value_groups, dim=1)
113
+
114
+ context = self.scaled_dot_product_attention(Q, K, V, mask)
115
+ context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
116
+
117
+ output = self.W_o(context)
118
+ return output
119
+
120
+ class PositionalEncoding(nn.Module):
121
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
122
+ super().__init__()
123
+ self.dropout = nn.Dropout(p=dropout)
124
+ pe = torch.zeros(max_len, d_model)
125
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
126
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
127
+ pe[:, 0::2] = torch.sin(position * div_term)
128
+ pe[:, 1::2] = torch.cos(position * div_term)
129
+ self.register_buffer('pe', pe.unsqueeze(0))
130
+
131
+ def forward(self, x):
132
+ x = x + self.pe[:, :x.size(1)]
133
+ return self.dropout(x)
134
+
135
+ class EncoderLayer(nn.Module):
136
+ def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
137
+ super().__init__()
138
+ self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
139
+ self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
140
+ self.norm1 = nn.LayerNorm(d_model)
141
+ self.norm2 = nn.LayerNorm(d_model)
142
+ self.dropout = nn.Dropout(dropout)
143
+
144
+ def forward(self, x, mask):
145
+ attn_output = self.self_attn(x, x, x, mask)
146
+ x = self.norm1(x + self.dropout(attn_output))
147
+
148
+ moe_output = self.moe_ffn(x)
149
+ x = self.norm2(x + self.dropout(moe_output))
150
+ return x
151
+
152
+ class DecoderLayer(nn.Module):
153
+ def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
154
+ super().__init__()
155
+ self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
156
+ self.cross_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
157
+ self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
158
+ self.norm1 = nn.LayerNorm(d_model)
159
+ self.norm2 = nn.LayerNorm(d_model)
160
+ self.norm3 = nn.LayerNorm(d_model)
161
+ self.dropout = nn.Dropout(dropout)
162
+
163
+ def forward(self, x, enc_output, src_mask, tgt_mask):
164
+ attn_output = self.self_attn(x, x, x, tgt_mask)
165
+ x = self.norm1(x + self.dropout(attn_output))
166
+
167
+ cross_attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
168
+ x = self.norm2(x + self.dropout(cross_attn_output))
169
+
170
+ moe_output = self.moe_ffn(x)
171
+ x = self.norm3(x + self.dropout(moe_output))
172
+ return x
173
+
174
+ class MoETransformer(nn.Module):
175
+ def __init__(self, config, vocab_size):
176
+ super().__init__()
177
+ self.config = config
178
+ self.encoder_embedding = nn.Embedding(vocab_size, config['d_model'])
179
+ self.decoder_embedding = nn.Embedding(vocab_size, config['d_model'])
180
+ self.positional_encoding = PositionalEncoding(config['d_model'], config['dropout'])
181
+
182
+ self.encoder_layers = nn.ModuleList([
183
+ EncoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout'])
184
+ for _ in range(config['num_encoder_layers'])
185
+ ])
186
+ self.decoder_layers = nn.ModuleList([
187
+ DecoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout'])
188
+ for _ in range(config['num_decoder_layers'])
189
+ ])
190
+
191
+ self.fc_out = nn.Linear(config['d_model'], vocab_size)
192
+
193
+ def generate_mask(self, src, tgt, pad_idx):
194
+ src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
195
+ tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
196
+ seq_len = tgt.size(1)
197
+ tgt_sub_mask = torch.tril(torch.ones((seq_len, seq_len), device=tgt.device)).bool()
198
+ tgt_mask = tgt_pad_mask & tgt_sub_mask
199
+ return src_mask, tgt_mask
200
+
201
+ def forward(self, src, tgt, pad_idx=0):
202
+ src_mask, tgt_mask = self.generate_mask(src, tgt, pad_idx)
203
+
204
+ src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
205
+ tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))
206
+
207
+ enc_output = src_emb
208
+ for layer in self.encoder_layers:
209
+ enc_output = layer(enc_output, src_mask)
210
+
211
+ dec_output = tgt_emb
212
+ for layer in self.decoder_layers:
213
+ dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
214
+
215
+ return self.fc_out(dec_output)
216
+
217
+ def get_total_load_balancing_loss(self):
218
+ total_loss = 0
219
+ for layer in self.encoder_layers + self.decoder_layers:
220
+ total_loss += layer.moe_ffn.load_balancing_loss
221
+ return total_loss
222
+
223
+ @torch.no_grad()
224
+ def generate(self, src, max_length, start_symbol, pad_idx=0):
225
+ self.eval()
226
+ device = next(self.parameters()).device
227
+ src = src.to(device)
228
+ batch_size = src.shape[0]
229
+
230
+ src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
231
+ src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
232
+ enc_output = src_emb
233
+ for layer in self.encoder_layers:
234
+ enc_output = layer(enc_output, src_mask)
235
+
236
+ tgt = torch.full((batch_size, 1), start_symbol, dtype=torch.long, device=device)
237
+
238
+ for _ in range(max_length - 1):
239
+ _, tgt_mask = self.generate_mask(src, tgt, pad_idx)
240
+ tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))
241
+ dec_output = tgt_emb
242
+ for layer in self.decoder_layers:
243
+ dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
244
+
245
+ logits = self.fc_out(dec_output[:, -1])
246
+ next_token = torch.argmax(logits, dim=-1).unsqueeze(1)
247
+ tgt = torch.cat([tgt, next_token], dim=1)
248
+
249
+ if (tgt == 1).any(dim=-1).all():
250
+ break
251
+
252
+ return tgt
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd007dfb2d5664ab7f18d3699ddf237353cb72675976c48e10d00a24b5f0aab5
3
+ size 325023994