|
|
""" |
|
|
Full definition of a LunarisCodex Language Model, all of it in this single file. |
|
|
FIXED VERSION addressing numerical stability issues for training. |
|
|
|
|
|
References: |
|
|
1) the official GPT-2 TensorFlow implementation released by OpenAI: |
|
|
https://github.com/openai/gpt-2/blob/master/src/model.py |
|
|
2) huggingface/transformers PyTorch implementation: |
|
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py |
|
|
""" |
|
|
|
|
|
import math |
|
|
import inspect |
|
|
from dataclasses import dataclass |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
import torch.utils.checkpoint as checkpoint |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
|
t = torch.arange(end, device=freqs.device, dtype=torch.float32) |
|
|
freqs = torch.outer(t, freqs) |
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
|
return freqs_cis |
|
|
|
|
|
def apply_rotary_emb(xq, xk, freqs_cis): |
|
|
|
|
|
original_dtype = xq.dtype |
|
|
|
|
|
|
|
|
xq_float = xq.float() |
|
|
xk_float = xk.float() |
|
|
|
|
|
|
|
|
xq_complex = torch.view_as_complex(xq_float.reshape(*xq_float.shape[:-1], -1, 2)) |
|
|
xk_complex = torch.view_as_complex(xk_float.reshape(*xk_float.shape[:-1], -1, 2)) |
|
|
|
|
|
|
|
|
xq_out_complex = xq_complex * freqs_cis |
|
|
xk_out_complex = xk_complex * freqs_cis |
|
|
|
|
|
|
|
|
xq_out = torch.view_as_real(xq_out_complex).flatten(3) |
|
|
xk_out = torch.view_as_real(xk_out_complex).flatten(3) |
|
|
|
|
|
|
|
|
return xq_out.to(original_dtype), xk_out.to(original_dtype) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
""" Fixed Root Mean Square Layer Normalization """ |
|
|
def __init__(self, dim, eps=1e-5): |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
self.bias = nn.Parameter(torch.zeros(dim)) |
|
|
|
|
|
def _norm(self, x): |
|
|
|
|
|
x_f32 = x.to(torch.float32) |
|
|
variance = x_f32.pow(2).mean(-1, keepdim=True) |
|
|
return (x_f32 * torch.rsqrt(variance + self.eps)).to(x.dtype) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
output = self._norm(x) |
|
|
return output * self.weight + self.bias |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
assert config.d_model % config.n_heads == 0 |
|
|
|
|
|
self.d_model = config.d_model |
|
|
self.n_heads = config.n_heads |
|
|
self.n_kv_heads = config.n_kv_heads if config.n_kv_heads is not None else config.n_heads |
|
|
assert self.n_heads % self.n_kv_heads == 0, "Number of heads must be divisible by number of key-value heads" |
|
|
self.head_dim = self.d_model // self.n_heads |
|
|
|
|
|
|
|
|
self.c_attn = nn.Linear(self.d_model, self.d_model + 2 * self.n_kv_heads * self.head_dim, bias=config.bias) |
|
|
|
|
|
self.c_proj = nn.Linear(self.d_model, self.d_model, bias=config.bias) |
|
|
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
|
self.dropout = config.dropout |
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') |
|
|
if not self.flash: |
|
|
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") |
|
|
|
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.max_seq_len, config.max_seq_len)) |
|
|
.view(1, 1, config.max_seq_len, config.max_seq_len)) |
|
|
|
|
|
def forward(self, x, freqs_cis): |
|
|
B, T, C = x.size() |
|
|
|
|
|
|
|
|
q, k, v = self.c_attn(x).split([self.d_model, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim], dim=2) |
|
|
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
k = k.view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) |
|
|
v = v.view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
q, k = apply_rotary_emb(q, k, freqs_cis) |
|
|
|
|
|
|
|
|
if self.n_kv_heads < self.n_heads: |
|
|
num_repeats = self.n_heads // self.n_kv_heads |
|
|
k = k.repeat_interleave(num_repeats, dim=1) |
|
|
v = v.repeat_interleave(num_repeats, dim=1) |
|
|
|
|
|
|
|
|
if self.flash: |
|
|
|
|
|
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) |
|
|
else: |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
|
att = F.softmax(att, dim=-1) |
|
|
att = self.attn_dropout(att) |
|
|
y = att @ v |
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
|
return y |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
|
""" SwiGLU Gated Linear Unit Feed-Forward Network """ |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
hidden_dim = 4 * config.d_model |
|
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
|
|
|
multiple_of = 256 |
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
|
|
self.gate_up_proj = nn.Linear(config.d_model, 2 * hidden_dim, bias=False) |
|
|
self.down_proj = nn.Linear(hidden_dim, config.d_model, bias=False) |
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
def forward(self, x): |
|
|
gate, up = self.gate_up_proj(x).chunk(2, dim=-1) |
|
|
x = self.down_proj(F.silu(gate) * up) |
|
|
x = self.dropout(x) |
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.ln_1 = RMSNorm(config.d_model) |
|
|
self.attn = CausalSelfAttention(config) |
|
|
self.ln_2 = RMSNorm(config.d_model) |
|
|
self.mlp = SwiGLU(config) |
|
|
self.use_gradient_checkpointing = config.use_gradient_checkpointing |
|
|
|
|
|
def _block_forward(self, x, freqs_cis): |
|
|
"""Helper function for the forward pass, used by checkpointing.""" |
|
|
x = x + self.attn(self.ln_1(x), freqs_cis) |
|
|
x = x + self.mlp(self.ln_2(x)) |
|
|
return x |
|
|
|
|
|
def forward(self, x, freqs_cis): |
|
|
if self.training and self.use_gradient_checkpointing: |
|
|
return checkpoint.checkpoint(self._block_forward, x, freqs_cis, use_reentrant=False) |
|
|
