File size: 10,875 Bytes
3133fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import itertools
import unittest

import numpy as np
import torch
from pytorchvideo.layers.convolutions import ConvReduce3D
from pytorchvideo.models.stem import (
    create_acoustic_res_basic_stem,
    create_res_basic_stem,
    ResNetBasicStem,
)
from torch import nn


class TestResNetBasicStem(unittest.TestCase):
    def setUp(self):
        super().setUp()
        torch.set_rng_state(torch.manual_seed(42).get_state())

    def test_create_simple_stem(self):
        """
        Test simple ResNetBasicStem (without pooling layer).
        """
        for input_dim, output_dim in itertools.product((2, 3), (4, 8, 16)):
            model = ResNetBasicStem(
                conv=nn.Conv3d(
                    input_dim,
                    output_dim,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False,
                ),
                norm=nn.BatchNorm3d(output_dim),
                activation=nn.ReLU(),
                pool=None,
            )

            # Test forwarding.
            for tensor in TestResNetBasicStem._get_inputs(input_dim):
                if tensor.shape[1] != input_dim:
                    with self.assertRaises(RuntimeError):
                        output_tensor = model(tensor)
                    continue
                else:
                    output_tensor = model(tensor)

                input_shape = tensor.shape
                output_shape = output_tensor.shape
                output_shape_gt = (
                    input_shape[0],
                    output_dim,
                    input_shape[2],
                    input_shape[3],
                    input_shape[4],
                )

                self.assertEqual(
                    output_shape,
                    output_shape_gt,
                    "Output shape {} is different from expected shape {}".format(
                        output_shape, output_shape_gt
                    ),
                )

    def test_create_stem_with_conv_reduced_3d(self):
        """
        Test simple ResNetBasicStem with ConvReduce3D.
        """
        for input_dim, output_dim in itertools.product((2, 3), (4, 8, 16)):
            model = ResNetBasicStem(
                conv=ConvReduce3D(
                    in_channels=input_dim,
                    out_channels=output_dim,
                    kernel_size=(3, 3),
                    stride=(1, 1),
                    padding=(1, 1),
                    bias=(False, False),
                ),
                norm=nn.BatchNorm3d(output_dim),
                activation=nn.ReLU(),
                pool=None,
            )

            # Test forwarding.
            for tensor in TestResNetBasicStem._get_inputs(input_dim):
                if tensor.shape[1] != input_dim:
                    with self.assertRaises(RuntimeError):
                        output_tensor = model(tensor)
                    continue
                else:
                    output_tensor = model(tensor)

                input_shape = tensor.shape
                output_shape = output_tensor.shape
                output_shape_gt = (
                    input_shape[0],
                    output_dim,
                    input_shape[2],
                    input_shape[3],
                    input_shape[4],
                )

                self.assertEqual(
                    output_shape,
                    output_shape_gt,
                    "Output shape {} is different from expected shape {}".format(
                        output_shape, output_shape_gt
                    ),
                )

    def test_create_complex_stem(self):
        """
        Test complex ResNetBasicStem.
        """
        for input_dim, output_dim in itertools.product((2, 3), (4, 8, 16)):
            model = ResNetBasicStem(
                conv=nn.Conv3d(
                    input_dim,
                    output_dim,
                    kernel_size=[3, 7, 7],
                    stride=[1, 2, 2],
                    padding=[1, 3, 3],
                    bias=False,
                ),
                norm=nn.BatchNorm3d(output_dim),
                activation=nn.ReLU(),
                pool=nn.MaxPool3d(
                    kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]
                ),
            )

            # Test forwarding.
            for input_tensor in TestResNetBasicStem._get_inputs(input_dim):
                if input_tensor.shape[1] != input_dim:
                    with self.assertRaises(Exception):
                        output_tensor = model(input_tensor)
                    continue
                else:
                    output_tensor = model(input_tensor)

                input_shape = input_tensor.shape
                output_shape = output_tensor.shape

                output_shape_gt = (
                    input_shape[0],
                    output_dim,
                    input_shape[2],
                    (((input_shape[3] - 1) // 2 + 1) - 1) // 2 + 1,
                    (((input_shape[4] - 1) // 2 + 1) - 1) // 2 + 1,
                )

                self.assertEqual(
                    output_shape,
                    output_shape_gt,
                    "Output shape {} is different from expected shape {}".format(
                        output_shape, output_shape_gt
                    ),
                )

