admin
commited on
Commit
Β·
babad42
1
Parent(s):
db92ea3
upd md
Browse files
README.md
CHANGED
|
@@ -7,8 +7,80 @@ The demucs model in the ICASSP 2024 Cadenza Challenge is an innovative sound sep
|
|
| 7 |
|
| 8 |
## Usage
|
| 9 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from modelscope import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model_dir = snapshot_download('monetjoe/hdemucs_high_musdbhq')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
```
|
| 13 |
|
| 14 |
## Maintenance
|
|
|
|
| 7 |
|
| 8 |
## Usage
|
| 9 |
```python
|
| 10 |
+
import torch
|
| 11 |
+
import torchaudio
|
| 12 |
+
from typing import Callable
|
| 13 |
+
from functools import partial
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
from modelscope import snapshot_download
|
| 16 |
+
from torchaudio.models import hdemucs_high
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class SourceSeparationBundle:
|
| 20 |
+
"""Dataclass that bundles components for performing source separation.
|
| 21 |
+
|
| 22 |
+
Example
|
| 23 |
+
>>> import torchaudio
|
| 24 |
+
>>> from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX
|
| 25 |
+
>>> import torch
|
| 26 |
+
>>>
|
| 27 |
+
>>> # Build the separation model.
|
| 28 |
+
>>> model = CONVTASNET_BASE_LIBRI2MIX.get_model()
|
| 29 |
+
>>> 100%|βββββββββββββββββββββββββββββββ|19.1M/19.1M [00:04<00:00, 4.93MB/s]
|
| 30 |
+
>>>
|
| 31 |
+
>>> # Instantiate the test set of Libri2Mix dataset.
|
| 32 |
+
>>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test")
|
| 33 |
+
>>>
|
| 34 |
+
>>> # Apply source separation on mixture audio.
|
| 35 |
+
>>> for i, data in enumerate(dataset):
|
| 36 |
+
>>> sample_rate, mixture, clean_sources = data
|
| 37 |
+
>>> # Make sure the shape of input suits the model requirement.
|
| 38 |
+
>>> mixture = mixture.reshape(1, 1, -1)
|
| 39 |
+
>>> estimated_sources = model(mixture)
|
| 40 |
+
>>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration
|
| 41 |
+
>>> print(f"Si-SNR score is : {score}.)
|
| 42 |
+
>>> break
|
| 43 |
+
>>> Si-SNR score is : 16.24.
|
| 44 |
+
>>>
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
_model_path: str
|
| 48 |
+
_model_factory_func: Callable[[], torch.nn.Module]
|
| 49 |
+
_sample_rate: int
|
| 50 |
+
|
| 51 |
+
@property
|
| 52 |
+
def sample_rate(self) -> int:
|
| 53 |
+
"""Sample rate of the audio that the model is trained on.
|
| 54 |
+
|
| 55 |
+
:type: int
|
| 56 |
+
"""
|
| 57 |
+
return self._sample_rate
|
| 58 |
+
|
| 59 |
+
def get_model(self) -> torch.nn.Module:
|
| 60 |
+
"""Construct the model and load the pretrained weight."""
|
| 61 |
+
model = self._model_factory_func()
|
| 62 |
+
path = torchaudio.utils.download_asset(self._model_path)
|
| 63 |
+
state_dict = torch.load(path)
|
| 64 |
+
model.load_state_dict(state_dict)
|
| 65 |
+
model.eval()
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
model_dir = snapshot_download('monetjoe/hdemucs_high_musdbhq')
|
| 69 |
+
HDEMUCS_HIGH_MUSDB = SourceSeparationBundle(
|
| 70 |
+
_model_path=f"{model_dir}/hdemucs_high_musdbhq_only.pt",
|
| 71 |
+
_model_factory_func=partial(
|
| 72 |
+
hdemucs_high, sources=["drums", "bass", "other", "vocals"]
|
| 73 |
+
),
|
| 74 |
+
_sample_rate=44100,
|
| 75 |
+
)
|
| 76 |
+
HDEMUCS_HIGH_MUSDB.__doc__ = """Pre-trained music source separation pipeline with
|
| 77 |
+
*Hybrid Demucs* :cite:`defossez2021hybrid` trained on the training set of MUSDB-HQ :cite:`MUSDB18HQ`.
|
| 78 |
+
|
| 79 |
+
The model is constructed by :func:`~torchaudio.models.hdemucs_high`.
|
| 80 |
+
Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__.
|
| 81 |
+
|
| 82 |
+
Please refer to :class:`SourceSeparationBundle` for usage instructions.
|
| 83 |
+
"""
|
| 84 |
```
|
| 85 |
|
| 86 |
## Maintenance
|