lhkhiem28 commited on
Commit
9e03f7d
·
verified ·
1 Parent(s): 1771dc6

Model save

Browse files
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "entropy": 0.7788021937012672,
3
+ "epoch": 2.0,
4
+ "mean_token_accuracy": 0.8104717135429382,
5
+ "num_tokens": 44139265.0,
6
+ "total_flos": 81886852153344.0,
7
+ "train_loss": 0.8234564670401053,
8
+ "train_runtime": 2821.943,
9
+ "train_samples": 40756,
10
+ "train_samples_per_second": 28.885,
11
+ "train_steps_per_second": 0.451
12
+ }
generation_config.json CHANGED
@@ -1,8 +1,6 @@
1
  {
2
  "do_sample": true,
3
- "eos_token_id": [
4
- 151645
5
- ],
6
  "pad_token_id": 151643,
7
  "repetition_penalty": 1.1,
8
  "temperature": 0.7,
 
1
  {
2
  "do_sample": true,
3
+ "eos_token_id": 151645,
 
 
4
  "pad_token_id": 151643,
5
  "repetition_penalty": 1.1,
6
  "temperature": 0.7,
train_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "entropy": 0.7788021937012672,
3
+ "epoch": 2.0,
4
+ "mean_token_accuracy": 0.8104717135429382,
5
+ "num_tokens": 44139265.0,
6
+ "total_flos": 81886852153344.0,
7
+ "train_loss": 0.8234564670401053,
8
+ "train_runtime": 2821.943,
9
+ "train_samples": 40756,
10
+ "train_samples_per_second": 28.885,
11
+ "train_steps_per_second": 0.451
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,2586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1274,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.8137687623500824,
14
+ "epoch": 0.007849293563579277,
15
+ "grad_norm": 1.2498285702022305,
16
+ "learning_rate": 6.25e-07,
17
+ "loss": 0.8842,
18
+ "mean_token_accuracy": 0.785642820596695,
19
+ "num_tokens": 167302.0,
20
+ "step": 5
21
+ },
22
+ {
23
+ "entropy": 0.8292662918567657,
24
+ "epoch": 0.015698587127158554,
25
+ "grad_norm": 1.2529955787919684,
26
+ "learning_rate": 1.40625e-06,
27
+ "loss": 0.926,
28
+ "mean_token_accuracy": 0.7712679743766785,
29
+ "num_tokens": 341963.0,
30
+ "step": 10
31
+ },
32
+ {
33
+ "entropy": 0.8178405344486237,
34
+ "epoch": 0.023547880690737835,
35
+ "grad_norm": 1.157639104334158,
36
+ "learning_rate": 2.1875000000000002e-06,
37
+ "loss": 0.8874,
38
+ "mean_token_accuracy": 0.7820083260536194,
39
+ "num_tokens": 514562.0,
40
+ "step": 15
41
+ },
42
+ {
43
+ "entropy": 0.8447394371032715,
44
+ "epoch": 0.03139717425431711,
45
+ "grad_norm": 1.0110753674594426,
46
+ "learning_rate": 2.96875e-06,
47
+ "loss": 0.8802,
48
+ "mean_token_accuracy": 0.7841922461986541,
49
+ "num_tokens": 697799.0,
50
+ "step": 20
51
+ },
52
+ {
53
+ "entropy": 0.8549310743808747,
54
+ "epoch": 0.03924646781789639,
55
+ "grad_norm": 0.9713046877857081,
56
+ "learning_rate": 3.7500000000000005e-06,
57
+ "loss": 0.8498,
58
+ "mean_token_accuracy": 0.7910847783088684,
59
+ "num_tokens": 879558.0,
60
+ "step": 25
61
+ },
62
+ {
63
+ "entropy": 0.9527091681957245,
64
+ "epoch": 0.04709576138147567,
65
+ "grad_norm": 1.1288619451969506,
66
+ "learning_rate": 4.53125e-06,
67
+ "loss": 0.9248,
68
+ "mean_token_accuracy": 0.770955628156662,
69
+ "num_tokens": 1054550.0,
70
+ "step": 30
71
+ },
72
+ {
73
+ "entropy": 0.93895024061203,
74
+ "epoch": 0.054945054945054944,
75
+ "grad_norm": 1.0807316337667978,
76
+ "learning_rate": 5.3125e-06,
77
+ "loss": 0.8937,
78
+ "mean_token_accuracy": 0.7738521635532379,
79
+ "num_tokens": 1223128.0,
80
+ "step": 35
81
+ },
82
+ {
83
+ "entropy": 0.8922846674919128,
84
+ "epoch": 0.06279434850863422,
85
+ "grad_norm": 1.0291764169738526,
86
+ "learning_rate": 6.093750000000001e-06,
87
+ "loss": 0.8627,
88
+ "mean_token_accuracy": 0.7845016241073608,
89
+ "num_tokens": 1390300.0,
90
+ "step": 40
91
+ },
92
+ {
93
+ "entropy": 0.8448170006275177,
94
+ "epoch": 0.0706436420722135,
95
+ "grad_norm": 0.99695005592567,
96
+ "learning_rate": 6.875e-06,
97
+ "loss": 0.8614,
98
+ "mean_token_accuracy": 0.7863391518592835,
99
+ "num_tokens": 1565337.0,
100
+ "step": 45
101
+ },
102
+ {
103
+ "entropy": 0.8435727834701539,
104
+ "epoch": 0.07849293563579278,
105
+ "grad_norm": 0.9969789300232152,
106
+ "learning_rate": 7.656250000000001e-06,
107
+ "loss": 0.8533,
108
+ "mean_token_accuracy": 0.7837498962879181,
109
+ "num_tokens": 1739964.0,
110
+ "step": 50
111
+ },
112
+ {
113
+ "entropy": 0.9490773260593415,
114
+ "epoch": 0.08634222919937205,
115
+ "grad_norm": 1.1155848244480995,
116
+ "learning_rate": 8.4375e-06,
117
+ "loss": 0.9113,
118
+ "mean_token_accuracy": 0.7737100183963775,
119
+ "num_tokens": 1914793.0,
120
+ "step": 55
121
+ },
122
+ {
123
+ "entropy": 0.8683836162090302,
124
+ "epoch": 0.09419152276295134,
125
+ "grad_norm": 1.0379798033803225,
126
+ "learning_rate": 9.21875e-06,
127
+ "loss": 0.8487,
128
+ "mean_token_accuracy": 0.7850546419620514,
129
+ "num_tokens": 2090244.0,
130
+ "step": 60
131
+ },
132
+ {
133
+ "entropy": 0.9082197904586792,
134
+ "epoch": 0.10204081632653061,
135
+ "grad_norm": 1.012766889505417,
136
+ "learning_rate": 1e-05,
137
+ "loss": 0.9053,
138
+ "mean_token_accuracy": 0.7720680296421051,
139
+ "num_tokens": 2265135.0,
140
+ "step": 65
141
+ },
142
+ {
143
+ "entropy": 0.8921416997909546,
144
+ "epoch": 0.10989010989010989,
145
+ "grad_norm": 1.0497092601009774,
146
+ "learning_rate": 1.0781250000000001e-05,
147
