monajm36 commited on
Commit
1cace6f
·
verified ·
1 Parent(s): 5a218d0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ library_name: transformers
6
+ tags:
7
+ - medical
8
+ - cardiology
9
+ - emergency-medicine
10
+ - classification
11
+ - bert
12
+ datasets:
13
+ - MIMIC-III
14
+ metrics:
15
+ - accuracy
16
+ - f1
17
+ - auc
18
+ model-index:
19
+ - name: OHCA-Classifier-V9
20
+ results:
21
+ - task:
22
+ type: text-classification
23
+ name: Out-of-Hospital Cardiac Arrest Detection
24
+ metrics:
25
+ - type: accuracy
26
+ value: 0.86
27
+ - type: f1
28
+ value: 0.80
29
+ - type: auc
30
+ value: 0.905
31
+ ---
32
+
33
+ # OHCA Classifier V9
34
+
35
+ ## Model Description
36
+ This model classifies clinical notes to identify Out-of-Hospital Cardiac Arrest (OHCA) cases. It's based on BiomedNLP-PubMedBERT and trained on MIMIC-III data.
37
+
38
+ ## Model Performance
39
+ - **AUC-ROC**: 0.905
40
+ - **Sensitivity**: 80%
41
+ - **Specificity**: 95%
42
+ - **F1-Score**: 0.80
43
+ - **Optimal Threshold**: 0.120
44
+
45
+ ## Usage
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
48
+ import torch
49
+
50
+ # Load model
51
+ tokenizer = AutoTokenizer.from_pretrained("monajm36/ohca-classifier-v9")
52
+ model = AutoModelForSequenceClassification.from_pretrained("monajm36/ohca-classifier-v9")
53
+
54
+ # Predict
55
+ def predict_ohca(text):
56
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
57
+ with torch.no_grad():
58
+ outputs = model(**inputs)
59
+ probs = torch.softmax(outputs.logits, dim=-1)
60
+ return probs[0][1].item() # OHCA probability
61
+
62
+ # Example
63
+ text = "Chief Complaint: Cardiac arrest. HPI: Patient found unresponsive..."
64
+ prob = predict_ohca(text)
65
+ print(f"OHCA Probability: {prob:.3f}")
66
+ ```
67
+
68
+ ## Training Data
69
+ - **Dataset**: MIMIC-III
70
+ - **Samples**: 330 clinical notes
71
+ - **Classes**: Binary (OHCA vs Non-OHCA)
72
+
73
+ ## Disclaimer
74
+ This model is for research purposes only. Not intended for clinical decision-making.