Upload HyperLlama-180M-swedish-1x
Browse files- README.md +54 -172
- config.json +3 -3
- generation_config.json +6 -0
- model.safetensors +2 -2
- tokenizer_config.json +2 -1
README.md
CHANGED
|
@@ -1,199 +1,81 @@
|
|
| 1 |
-
|
| 2 |
-
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
-
---
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
- **
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
-
##
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
+
# Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
## About the Model
|
| 4 |
|
| 5 |
+
This model was developed for the paper **_Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation_**.
|
| 6 |
|
| 7 |
+
It is based on the [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) architecture,
|
| 8 |
+
but instead of the original English tokenizer,
|
| 9 |
+
it uses the multilingual [Llama 3.3](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) tokenizer with a 128K vocabulary.
|
| 10 |
+
This results in a 180M-parameter base model.
|
| 11 |
|
| 12 |
+
The base models were trained on:
|
| 13 |
|
| 14 |
+
- [Deduplicated FineWeb-Edu (English)](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus/viewer/fineweb-edu-dedup)
|
| 15 |
+
- [Python-Edu (code subset of the SmolLM2 pre-training corpus)](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus/viewer/python-edu)
|
| 16 |
|
| 17 |
+
There exist 2 English base models: A 180M base model, and a 572M base model that is
|
| 18 |
+
the 180M base model [HyperCloned](https://arxiv.org/html/2409.12903v1) after 80% of the training steps,
|
| 19 |
+
and trained on the remaining 20% of the data afterwards.
|
| 20 |
|
| 21 |
+
Models were adapted to each target language using the corresponding [FineWeb-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) subset.
|
| 22 |
+
The mutilingual models were adapted the same way, but on the FineWeb-2 subsets for all target languages at once.
|
| 23 |
|
| 24 |
+
We evaluate three adaptation setups:
|
| 25 |
|
| 26 |
+
- **1×** — Continue pretraining the 180M base model on the target language
|
| 27 |
+
- **1× (cloned)** — [HyperClone](https://arxiv.org/html/2409.12903v1) the 180M base model to 572M, then continue pretraining on the target language
|
| 28 |
+
- **2×** — Continue pretraining the 572M base model on the target language
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
For more details on our setups, please refer to our paper.
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
+
## Usage
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
The model can be loaded like this. But note that this is a base model; it is not instruction-tuned.
|
| 36 |
|
| 37 |
+
```python
|
| 38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 39 |
|
| 40 |
+
model_id = "liu-nlp/model-id"
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
|
| 43 |
|
| 44 |
+
prompt = "To be hypercloned feels"
|
| 45 |
|
| 46 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 47 |
+
outputs = model.generate(
|
| 48 |
+
**inputs,
|
| 49 |
+
max_new_tokens=200,
|
| 50 |
+
do_sample=True,
|
| 51 |
+
temperature=0.7,
|
| 52 |
+
)
|
| 53 |
|
| 54 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 55 |
+
```
|
| 56 |
|
| 57 |
+
## Limitations
|
| 58 |
|
| 59 |
+
Users should apply the model responsibly, particularly in high-stakes or user-facing applications. The model is not guaranteed to provide factual, neutral, or safe outputs. Additional safety filtering, human oversight, or RLHF-style alignment may be required depending on the deployment context.
|
| 60 |
+
Models of such sm all sizes are expected to produce hallucinations, especially for topics underrepresented or inconsistently represented in the training data.
|
| 61 |
|
|
|
|
| 62 |
|
| 63 |
+
While the base model’s pre-training corpus presumably excludes overtly unethical or harmful material due to its educational focus, the continued pre-training phase introduces additional considerations. Large-scale corpora for our target languages are comparatively limited in availability and curation quality. As a result, the datasets used for domain or language adaptation may contain inappropriate, biased, or otherwise undesirable content.
|
| 64 |
|
|
|
|
| 65 |
|
| 66 |
+
## Citation
|
| 67 |
|
| 68 |
+
If you use this model, please cite:
|
| 69 |
|
| 70 |
+
```bibtex
|
| 71 |
+
@misc{glocker2025growup,
|
| 72 |
+
title = {Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation},
|
| 73 |
+
author = {Glocker, Kevin and Kukk, Kätriin and Oji, Romina and Bollmann, Marcel and Kuhlmann, Marco and Kunz, Jenny},
|
| 74 |
+
year = {2025},
|
| 75 |
+
eprint = {XXXX.XXXXX},
|
| 76 |
+
archivePrefix= {arXiv},
|
| 77 |
+
primaryClass = {cs.CL},
|
| 78 |
+
note = {Coming Soon},
|
| 79 |
+
}
|
| 80 |
+
```
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
"attention_bias": false,
|
| 6 |
"attention_dropout": 0.0,
|
| 7 |
"bos_token_id": 0,
|
| 8 |
-
"dtype": "float32",
|
| 9 |
"eos_token_id": 0,
|
| 10 |
"head_dim": 64,
|
| 11 |
"hidden_act": "gelu",
|
|
@@ -23,7 +22,8 @@
|
|
| 23 |
"rope_scaling": null,
|
| 24 |
"rope_theta": 10000.0,
|
| 25 |
"tie_word_embeddings": true,
|
| 26 |
-
"
|
|
|
|
| 27 |
"use_cache": true,
|
| 28 |
"vocab_size": 128256
|
| 29 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
],
|
| 5 |
"attention_bias": false,
|
| 6 |
"attention_dropout": 0.0,
|
| 7 |
"bos_token_id": 0,
|
|
|
|
| 8 |
"eos_token_id": 0,
|
| 9 |
"head_dim": 64,
|
| 10 |
"hidden_act": "gelu",
|
|
|
|
| 22 |
"rope_scaling": null,
|
| 23 |
"rope_theta": 10000.0,
|
| 24 |
"tie_word_embeddings": true,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
"use_cache": true,
|
| 28 |
"vocab_size": 128256
|
| 29 |
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 0,
|
| 5 |
+
"transformers_version": "4.51.3"
|
| 6 |
+
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1298840f7474452430d43edb48f3712e15b57afead943e446abe0b949027b9b
|
| 3 |
+
size 360188472
|
tokenizer_config.json
CHANGED
|
@@ -2050,6 +2050,7 @@
|
|
| 2050 |
}
|
| 2051 |
},
|
| 2052 |
"bos_token": "<|begin_of_text|>",
|
|
|
|
| 2053 |
"clean_up_tokenization_spaces": true,
|
| 2054 |
"eos_token": "<|eot_id|>",
|
| 2055 |
"extra_special_tokens": {},
|
|
@@ -2059,5 +2060,5 @@
|
|
| 2059 |
],
|
| 2060 |
"model_max_length": 131072,
|
| 2061 |
"pad_token": "<|finetune_right_pad_id|>",
|
| 2062 |
-
"tokenizer_class": "
|
| 2063 |
}
|
|
|
|
| 2050 |
}
|
| 2051 |
},
|
| 2052 |
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
| 2054 |
"clean_up_tokenization_spaces": true,
|
| 2055 |
"eos_token": "<|eot_id|>",
|
| 2056 |
"extra_special_tokens": {},
|
|
|
|
| 2060 |
],
|
| 2061 |
"model_max_length": 131072,
|
| 2062 |
"pad_token": "<|finetune_right_pad_id|>",
|
| 2063 |
+
"tokenizer_class": "PreTrainedTokenizer"
|
| 2064 |
}
|