+ "loss": 0.8699,
148
+ "mean_token_accuracy": 0.7794101536273956,
149
+ "num_tokens": 2441044.0,
150
+ "step": 70
151
+ },
152
+ {
153
+ "entropy": 0.9669550478458404,
154
+ "epoch": 0.11773940345368916,
155
+ "grad_norm": 0.9951890861818598,
156
+ "learning_rate": 1.1562500000000002e-05,
157
+ "loss": 0.9474,
158
+ "mean_token_accuracy": 0.7674791991710663,
159
+ "num_tokens": 2604663.0,
160
+ "step": 75
161
+ },
162
+ {
163
+ "entropy": 0.9440144538879395,
164
+ "epoch": 0.12558869701726844,
165
+ "grad_norm": 1.2065150641603575,
166
+ "learning_rate": 1.234375e-05,
167
+ "loss": 0.922,
168
+ "mean_token_accuracy": 0.7707725524902344,
169
+ "num_tokens": 2768263.0,
170
+ "step": 80
171
+ },
172
+ {
173
+ "entropy": 0.8668685972690582,
174
+ "epoch": 0.13343799058084774,
175
+ "grad_norm": 1.2386770901130635,
176
+ "learning_rate": 1.3125e-05,
177
+ "loss": 0.8485,
178
+ "mean_token_accuracy": 0.7905673384666443,
179
+ "num_tokens": 2949712.0,
180
+ "step": 85
181
+ },
182
+ {
183
+ "entropy": 0.944975596666336,
184
+ "epoch": 0.141287284144427,
185
+ "grad_norm": 1.1187241541926367,
186
+ "learning_rate": 1.3906250000000001e-05,
187
+ "loss": 0.9397,
188
+ "mean_token_accuracy": 0.7660110533237457,
189
+ "num_tokens": 3117185.0,
190
+ "step": 90
191
+ },
192
+ {
193
+ "entropy": 0.9495220303535461,
194
+ "epoch": 0.14913657770800628,
195
+ "grad_norm": 0.998551455160532,
196
+ "learning_rate": 1.4687500000000001e-05,
197
+ "loss": 0.9408,
198
+ "mean_token_accuracy": 0.771289074420929,
199
+ "num_tokens": 3302547.0,
200
+ "step": 95
201
+ },
202
+ {
203
+ "entropy": 0.9158622920513153,
204
+ "epoch": 0.15698587127158556,
205
+ "grad_norm": 0.9270905315287111,
206
+ "learning_rate": 1.546875e-05,
207
+ "loss": 0.8956,
208
+ "mean_token_accuracy": 0.7790771484375,
209
+ "num_tokens": 3476432.0,
210
+ "step": 100
211
+ },
212
+ {
213
+ "entropy": 0.908061295747757,
214
+ "epoch": 0.16483516483516483,
215
+ "grad_norm": 0.9841369893214966,
216
+ "learning_rate": 1.6250000000000002e-05,
217
+ "loss": 0.8792,
218
+ "mean_token_accuracy": 0.7790496408939361,
219
+ "num_tokens": 3639897.0,
220
+ "step": 105
221
+ },
222
+ {
223
+ "entropy": 0.9189075231552124,
224
+ "epoch": 0.1726844583987441,
225
+ "grad_norm": 0.9724726801988812,
226
+ "learning_rate": 1.703125e-05,
227
+ "loss": 0.9308,
228
+ "mean_token_accuracy": 0.7684554994106293,
229
+ "num_tokens": 3814198.0,
230
+ "step": 110
231
+ },
232
+ {
233
+ "entropy": 1.006046313047409,
234
+ "epoch": 0.18053375196232338,
235
+ "grad_norm": 1.1055703099692835,
236
+ "learning_rate": 1.7812500000000003e-05,
237
+ "loss": 0.9829,
238
+ "mean_token_accuracy": 0.7581951677799225,
239
+ "num_tokens": 3986493.0,
240
+ "step": 115
241
+ },
242
+ {
243
+ "entropy": 0.8986892402172089,
244
+ "epoch": 0.18838304552590268,
245
+ "grad_norm": 1.0986720644353458,
246
+ "learning_rate": 1.859375e-05,
247
+ "loss": 0.8716,
248
+ "mean_token_accuracy": 0.7798399269580841,
249
+ "num_tokens": 4164049.0,
250
+ "step": 120
251
+ },
252
+ {
253
+ "entropy": 0.878982138633728,
254
+ "epoch": 0.19623233908948196,
255
+ "grad_norm": 1.282638101087494,
256
+ "learning_rate": 1.9375e-05,
257
+ "loss": 0.8682,
258
+ "mean_token_accuracy": 0.787539267539978,
259
+ "num_tokens": 4339185.0,
260
+ "step": 125
261
+ },
262
+ {
263
+ "entropy": 0.9752950251102448,
264
+ "epoch": 0.20408163265306123,
265
+ "grad_norm": 1.0596313981000727,
266
+ "learning_rate": 1.999996242489157e-05,
267
+ "loss": 0.9671,
268
+ "mean_token_accuracy": 0.7596070408821106,
269
+ "num_tokens": 4510040.0,
270
+ "step": 130
271
+ },
272
+ {
273
+ "entropy": 0.9383419454097748,
274
+ "epoch": 0.2119309262166405,
275
+ "grad_norm": 1.1019667589324866,
276
+ "learning_rate": 1.9998647325745995e-05,
277
+ "loss": 0.9137,
278
+ "mean_token_accuracy": 0.7694579124450683,
279
+ "num_tokens": 4674161.0,
280
+ "step": 135
281
+ },
282
+ {
283
+ "entropy": 0.9200547873973847,
284
+ "epoch": 0.21978021978021978,
285
+ "grad_norm": 1.3390877101513827,
286
+ "learning_rate": 1.9995453753547198e-05,
287
+ "loss": 0.9358,
288
+ "mean_token_accuracy": 0.7694545567035675,
289
+ "num_tokens": 4844929.0,
290
+ "step": 140
291
+ },
292
+ {
293
+ "entropy": 0.8575052678585052,
294
+ "epoch": 0.22762951334379905,
295
+ "grad_norm": 1.0504559681667442,
296
+ "learning_rate": 1.9990382308280272e-05,
297
+ "loss": 0.8269,
298
+ "mean_token_accuracy": 0.7877948880195618,
299
+ "num_tokens": 5018536.0,
300
+ "step": 145
301
+ },
302
+ {
303
+ "entropy": 0.9258451402187348,
304
+ "epoch": 0.23547880690737832,
305
+ "grad_norm": 1.5268736323531151,
306
+ "learning_rate": 1.9983433942731427e-05,
307
+ "loss": 0.9066,
308
+ "mean_token_accuracy": 0.7738877952098846,
309
+ "num_tokens": 5191960.0,
310
+ "step": 150
311
+ },
312
+ {
313
+ "entropy": 0.9647774994373322,
314
+ "epoch": 0.24332810047095763,
315
+ "grad_norm": 0.9924889501186367,
316
+ "learning_rate": 1.9974609962308986e-05,
317
+ "loss": 0.9453,
318
+ "mean_token_accuracy": 0.7651817858219147,
319
+ "num_tokens": 5365413.0,
320
+ "step": 155
321
+ },
322
+ {
323
+ "entropy": 0.8535805344581604,
324
+ "epoch": 0.25117739403453687,
325
+ "grad_norm": 1.207831232616088,