else: |
|
|
return self._block_forward(x, freqs_cis) |
|
|
|
|
|
@dataclass |
|
|
class LunarisCodexConfig: |
|
|
max_seq_len: int = 1024 |
|
|
vocab_size: int = 50304 |
|
|
n_layers: int = 12 |
|
|
n_heads: int = 12 |
|
|
n_kv_heads: int = None |
|
|
d_model: int = 768 |
|
|
dropout: float = 0.0 |
|
|
bias: bool = True |
|
|
rope_theta: float = 10000.0 |
|
|
use_gradient_checkpointing: bool = False |
|
|
|
|
|
class LunarisCodex(nn.Module): |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
assert config.vocab_size is not None |
|
|
assert config.max_seq_len is not None |
|
|
self.config = config |
|
|
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
|
wte = nn.Embedding(config.vocab_size, config.d_model), |
|
|
drop = nn.Dropout(config.dropout), |
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layers)]), |
|
|
ln_f = RMSNorm(config.d_model), |
|
|
)) |
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
|
|
|
freqs_cis = precompute_freqs_cis( |
|
|
self.config.d_model // self.config.n_heads, |
|
|
self.config.max_seq_len, |
|
|
self.config.rope_theta |
|
|
) |
|
|
self.register_buffer("freqs_cis", freqs_cis) |
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
|
|
def get_num_params(self, non_embedding=True): |
|
|
""" |
|
|
Return the number of parameters in the model. |
|
|
For non-embedding count (default), the position embeddings get subtracted. |
|
|
The token embeddings would too, except due to the parameter sharing these |
|
|
params are actually used as weights in the final layer, so we include them. |
|
|
""" |
|
|
n_params = sum(p.numel() for p in self.parameters()) |
|
|
if non_embedding: |
|
|
|
|
|
pass |
|
|
return n_params |
|
|
|
|
|
def _init_weights(self, module): |
|
|
""" |
|
|
Initializes weights with a consistent, modern scheme. |
|
|
This method is called by `self.apply(self._init_weights)`. |
|
|
""" |
|
|
|
|
|
std = 0.02 / math.sqrt(2 * self.config.n_layers) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(module, CausalSelfAttention): |
|
|
|
|
|
torch.nn.init.normal_(module.c_attn.weight, mean=0.0, std=std) |
|
|
torch.nn.init.normal_(module.c_proj.weight, mean=0.0, std=std) |
|
|
if module.c_attn.bias is not None: |
|
|
torch.nn.init.zeros_(module.c_attn.bias) |
|
|
if module.c_proj.bias is not None: |
|
|
torch.nn.init.zeros_(module.c_proj.bias) |
|
|
|
|
|
elif isinstance(module, SwiGLU): |
|
|
|
|
|
torch.nn.init.normal_(module.down_proj.weight, mean=0.0, std=std) |
|
|
|
|
|
torch.nn.init.normal_(module.gate_up_proj.weight, mean=0.0, std=0.02) |
|
|
|
|
|
|
|
|
elif isinstance(module, nn.Embedding): |
|
|
|
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
|
|
elif isinstance(module, RMSNorm): |
|
|
|
|
|
torch.nn.init.ones_(module.weight) |
|
|
if module.bias is not None: |
|
|
torch.nn.init.zeros_(module.bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, idx, targets=None): |
|
|
device = idx.device |
|
|
b, t = idx.size() |
|
|
assert t <= self.config.max_seq_len, f"Cannot forward sequence of length {t}, block size is only {self.config.max_seq_len}" |
|
|
|
|
|
|
|
|
freqs_cis = self.freqs_cis[:t] |
|
|
|
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
|
x = self.transformer.drop(tok_emb) |
|
|
for block in self.transformer.h: |
|
|
x = block(x, freqs_cis) |
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
if targets is not None: |
|
|
|
|
|
logits = self.lm_head(x) |
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
|
else: |
|
|
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
|
loss = None |
|
|
|
|
|
return logits, loss |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, model_type, override_args=None): |
|
|
raise NotImplementedError("from_pretrained is not supported in this architecture.") |
|
|
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): |
|
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
|
|
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] |
|
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
|
optim_groups = [ |
|
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
|
] |
|
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
|
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
|
use_fused = fused_available and device_type == 'cuda' |
|
|
extra_args = dict(fused=True) if use_fused else dict() |
|
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) |
|
|
print(f"using fused AdamW: {use_fused}") |
|
|
|
|
|
return optimizer |
|
|
|
|
|
def estimate_mfu(self, fwdbwd_per_iter, dt): |
|
|
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ |
|
|
|
|
|
|
|
|
N = self.get_num_params() |
|
|
cfg = self.config |
|
|
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.d_model//cfg.n_heads, cfg.max_seq_len |
|
|
flops_per_token = 6*N + 12*L*H*Q*T |
|
|
flops_per_fwdbwd = flops_per_token * T |
|
|
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter |
|
|
|
|
|
flops_achieved = flops_per_iter * (1.0/dt) |
|
|
flops_promised = 312e12 |
|
|
mfu = flops_achieved / flops_promised |
|
|
return mfu |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
|
""" |
|
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
|
""" |
|
|
for _ in range(max_new_tokens): |
|
|
|
|
|
idx_cond = idx if idx.size(1) <= self.config.max_seq_len else idx[:, -self.config.max_seq_len:] |
|
|
|
|
|
logits, _ = self(idx_cond) |
|
|
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
|
|
if top_k is not None: |
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
|
|
return idx |