    def test_create_stem_with_callable(self):
        """
        Test builder `create_res_basic_stem` with callable inputs.
        """
        for (pool, activation, norm) in itertools.product(
            (nn.AvgPool3d, nn.MaxPool3d, None),
            (nn.ReLU, nn.Softmax, nn.Sigmoid, None),
            (nn.BatchNorm3d, None),
        ):
            model = create_res_basic_stem(
                in_channels=3,
                out_channels=64,
                pool=pool,
                activation=activation,
                norm=norm,
            )
            model_gt = ResNetBasicStem(
                conv=nn.Conv3d(
                    3,
                    64,
                    kernel_size=[3, 7, 7],
                    stride=[1, 2, 2],
                    padding=[1, 3, 3],
                    bias=False,
                ),
                norm=None if norm is None else norm(64),
                activation=None if activation is None else activation(),
                pool=None
                if pool is None
                else pool(kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]),
            )

            model.load_state_dict(
                model_gt.state_dict(), strict=True
            )  # explicitly use strict mode.

            # Test forwarding.
            for input_tensor in TestResNetBasicStem._get_inputs():
                with torch.no_grad():
                    if input_tensor.shape[1] != 3:
                        with self.assertRaises(RuntimeError):
                            output_tensor = model(input_tensor)
                        continue
                    else:
                        output_tensor = model(input_tensor)
                        output_tensor_gt = model_gt(input_tensor)
                self.assertEqual(
                    output_tensor.shape,
                    output_tensor_gt.shape,
                    "Output shape {} is different from expected shape {}".format(
                        output_tensor.shape, output_tensor_gt.shape
                    ),
                )
                self.assertTrue(
                    np.allclose(output_tensor.numpy(), output_tensor_gt.numpy())
                )

    def test_create_acoustic_stem_with_callable(self):
        """
        Test builder `create_acoustic_res_basic_stem` with callable
        inputs.
        """
        for (pool, activation, norm) in itertools.product(
            (nn.AvgPool3d, nn.MaxPool3d, None),
            (nn.ReLU, nn.Softmax, nn.Sigmoid, None),
            (nn.BatchNorm3d, None),
        ):
            model = create_acoustic_res_basic_stem(
                in_channels=3,
                out_channels=64,
                pool=pool,
                activation=activation,
                norm=norm,
            )
            model_gt = ResNetBasicStem(
                conv=ConvReduce3D(
                    in_channels=3,
                    out_channels=64,
                    kernel_size=((3, 1, 1), (1, 7, 7)),
                    stride=((1, 1, 1), (1, 1, 1)),
                    padding=((1, 0, 0), (0, 3, 3)),
                    bias=(False, False),
                ),
                norm=None if norm is None else norm(64),
                activation=None if activation is None else activation(),
                pool=None
                if pool is None
                else pool(kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]),
            )

            model.load_state_dict(
                model_gt.state_dict(), strict=True
            )  # explicitly use strict mode.

            # Test forwarding.
            for input_tensor in TestResNetBasicStem._get_inputs():
                with torch.no_grad():
                    if input_tensor.shape[1] != 3:
                        with self.assertRaises(RuntimeError):
                            output_tensor = model(input_tensor)
                        continue
                    else:
                        output_tensor = model(input_tensor)
                        output_tensor_gt = model_gt(input_tensor)
                self.assertEqual(
                    output_tensor.shape,
                    output_tensor_gt.shape,
                    "Output shape {} is different from expected shape {}".format(
                        output_tensor.shape, output_tensor_gt.shape
                    ),
                )
                self.assertTrue(
                    np.allclose(output_tensor.numpy(), output_tensor_gt.numpy())
                )

    @staticmethod
    def _get_inputs(input_dim: int = 3) -> torch.tensor:
        """
        Provide different tensors as test cases.

        Yield:
            (torch.tensor): tensor as test case input.
        """
        # Prepare random tensor as test cases.
        shapes = (
            # Forward succeeded.
            (1, input_dim, 3, 7, 7),
            (1, input_dim, 5, 7, 7),
            (1, input_dim, 7, 7, 7),
            (2, input_dim, 3, 7, 7),
            (4, input_dim, 3, 7, 7),
            (8, input_dim, 3, 7, 7),
            (2, input_dim, 3, 7, 14),
            (2, input_dim, 3, 14, 7),
            (2, input_dim, 3, 14, 14),
            # Forward failed.
            (8, input_dim * 2, 3, 7, 7),
            (8, input_dim * 4, 5, 7, 7),
        )
        for shape in shapes:
            yield torch.rand(shape)