326
+ "learning_rate": 1.9963912024798136e-05,
327
+ "loss": 0.8289,
328
+ "mean_token_accuracy": 0.7925532817840576,
329
+ "num_tokens": 5538450.0,
330
+ "step": 160
331
+ },
332
+ {
333
+ "entropy": 0.9065257787704468,
334
+ "epoch": 0.25902668759811615,
335
+ "grad_norm": 1.108511902641107,
336
+ "learning_rate": 1.9951342140049483e-05,
337
+ "loss": 0.8981,
338
+ "mean_token_accuracy": 0.7765676736831665,
339
+ "num_tokens": 5707748.0,
340
+ "step": 165
341
+ },
342
+ {
343
+ "entropy": 0.959476500749588,
344
+ "epoch": 0.2668759811616955,
345
+ "grad_norm": 1.045988970094323,
346
+ "learning_rate": 1.9936902669601436e-05,
347
+ "loss": 0.9435,
348
+ "mean_token_accuracy": 0.7652472734451294,
349
+ "num_tokens": 5890537.0,
350
+ "step": 170
351
+ },
352
+ {
353
+ "entropy": 0.9796473443508148,
354
+ "epoch": 0.27472527472527475,
355
+ "grad_norm": 1.087620007826276,
356
+ "learning_rate": 1.992059632623657e-05,
357
+ "loss": 0.952,
358
+ "mean_token_accuracy": 0.7599488139152527,
359
+ "num_tokens": 6057869.0,
360
+ "step": 175
361
+ },
362
+ {
363
+ "entropy": 0.9035453498363495,
364
+ "epoch": 0.282574568288854,
365
+ "grad_norm": 1.0921993142130724,
366
+ "learning_rate": 1.9902426173471933e-05,
367
+ "loss": 0.9058,
368
+ "mean_token_accuracy": 0.7729472696781159,
369
+ "num_tokens": 6224622.0,
370
+ "step": 180
371
+ },
372
+ {
373
+ "entropy": 0.8645186245441436,
374
+ "epoch": 0.2904238618524333,
375
+ "grad_norm": 0.9878560128159095,
376
+ "learning_rate": 1.9882395624983522e-05,
377
+ "loss": 0.8432,
378
+ "mean_token_accuracy": 0.789067167043686,
379
+ "num_tokens": 6414833.0,
380
+ "step": 185
381
+ },
382
+ {
383
+ "entropy": 0.9464374244213104,
384
+ "epoch": 0.29827315541601257,
385
+ "grad_norm": 1.0651426856760022,
386
+ "learning_rate": 1.986050844396493e-05,
387
+ "loss": 0.9708,
388
+ "mean_token_accuracy": 0.761693674325943,
389
+ "num_tokens": 6586859.0,
390
+ "step": 190
391
+ },
392
+ {
393
+ "entropy": 0.9922519862651825,
394
+ "epoch": 0.30612244897959184,
395
+ "grad_norm": 1.0321729993101865,
396
+ "learning_rate": 1.9836768742420355e-05,
397
+ "loss": 0.967,
398
+ "mean_token_accuracy": 0.7581054270267487,
399
+ "num_tokens": 6763502.0,
400
+ "step": 195
401
+ },
402
+ {
403
+ "entropy": 0.9340095579624176,
404
+ "epoch": 0.3139717425431711,
405
+ "grad_norm": 1.065717403764133,
406
+ "learning_rate": 1.9811180980392054e-05,
407
+ "loss": 0.9158,
408
+ "mean_token_accuracy": 0.7731278002262115,
409
+ "num_tokens": 6947678.0,
410
+ "step": 200
411
+ },
412
+ {
413
+ "entropy": 0.9047947406768799,
414
+ "epoch": 0.3218210361067504,
415
+ "grad_norm": 1.165995805358474,
416
+ "learning_rate": 1.9783749965122444e-05,
417
+ "loss": 0.903,
418
+ "mean_token_accuracy": 0.7720041751861573,
419
+ "num_tokens": 7122608.0,
420
+ "step": 205
421
+ },
422
+ {
423
+ "entropy": 0.9563897252082825,
424
+ "epoch": 0.32967032967032966,
425
+ "grad_norm": 1.0190589661761846,
426
+ "learning_rate": 1.975448085015093e-05,
427
+ "loss": 0.9432,
428
+ "mean_token_accuracy": 0.7627806901931763,
429
+ "num_tokens": 7294148.0,
430
+ "step": 210
431
+ },
432
+ {
433
+ "entropy": 0.9672208964824677,
434
+ "epoch": 0.33751962323390894,
435
+ "grad_norm": 1.2025367537091745,
436
+ "learning_rate": 1.9723379134345698e-05,
437
+ "loss": 0.9374,
438
+ "mean_token_accuracy": 0.7633033454418182,
439
+ "num_tokens": 7460519.0,
440
+ "step": 215
441
+ },
442
+ {
443
+ "entropy": 0.8836290538311005,
444
+ "epoch": 0.3453689167974882,
445
+ "grad_norm": 1.33488443692098,
446
+ "learning_rate": 1.9690450660870657e-05,
447
+ "loss": 0.8674,
448
+ "mean_token_accuracy": 0.7792915940284729,
449
+ "num_tokens": 7630763.0,
450
+ "step": 220
451
+ },
452
+ {
453
+ "entropy": 0.9819486677646637,
454
+ "epoch": 0.3532182103610675,
455
+ "grad_norm": 1.078937991680393,
456
+ "learning_rate": 1.965570161608762e-05,
457
+ "loss": 0.9541,
458
+ "mean_token_accuracy": 0.7652910888195038,
459
+ "num_tokens": 7809299.0,
460
+ "step": 225
461
+ },
462
+ {
463
+ "entropy": 0.9152782142162323,
464
+ "epoch": 0.36106750392464676,
465
+ "grad_norm": 1.0337372369381215,
466
+ "learning_rate": 1.961913852839409e-05,
467
+ "loss": 0.9111,
468
+ "mean_token_accuracy": 0.7740268886089325,
469
+ "num_tokens": 7984254.0,
470
+ "step": 230
471
+ },
472
+ {
473
+ "entropy": 0.9140479445457459,
474
+ "epoch": 0.36891679748822603,
475
+ "grad_norm": 1.0554855671609806,
476
+ "learning_rate": 1.958076826699676e-05,
477
+ "loss": 0.898,
478
+ "mean_token_accuracy": 0.778877067565918,
479
+ "num_tokens": 8160504.0,
480
+ "step": 235
481
+ },
482
+ {
483
+ "entropy": 0.9460480809211731,
484
+ "epoch": 0.37676609105180536,
485
+ "grad_norm": 1.0776604764543851,
486
+ "learning_rate": 1.954059804062092e-05,
487
+ "loss": 0.9074,
488
+ "mean_token_accuracy": 0.7742487788200378,
489
+ "num_tokens": 8334674.0,
490
+ "step": 240
491
+ },
492
+ {
493
+ "entropy": 0.8607169687747955,
494
+ "epoch": 0.38461538461538464,
495
+ "grad_norm": 0.9664199997534758,
496
+ "learning_rate": 1.9498635396156217e-05,
497
+ "loss": 0.844,
498
+ "mean_token_accuracy": 0.7840388596057892,
499
+ "num_tokens": 8513195.0,
500
+ "step": 245
501
