Updates for torch dynamo support
Browse files- config.json +2 -1
- modeling_chatglm.py +9 -84
config.json
CHANGED
|
@@ -73,6 +73,7 @@
|
|
| 73 |
["self_attention.query_key_value", "self_attention.dense", "mlp.dense_h_to_4h", "mlp.dense_4h_to_h"],
|
| 74 |
["attention.query_key_value", "attention.dense", "mlp.fc1", "mlp.fc2"],
|
| 75 |
["linear_proj", "dense_h_to_4h", "gate_proj", "dense_4h_to_h"]
|
| 76 |
-
]
|
|
|
|
| 77 |
}
|
| 78 |
}
|
|
|
|
| 73 |
["self_attention.query_key_value", "self_attention.dense", "mlp.dense_h_to_4h", "mlp.dense_4h_to_h"],
|
| 74 |
["attention.query_key_value", "attention.dense", "mlp.fc1", "mlp.fc2"],
|
| 75 |
["linear_proj", "dense_h_to_4h", "gate_proj", "dense_4h_to_h"]
|
| 76 |
+
],
|
| 77 |
+
"disable_exllama": true
|
| 78 |
}
|
| 79 |
}
|
modeling_chatglm.py
CHANGED
|
@@ -238,92 +238,17 @@ class CoreAttention(torch.nn.Module):
|
|
| 238 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
| 239 |
|
| 240 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 245 |
-
is_causal=True)
|
| 246 |
-
else:
|
| 247 |
-
if attention_mask is not None:
|
| 248 |
-
attention_mask = ~attention_mask
|
| 249 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 250 |
-
attention_mask)
|
| 251 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
| 252 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
| 253 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
| 254 |
else:
|
| 255 |
-
# Raw attention scores
|
| 256 |
-
|
| 257 |
-
# [b, np, sq, sk]
|
| 258 |
-
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
| 259 |
-
|
| 260 |
-
# [b, np, sq, hn] -> [b * np, sq, hn]
|
| 261 |
-
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
| 262 |
-
# [b, np, sk, hn] -> [b * np, sk, hn]
|
| 263 |
-
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
| 264 |
-
|
| 265 |
-
# preallocting input tensor: [b * np, sq, sk]
|
| 266 |
-
matmul_input_buffer = torch.empty(
|
| 267 |
-
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
| 268 |
-
device=query_layer.device
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
# Raw attention scores. [b * np, sq, sk]
|
| 272 |
-
matmul_result = torch.baddbmm(
|
| 273 |
-
matmul_input_buffer,
|
| 274 |
-
query_layer, # [b * np, sq, hn]
|
| 275 |
-
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
| 276 |
-
beta=0.0,
|
| 277 |
-
alpha=(1.0 / self.norm_factor),
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
# change view to [b, np, sq, sk]
|
| 281 |
-
attention_scores = matmul_result.view(*output_size)
|
| 282 |
-
|
| 283 |
-
# ===========================
|
| 284 |
-
# Attention probs and dropout
|
| 285 |
-
# ===========================
|
| 286 |
-
|
| 287 |
-
# attention scores and attention mask [b, np, sq, sk]
|
| 288 |
-
if self.attention_softmax_in_fp32:
|
| 289 |
-
attention_scores = attention_scores.float()
|
| 290 |
-
if self.coeff is not None:
|
| 291 |
-
attention_scores = attention_scores * self.coeff
|
| 292 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
| 293 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
| 294 |
-
device=attention_scores.device, dtype=torch.bool)
|
| 295 |
-
attention_mask.tril_()
|
| 296 |
-
attention_mask = ~attention_mask
|
| 297 |
if attention_mask is not None:
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
attention_probs = self.attention_dropout(attention_probs)
|
| 305 |
-
# =========================
|
| 306 |
-
# Context layer. [sq, b, hp]
|
| 307 |
-
# =========================
|
| 308 |
-
|
| 309 |
-
# value_layer -> context layer.
|
| 310 |
-
# [sk, b, np, hn] --> [b, np, sq, hn]
|
| 311 |
-
|
| 312 |
-
# context layer shape: [b, np, sq, hn]
|
| 313 |
-
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
| 314 |
-
# change view [b * np, sk, hn]
|
| 315 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
| 316 |
-
# change view [b * np, sq, sk]
|
| 317 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
| 318 |
-
# matmul: [b * np, sq, hn]
|
| 319 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
| 320 |
-
# change view [b, np, sq, hn]
|
| 321 |
-
context_layer = context_layer.view(*output_size)
|
| 322 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
| 323 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
| 324 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
| 325 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
| 326 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
| 327 |
|
| 328 |
return context_layer
|
| 329 |
|
|
|
|
| 238 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
| 239 |
|
| 240 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
| 241 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
| 242 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 243 |
+
is_causal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
if attention_mask is not None:
|
| 246 |
+
attention_mask = ~attention_mask
|
| 247 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 248 |
+
attention_mask)
|
| 249 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
| 250 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
| 251 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
return context_layer
|
| 254 |
|