+ },
502
+ {
503
+ "entropy": 0.9014766633510589,
504
+ "epoch": 0.3924646781789639,
505
+ "grad_norm": 0.9734775846976641,
506
+ "learning_rate": 1.945488821723873e-05,
507
+ "loss": 0.8921,
508
+ "mean_token_accuracy": 0.7753498792648316,
509
+ "num_tokens": 8686897.0,
510
+ "step": 250
511
+ },
512
+ {
513
+ "entropy": 0.9077717363834381,
514
+ "epoch": 0.4003139717425432,
515
+ "grad_norm": 1.0109046170784879,
516
+ "learning_rate": 1.9409364722769882e-05,
517
+ "loss": 0.9025,
518
+ "mean_token_accuracy": 0.7715001821517944,
519
+ "num_tokens": 8866587.0,
520
+ "step": 255
521
+ },
522
+ {
523
+ "entropy": 0.9486985802650452,
524
+ "epoch": 0.40816326530612246,
525
+ "grad_norm": 1.0748032904253821,
526
+ "learning_rate": 1.936207346537233e-05,
527
+ "loss": 0.9119,
528
+ "mean_token_accuracy": 0.7716647446155548,
529
+ "num_tokens": 9034897.0,
530
+ "step": 260
531
+ },
532
+ {
533
+ "entropy": 0.9861001193523407,
534
+ "epoch": 0.41601255886970173,
535
+ "grad_norm": 1.0400152143552956,
536
+ "learning_rate": 1.931302332978316e-05,
537
+ "loss": 0.9821,
538
+ "mean_token_accuracy": 0.7538613855838776,
539
+ "num_tokens": 9206601.0,
540
+ "step": 265
541
+ },
542
+ {
543
+ "entropy": 0.9214053153991699,
544
+ "epoch": 0.423861852433281,
545
+ "grad_norm": 1.1645077448794618,
546
+ "learning_rate": 1.9262223531184678e-05,
547
+ "loss": 0.9011,
548
+ "mean_token_accuracy": 0.7738885402679443,
549
+ "num_tokens": 9377998.0,
550
+ "step": 270
551
+ },
552
+ {
553
+ "entropy": 0.9156931042671204,
554
+ "epoch": 0.4317111459968603,
555
+ "grad_norm": 1.1591925677820152,
556
+ "learning_rate": 1.9209683613473143e-05,
557
+ "loss": 0.906,
558
+ "mean_token_accuracy": 0.7671774208545685,
559
+ "num_tokens": 9541697.0,
560
+ "step": 275
561
+ },
562
+ {
563
+ "entropy": 0.9932588875293732,
564
+ "epoch": 0.43956043956043955,
565
+ "grad_norm": 1.0406912144016454,
566
+ "learning_rate": 1.9155413447465715e-05,
567
+ "loss": 0.9592,
568
+ "mean_token_accuracy": 0.7620833516120911,
569
+ "num_tokens": 9715631.0,
570
+ "step": 280
571
+ },
572
+ {
573
+ "entropy": 0.9383195698261261,
574
+ "epoch": 0.4474097331240188,
575
+ "grad_norm": 0.8631244170208505,
576
+ "learning_rate": 1.9099423229046015e-05,
577
+ "loss": 0.9024,
578
+ "mean_token_accuracy": 0.7757165312767029,
579
+ "num_tokens": 9909976.0,
580
+ "step": 285
581
+ },
582
+ {
583
+ "entropy": 0.9043536722660065,
584
+ "epoch": 0.4552590266875981,
585
+ "grad_norm": 0.9634313446447162,
586
+ "learning_rate": 1.9041723477248575e-05,
587
+ "loss": 0.9065,
588
+ "mean_token_accuracy": 0.7703853189945221,
589
+ "num_tokens": 10085804.0,
590
+ "step": 290
591
+ },
592
+ {
593
+ "entropy": 0.974334853887558,
594
+ "epoch": 0.4631083202511774,
595
+ "grad_norm": 1.095901923333671,
596
+ "learning_rate": 1.8982325032282616e-05,
597
+ "loss": 0.9593,
598
+ "mean_token_accuracy": 0.7652020514011383,
599
+ "num_tokens": 10257456.0,
600
+ "step": 295
601
+ },
602
+ {
603
+ "entropy": 1.007982575893402,
604
+ "epoch": 0.47095761381475665,
605
+ "grad_norm": 1.182428118534986,
606
+ "learning_rate": 1.8921239053495465e-05,
607
+ "loss": 1.0217,
608
+ "mean_token_accuracy": 0.7486987233161926,
609
+ "num_tokens": 10435032.0,
610
+ "step": 300
611
+ },
612
+ {
613
+ "entropy": 0.9067355990409851,
614
+ "epoch": 0.478806907378336,
615
+ "grad_norm": 1.0863585269379692,
616
+ "learning_rate": 1.8858477017276002e-05,
617
+ "loss": 0.8905,
618
+ "mean_token_accuracy": 0.7765041291713715,
619
+ "num_tokens": 10600741.0,
620
+ "step": 305
621
+ },
622
+ {
623
+ "entropy": 0.9714633703231812,
624
+ "epoch": 0.48665620094191525,
625
+ "grad_norm": 1.0371749493505917,
626
+ "learning_rate": 1.8794050714898596e-05,
627
+ "loss": 0.9722,
628
+ "mean_token_accuracy": 0.7596213459968567,
629
+ "num_tokens": 10772147.0,
630
+ "step": 310
631
+ },
632
+ {
633
+ "entropy": 0.9553025841712952,
634
+ "epoch": 0.4945054945054945,
635
+ "grad_norm": 1.2663062273392092,
636
+ "learning_rate": 1.87279722503078e-05,
637
+ "loss": 0.9271,
638
+ "mean_token_accuracy": 0.7640045523643494,
639
+ "num_tokens": 10932723.0,
640
+ "step": 315
641
+ },
642
+ {
643
+ "entropy": 0.8979163527488708,
644
+ "epoch": 0.5023547880690737,
645
+ "grad_norm": 1.0630849721253497,
646
+ "learning_rate": 1.866025403784439e-05,
647
+ "loss": 0.8846,
648
+ "mean_token_accuracy": 0.7761894226074219,
649
+ "num_tokens": 11108298.0,
650
+ "step": 320
651
+ },
652
+ {
653
+ "entropy": 0.970594984292984,
654
+ "epoch": 0.5102040816326531,
655
+ "grad_norm": 1.1521817896600275,
656
+ "learning_rate": 1.859090879991302e-05,
657
+ "loss": 0.9573,
658
+ "mean_token_accuracy": 0.7568030714988708,
659
+ "num_tokens": 11277977.0,
660
+ "step": 325
661
+ },
662
+ {
663
+ "entropy": 0.9011347949504852,
664
+ "epoch": 0.5180533751962323,
665
+ "grad_norm": 1.083750125874247,
666
+ "learning_rate": 1.8519949564592047e-05,
667
+ "loss": 0.9007,
668
+ "mean_token_accuracy": 0.7751846432685852,
669
+ "num_tokens": 11442811.0,
670
+ "step": 330
671
+ },
672
+ {
673
+ "entropy": 0.9026133477687835,
674
+ "epoch": 0.5259026687598116,
675
+ "grad_norm": 1.039475253676616,
676
+ "learning_rate": 1.8447389663185905e-05,
677
+ "loss": 0.8827,
678
+ "mean_token_accuracy": 0.7790962815284729,
679
+ "num_tokens": 11631058.0,
680
+ "step": 335
681
+ },
682
+ {
683
+ "entropy": 0.9119177341461182,
684
+ "epoch": 0.533751962323391,
685
+ "grad_norm": 1.0742843797382307,
686
+ "learning_rate": 1.837324272772052e-05,
687
+ "loss": 0.8845,
688
+ "mean_token_accuracy": 0.7786700665950775,
689
+ "num_tokens": 11805203.0,
690
+ "step": 340
691
+ },
692
+ {
693
+ "entropy": 0.8886211276054382,
694
+ "epoch": 0.5416012558869702,
695
+ "grad_norm": 0.9558208807067458,
696
+ "learning_rate": 1.829752268838222e-05,
697
+ "loss": 0.8605,
698
+ "mean_token_accuracy": 0.7840239882469178,
699
+ "num_tokens": 11964935.0,
700
+ "step": 345
701
+ },
702
+ {
703
+ "entropy": 0.9180021524429322,
704
+ "epoch": 0.5494505494505495,
705
+ "grad_norm": 1.1224980125844601,
706
+ "learning_rate": 1.8220243770900623e-05,
707
+ "loss": 0.8922,
708
+ "mean_token_accuracy": 0.7735037267208099,
709
+ "num_tokens": 12135739.0,
710
+ "step": 350
711
+ },
712
+ {
713
+ "entropy": 0.8754337012767792,
714
+ "epoch": 0.5572998430141287,
715
+ "grad_norm": 1.1442813748018337,
716
+ "learning_rate": 1.8141420493876035e-05,
717
+ "loss": 0.8631,
718
+ "mean_token_accuracy": 0.7847145199775696,
719
+ "num_tokens": 12305144.0,
720
+ "step": 355
721
+ },
722
+ {
723
+ "entropy": 0.9360538482666015,
724
+ "epoch": 0.565149136577708,
725
+ "grad_norm": 0.9406837413556941,
726
+ "learning_rate": 1.806106766605178e-05,
727
+ "loss": 0.9243,
728
+ "mean_token_accuracy": 0.7691365242004394,
729
+ "num_tokens": 12479574.0,
730
+ "step": 360
731
+ },
732
+ {
733
+ "entropy": 0.9522605657577514,
734
+ "epoch": 0.5729984301412873,
735
+ "grad_norm": 1.1163775982361954,
736
+ "learning_rate": 1.7979200383532055e-05,
737
+ "loss": 0.9166,
738
+ "mean_token_accuracy": 0.7718010425567627,
739
+ "num_tokens": 12643312.0,
740
+ "step": 365
741
+ },
742
+ {
743
+ "entropy": 0.9231060981750489,
744
+ "epoch": 0.5808477237048666,
745
+ "grad_norm": 1.0099959482957028,
746
+ "learning_rate": 1.789583402694577e-05,
747
+ "loss": 0.9073,
748
+ "mean_token_accuracy": 0.7704890251159668,
749
+ "num_tokens": 12806809.0,
750
+ "step": 370
751
+ },
752
+ {
753
+ "entropy": 0.9851496756076813,
754
+ "epoch": 0.5886970172684458,
755
+ "grad_norm": 1.0466168380239433,
756
+ "learning_rate": 1.7810984258556955e-05,
757
+ "loss": 0.9814,
758
+ "mean_token_accuracy": 0.7575869917869568,
759
+ "num_tokens": 12982355.0,
760
+ "step": 375
761
+ },
762
+ {
763
+ "entropy": 0.9393962919712067,
764
+ "epoch": 0.5965463108320251,
765
+ "grad_norm": 1.0148127007698755,
766
+ "learning_rate": 1.7724667019322258e-05,
767
+ "loss": 0.9268,
768
+ "mean_token_accuracy": 0.7690297782421112,
769
+ "num_tokens": 13169399.0,
770
+ "step": 380
771
+ },
772
+ {
773
+ "entropy": 0.9325302958488464,
774
+ "epoch": 0.6043956043956044,
775
+ "grad_norm": 1.0603711494032382,
776
+ "learning_rate": 1.7636898525896057e-05,
777
+ "loss": 0.9294,
778
+ "mean_token_accuracy": 0.770633190870285,
779
+ "num_tokens": 13352029.0,
780
+ "step": 385
781
+ },
782
+ {
783
+ "entropy": 0.8987486958503723,
784
+ "epoch": 0.6122448979591837,
785
+ "grad_norm": 1.0761757707444748,
786
+ "learning_rate": 1.7547695267583794e-05,
787
+ "loss": 0.8681,
788
+ "mean_token_accuracy": 0.7839239835739136,
789
+ "num_tokens": 13524848.0,
790
+ "step": 390
791
+ },
792
+ {
793
+ "entropy": 0.9318043172359467,
794
+ "epoch": 0.6200941915227629,
795
+ "grad_norm": 1.0433614771028492,
796
+ "learning_rate": 1.74570740032441e-05,
797
+ "loss": 0.9327,
798
+ "mean_token_accuracy": 0.7668634235858918,
799
+ "num_tokens": 13699236.0,
800
+ "step": 395
801
+ },
802
+ {
803
+ "entropy": 0.97142413854599,
804
+ "epoch": 0.6279434850863422,
805
+ "grad_norm": 1.1803946200574595,
806
+ "learning_rate": 1.736505175814025e-05,
807
+ "loss": 0.9514,
808
+ "mean_token_accuracy": 0.7604648649692536,
809
+ "num_tokens": 13879208.0,
810
+ "step": 400
811
+ },
812
+ {
813
+ "entropy": 0.9528649628162384,
814
+ "epoch": 0.6357927786499215,
815
+ "grad_norm": 1.0452126413377982,
816
+ "learning_rate": 1.7271645820741586e-05,
817
+ "loss": 0.9428,
818
+ "mean_token_accuracy": 0.7645092904567719,
819
+ "num_tokens": 14052635.0,
820
+ "step": 405
821
+ },
822
+ {
823
+ "entropy": 0.9494512498378753,
824
+ "epoch": 0.6436420722135008,
825
+ "grad_norm": 0.9437761020121631,
826
+ "learning_rate": 1.7176873739475475e-05,
827
+ "loss": 0.9106,
828
+ "mean_token_accuracy": 0.7709156513214112,
829
+ "num_tokens": 14223418.0,
830
+ "step": 410
831
+ },
832
+ {
833
+ "entropy": 0.916292816400528,
834
+ "epoch": 0.6514913657770801,
835
+ "grad_norm": 1.046344287006186,
836
+ "learning_rate": 1.7080753319430452e-05,
837
+ "loss": 0.9105,
838
+ "mean_token_accuracy": 0.7730723857879639,
839
+ "num_tokens": 14392311.0,
840
+ "step": 415
841
+ },
842
+ {
843
+ "entropy": 0.9779375612735748,
844
+ "epoch": 0.6593406593406593,
845
+ "grad_norm": 1.0042337818304798,
846
+ "learning_rate": 1.6983302619011125e-05,
847
+ "loss": 0.945,
848
+ "mean_token_accuracy": 0.7664771974086761,
849
+ "num_tokens": 14575810.0,
850
+ "step": 420
851
+ },
852
+ {
853
+ "entropy": 0.9509303271770477,
854
+ "epoch": 0.6671899529042387,
855
+ "grad_norm": 1.1555602256031945,
856
+ "learning_rate": 1.6884539946545486e-05,
857
+ "loss": 0.9449,
858
+ "mean_token_accuracy": 0.7608637690544129,
859
+ "num_tokens": 14738616.0,
860
+ "step": 425
861
+ },
862
+ {
863
+ "entropy": 0.9918555200099946,
864
+ "epoch": 0.6750392464678179,
865
+ "grad_norm": 1.2003114184839936,
866
+ "learning_rate": 1.6784483856845287e-05,
867
+ "loss": 1.0009,
868
+ "mean_token_accuracy": 0.7523836255073547,
869
+ "num_tokens": 14914028.0,
870
+ "step": 430
871
+ },
872
+ {
873
+ "entropy": 0.8851249277591705,
874
+ "epoch": 0.6828885400313972,
875
+ "grad_norm": 1.0758718545217016,
876
+ "learning_rate": 1.6683153147720098e-05,
877
+ "loss": 0.8449,
878
+ "mean_token_accuracy": 0.7853146135807038,
879
+ "num_tokens": 15083187.0,
880
+ "step": 435
881
+ },
882
+ {
883
+ "entropy": 0.8903507888317108,
884
+ "epoch": 0.6907378335949764,
885
+ "grad_norm": 1.0817988122067803,
886
+ "learning_rate": 1.6580566856445684e-05,
887
+ "loss": 0.8831,
888
+ "mean_token_accuracy": 0.7750437796115875,
889
+ "num_tokens": 15252242.0,
890
+ "step": 440
891
+ },
892
+ {
893
+ "entropy": 1.0039556801319123,
894
+ "epoch": 0.6985871271585558,
895
+ "grad_norm": 0.9627960231561726,
896
+ "learning_rate": 1.647674425618747e-05,
897
+ "loss": 1.0144,
898
+ "mean_token_accuracy": 0.7498993277549744,
899
+ "num_tokens": 15431445.0,
900
+ "step": 445
901
+ },
902
+ {
903
+ "entropy": 0.9777653515338898,
904
+ "epoch": 0.706436420722135,
905
+ "grad_norm": 1.1714229522868915,
906
+ "learning_rate": 1.6371704852379587e-05,
907
+ "loss": 0.929,
908
+ "mean_token_accuracy": 0.7707852721214294,
909
+ "num_tokens": 15603362.0,
910
+ "step": 450
911
+ },
912
+ {
913
+ "entropy": 0.9659081935882569,
914
+ "epoch": 0.7142857142857143,
915
+ "grad_norm": 1.018094880282615,
916
+ "learning_rate": 1.6265468379060364e-05,
917
+ "loss": 0.9648,
918
+ "mean_token_accuracy": 0.7619287431240082,
919
+ "num_tokens": 15781875.0,
920
+ "step": 455
921
+ },
922
+ {
923
+ "entropy": 0.9591038942337036,
924
+ "epoch": 0.7221350078492935,
925
+ "grad_norm": 1.0933005237225117,
926
+ "learning_rate": 1.615805479516484e-05,
927
+ "loss": 0.9461,
928
+ "mean_token_accuracy": 0.7643743276596069,
929
+ "num_tokens": 15955157.0,
930
+ "step": 460
931
+ },
932
+ {
933
+ "entropy": 0.970425409078598,
934
+ "epoch": 0.7299843014128728,
935
+ "grad_norm": 1.0761684194461913,
936
+ "learning_rate": 1.6049484280775012e-05,
937
+ "loss": 0.9508,
938
+ "mean_token_accuracy": 0.7567593634128571,
939
+ "num_tokens": 16131685.0,
940
+ "step": 465
941
+ },
942
+ {
943
+ "entropy": 0.8529398918151856,
944
+ "epoch": 0.7378335949764521,
945
+ "grad_norm": 1.0631064194319317,
946
+ "learning_rate": 1.593977723332855e-05,
947
+ "loss": 0.8366,
948
+ "mean_token_accuracy": 0.7832275390625,
949
+ "num_tokens": 16303519.0,
950
+ "step": 470
951
+ },
952
+ {
953
+ "entropy": 0.9383765399456024,
954
+ "epoch": 0.7456828885400314,
955
+ "grad_norm": 1.0386810092471523,
956
+ "learning_rate": 1.5828954263786688e-05,
957
+ "loss": 0.9093,
958
+ "mean_token_accuracy": 0.7684877157211304,
959
+ "num_tokens": 16479968.0,
960
+ "step": 475
961
+ },
962
+ {
963
+ "entropy": 0.9401974618434906,
964
+ "epoch": 0.7535321821036107,
965
+ "grad_norm": 1.0074700796193155,
966
+ "learning_rate": 1.571703619276197e-05,
967
+ "loss": 0.9091,
968
+ "mean_token_accuracy": 0.7726010918617249,
969
+ "num_tokens": 16649271.0,
970
+ "step": 480
971
+ },
972
+ {
973
+ "entropy": 0.9178508341312408,
974
+ "epoch": 0.7613814756671899,
975
+ "grad_norm": 1.1140551557549727,
976
+ "learning_rate": 1.5604044046606638e-05,
977
+ "loss": 0.8953,
978
+ "mean_token_accuracy": 0.7750278949737549,
979
+ "num_tokens": 16824419.0,
980
+ "step": 485
981
+ },
982
+ {
983
+ "entropy": 0.8895516097545624,
984
+ "epoch": 0.7692307692307693,
985
+ "grad_norm": 1.0818934111349057,
986
+ "learning_rate": 1.548999905346234e-05,
987
+ "loss": 0.8776,
988
+ "mean_token_accuracy": 0.773671680688858,
989
+ "num_tokens": 16986624.0,
990
+ "step": 490
991
+ },
992
+ {
993
+ "entropy": 0.8929624259471893,
994
+ "epoch": 0.7770800627943485,
995
+ "grad_norm": 0.9962571550213233,
996
+ "learning_rate": 1.537492263927196e-05,
997
+ "loss": 0.8794,
998
+ "mean_token_accuracy": 0.7754832029342651,
999
+ "num_tokens": 17152101.0,
1000
+ "step": 495
1001
+ },
1002
+ {
1003
+ "entropy": 0.9480367124080658,
1004
+ "epoch": 0.7849293563579278,
1005
+ "grad_norm": 1.0139454421215632,
1006
+ "learning_rate": 1.5258836423754258e-05,
1007
+ "loss": 0.9353,
1008
+ "mean_token_accuracy": 0.7644431531429291,
1009
+ "num_tokens": 17334249.0,
1010
+ "step": 500
1011
+ },
1012
+ {
1013
+ "entropy": 0.9171756863594055,
1014
+ "epoch": 0.792778649921507,
1015
+ "grad_norm": 0.9108251250043178,
1016
+ "learning_rate": 1.5141762216342107e-05,
1017
+ "loss": 0.8987,
1018
+ "mean_token_accuracy": 0.7711642324924469,
1019
+ "num_tokens": 17513738.0,
1020
+ "step": 505
1021
+ },
1022
+ {
1023
+ "entropy": 0.8929628431797028,
1024
+ "epoch": 0.8006279434850864,
1025
+ "grad_norm": 1.0367378487263708,
1026
+ "learning_rate": 1.5023722012085098e-05,
1027
+ "loss": 0.874,
1028
+ "mean_token_accuracy": 0.78069669008255,
1029
+ "num_tokens": 17697207.0,
1030
+ "step": 510
1031
+ },
1032
+ {
1033
+ "entropy": 0.922447019815445,
1034
+ "epoch": 0.8084772370486656,
1035
+ "grad_norm": 0.9570477938878397,
1036
+ "learning_rate": 1.4904737987517293e-05,
1037
+ "loss": 0.8979,
1038
+ "mean_token_accuracy": 0.7744624555110932,
1039
+ "num_tokens": 17865658.0,
1040
+ "step": 515
1041
+ },
1042
+ {
1043
+ "entropy": 0.984196013212204,
1044
+ "epoch": 0.8163265306122449,
1045
+ "grad_norm": 1.0749817125198582,
1046
+ "learning_rate": 1.4784832496490824e-05,
1047
+ "loss": 0.9981,
1048
+ "mean_token_accuracy": 0.7541019558906555,
1049
+ "num_tokens": 18031446.0,
1050
+ "step": 520
1051
+ },
1052
+ {
1053
+ "entropy": 0.885760360956192,
1054
+ "epoch": 0.8241758241758241,
1055
+ "grad_norm": 1.0228177577663589,
1056
+ "learning_rate": 1.4664028065976245e-05,
1057
+ "loss": 0.8774,
1058
+ "mean_token_accuracy": 0.7787248015403747,
1059
+ "num_tokens": 18203219.0,
1060
+ "step": 525
1061
+ },
1062
+ {
1063
+ "entropy": 0.9056527435779571,
1064
+ "epoch": 0.8320251177394035,
1065
+ "grad_norm": 0.9472809620038344,
1066
+ "learning_rate": 1.4542347391830308e-05,
1067
+ "loss": 0.8948,
1068
+ "mean_token_accuracy": 0.7736290752887726,
1069
+ "num_tokens": 18389281.0,
1070
+ "step": 530
1071
+ },
1072
+ {
1073
+ "entropy": 0.920498913526535,
1074
+ "epoch": 0.8398744113029827,
1075
+ "grad_norm": 0.9761115665245528,
1076
+ "learning_rate": 1.4419813334532037e-05,
1077
+ "loss": 0.9076,
1078
+ "mean_token_accuracy": 0.7701861739158631,
1079
+ "num_tokens": 18560093.0,
1080
+ "step": 535
1081
+ },
1082
+ {
1083
+ "entropy": 0.9712543666362763,
1084
+ "epoch": 0.847723704866562,
1085
+ "grad_norm": 1.0380593424192506,
1086
+ "learning_rate": 1.4296448914887866e-05,
1087
+ "loss": 0.955,
1088
+ "mean_token_accuracy": 0.7636487126350403,
1089
+ "num_tokens": 18728082.0,
1090
+ "step": 540
1091
+ },
1092
+ {
1093
+ "entropy": 1.019077092409134,
1094
+ "epoch": 0.8555729984301413,
1095
+ "grad_norm": 1.0343983118218911,
1096
+ "learning_rate": 1.4172277309706677e-05,
1097
+ "loss": 1.0016,
1098
+ "mean_token_accuracy": 0.755414879322052,
1099
+ "num_tokens": 18904758.0,
1100
+ "step": 545
1101
+ },
1102
+ {
1103
+ "entropy": 0.9112286686897277,
1104
+ "epoch": 0.8634222919937206,
1105
+ "grad_norm": 1.3015811537441047,
1106
+ "learning_rate": 1.4047321847445474e-05,
1107
+ "loss": 0.9024,
1108
+ "mean_token_accuracy": 0.772244518995285,
1109
+ "num_tokens": 19084187.0,
1110
+ "step": 550
1111
+ },
1112
+ {
1113
+ "entropy": 0.9194267630577088,
1114
+ "epoch": 0.8712715855572999,
1115
+ "grad_norm": 1.0972640052101963,
1116
+ "learning_rate": 1.392160600382663e-05,
1117
+ "loss": 0.8993,
1118
+ "mean_token_accuracy": 0.7733751356601715,
1119
+ "num_tokens": 19256074.0,
1120
+ "step": 555
1121
+ },
1122
+ {
1123
+ "entropy": 1.0046732008457184,
1124
+ "epoch": 0.8791208791208791,
1125
+ "grad_norm": 1.021711707912424,
1126
+ "learning_rate": 1.3795153397427426e-05,
1127
+ "loss": 0.9941,
1128
+ "mean_token_accuracy": 0.7572923004627228,
1129
+ "num_tokens": 19432649.0,
1130
+ "step": 560
1131
+ },
1132
+ {
1133
+ "entropy": 0.9597707211971283,
1134
+ "epoch": 0.8869701726844584,
1135
+ "grad_norm": 1.095155919975459,
1136
+ "learning_rate": 1.3667987785242776e-05,
1137
+ "loss": 0.9466,
1138
+ "mean_token_accuracy": 0.7642359852790832,
1139
+ "num_tokens": 19599676.0,
1140
+ "step": 565
1141
+ },
1142
+ {
1143
+ "entropy": 0.8909795939922333,
1144
+ "epoch": 0.8948194662480377,
1145
+ "grad_norm": 0.9841096660715759,
1146
+ "learning_rate": 1.3540133058221927e-05,
1147
+ "loss": 0.8749,
1148
+ "mean_token_accuracy": 0.7811371862888337,
1149
+ "num_tokens": 19776489.0,
1150
+ "step": 570
1151
+ },
1152
+ {
1153
+ "entropy": 0.8992655098438262,
1154
+ "epoch": 0.902668759811617,
1155
+ "grad_norm": 1.0549211956584852,
1156
+ "learning_rate": 1.3411613236779996e-05,
1157
+ "loss": 0.8666,
1158
+ "mean_token_accuracy": 0.7830844938755035,
1159
+ "num_tokens": 19949070.0,
1160
+ "step": 575
1161
+ },
1162
+ {
1163
+ "entropy": 0.9325472414493561,
1164
+ "epoch": 0.9105180533751962,
1165
+ "grad_norm": 1.0345818911749147,
1166
+ "learning_rate": 1.328245246628521e-05,
1167
+ "loss": 0.9419,
1168
+ "mean_token_accuracy": 0.7658211886882782,
1169
+ "num_tokens": 20120980.0,
1170
+ "step": 580
1171
+ },
1172
+ {
1173
+ "entropy": 0.9468577325344085,
1174
+ "epoch": 0.9183673469387755,
1175
+ "grad_norm": 0.8478494844052116,
1176
+ "learning_rate": 1.3152675012522629e-05,
1177
+ "loss": 0.913,
1178
+ "mean_token_accuracy": 0.7732730150222779,
1179
+ "num_tokens": 20291459.0,
1180
+ "step": 585
1181
+ },
1182
+ {
1183
+ "entropy": 0.9217454493045807,
1184
+ "epoch": 0.9262166405023547,
1185
+ "grad_norm": 1.119729136982272,
1186
+ "learning_rate": 1.302230525713527e-05,
1187
+ "loss": 0.9144,
1188
+ "mean_token_accuracy": 0.7694304704666137,
1189
+ "num_tokens": 20462020.0,
1190
+ "step": 590
1191
+ },
1192
+ {
1193
+ "entropy": 0.9518349885940551,
1194
+ "epoch": 0.9340659340659341,
1195
+ "grad_norm": 1.2800980811371294,
1196
+ "learning_rate": 1.2891367693043477e-05,
1197
+ "loss": 0.9361,
1198
+ "mean_token_accuracy": 0.7640316009521484,
1199
+ "num_tokens": 20629977.0,
1200
+ "step": 595
1201
+ },
1202
+ {
1203
+ "entropy": 0.9679051995277405,
1204
+ "epoch": 0.9419152276295133,
1205
+ "grad_norm": 1.0576742705629094,
1206
+ "learning_rate": 1.2759886919843354e-05,
1207
+ "loss": 0.9473,
1208
+ "mean_token_accuracy": 0.7623781085014343,
1209
+ "num_tokens": 20804098.0,
1210
+ "step": 600
1211
+ },
1212
+ {
1213
+ "entropy": 0.8971330761909485,
1214
+ "epoch": 0.9497645211930926,
1215
+ "grad_norm": 1.2061100573326584,
1216
+ "learning_rate": 1.262788763918518e-05,
1217
+ "loss": 0.8821,
1218
+ "mean_token_accuracy": 0.7767969489097595,
1219
+ "num_tokens": 20967582.0,
1220
+ "step": 605
1221
+ },
1222
+ {
1223
+ "entropy": 1.0164430618286133,
1224
+ "epoch": 0.957613814756672,
1225
+ "grad_norm": 1.0697130178669496,
1226
+ "learning_rate": 1.2495394650132628e-05,
1227
+ "loss": 1.0174,
1228
+ "mean_token_accuracy": 0.7482436180114747,
1229
+ "num_tokens": 21126768.0,
1230
+ "step": 610
1231
+ },
1232
+ {
1233
+ "entropy": 0.8907887518405915,
1234
+ "epoch": 0.9654631083202512,
1235
+ "grad_norm": 1.0426560371875555,
1236
+ "learning_rate": 1.2362432844503725e-05,
1237
+ "loss": 0.8706,
1238
+ "mean_token_accuracy": 0.7780412375926972,
1239
+ "num_tokens": 21306672.0,
1240
+ "step": 615
1241
+ },
1242
+ {
1243
+ "entropy": 0.8896146833896637,
1244
+ "epoch": 0.9733124018838305,
1245
+ "grad_norm": 1.0866328509809262,
1246
+ "learning_rate": 1.222902720219433e-05,
1247
+ "loss": 0.863,
1248
+ "mean_token_accuracy": 0.778119432926178,
1249
+ "num_tokens": 21475260.0,
1250
+ "step": 620
1251
+ },
1252
+ {
1253
+ "entropy": 0.9139588952064515,
1254
+ "epoch": 0.9811616954474097,
1255
+ "grad_norm": 1.0589403208536818,
1256
+ "learning_rate": 1.209520278648512e-05,
1257
+ "loss": 0.9131,
1258
+ "mean_token_accuracy": 0.7738312542438507,
1259
+ "num_tokens": 21646422.0,
1260
+ "step": 625
1261
+ },
1262
+ {
1263
+ "entropy": 0.9962138414382935,
1264
+ "epoch": 0.989010989010989,
1265
+ "grad_norm": 0.9635179805418408,
1266
+ "learning_rate": 1.1960984739332851e-05,
1267
+ "loss": 0.9742,
1268
+ "mean_token_accuracy": 0.7556891858577728,
1269
+ "num_tokens": 21820137.0,
1270
+ "step": 630
1271
+ },
1272
+ {
1273
+ "entropy": 0.9297572553157807,
1274
+ "epoch": 0.9968602825745683,
1275
+ "grad_norm": 1.024305907910283,
1276
+ "learning_rate": 1.1826398276646897e-05,
1277
+ "loss": 0.929,
1278
+ "mean_token_accuracy": 0.7668059885501861,
1279
+ "num_tokens": 21998140.0,
1280
+ "step": 635
1281
+ },
1282
+ {
1283
+ "entropy": 0.9530313909053802,
1284
+ "epoch": 1.0047095761381475,
1285
+ "grad_norm": 1.2227500624820133,
1286
+ "learning_rate": 1.1691468683551865e-05,
1287
+ "loss": 0.8767,
1288
+ "mean_token_accuracy": 0.7821062088012696,
1289
+ "num_tokens": 22170186.0,
1290
+ "step": 640
1291
+ },
1292
+ {
1293
+ "entropy": 0.7589436292648315,
1294
+ "epoch": 1.012558869701727,
1295
+ "grad_norm": 0.998034553144575,
1296
+ "learning_rate": 1.1556221309637204e-05,
1297
+ "loss": 0.6991,
1298
+ "mean_token_accuracy": 0.8204078018665314,
1299
+ "num_tokens": 22353755.0,
1300
+ "step": 645
1301
+ },
1302
+ {
1303
+ "entropy": 0.7964808583259583,
1304
+ "epoch": 1.0204081632653061,
1305
+ "grad_norm": 1.2433327165803787,
1306
+ "learning_rate": 1.1420681564194694e-05,
1307
+ "loss": 0.778,
1308
+ "mean_token_accuracy": 0.7999094426631927,
1309
+ "num_tokens": 22522732.0,
1310
+ "step": 650
1311
+ },
1312
+ {
1313
+ "entropy": 0.7682634353637695,
1314
+ "epoch": 1.0282574568288854,
1315
+ "grad_norm": 1.0444874947191856,
1316
+ "learning_rate": 1.1284874911444763e-05,
1317
+ "loss": 0.7324,
1318
+ "mean_token_accuracy": 0.8117419481277466,
1319
+ "num_tokens": 22698953.0,
1320
+ "step": 655
1321
+ },
1322
+ {
1323
+ "entropy": 0.7193868696689606,
1324
+ "epoch": 1.0361067503924646,
1325
+ "grad_norm": 1.0224731666940843,
1326
+ "learning_rate": 1.1148826865752445e-05,
1327
+ "loss": 0.6747,
1328
+ "mean_token_accuracy": 0.8262074887752533,
1329
+ "num_tokens": 22889801.0,
1330
+ "step": 660
1331
+ },
1332
+ {
1333
+ "entropy": 0.7187326550483704,
1334
+ "epoch": 1.043956043956044,
1335
+ "grad_norm": 0.9421656809407604,
1336
+ "learning_rate": 1.1012562986833909e-05,
1337
+ "loss": 0.6995,
1338
+ "mean_token_accuracy": 0.8156011462211609,
1339
+ "num_tokens": 23070377.0,
1340
+ "step": 665
1341
+ },
1342
+ {
1343
+ "entropy": 0.8644039809703827,
1344
+ "epoch": 1.0518053375196232,
1345
+ "grad_norm": 1.1493061070607407,
1346
+ "learning_rate": 1.0876108874954498e-05,
1347
+ "loss": 0.8423,
1348
+ "mean_token_accuracy": 0.7860796749591827,
1349
+ "num_tokens": 23238208.0,
1350
+ "step": 670
1351
+ },
1352
+ {
1353
+ "entropy": 0.7744551837444306,
1354
+ "epoch": 1.0596546310832025,
1355
+ "grad_norm": 1.1041356777411588,
1356
+ "learning_rate": 1.0739490166119155e-05,
1357
+ "loss": 0.7438,
1358
+ "mean_token_accuracy": 0.8076692223548889,
1359
+ "num_tokens": 23402876.0,
1360
+ "step": 675
1361
+ },
1362
+ {
1363
+ "entropy": 0.7243380069732666,
1364
+ "epoch": 1.0675039246467817,
1365
+ "grad_norm": 0.9747254252792739,
1366
+ "learning_rate": 1.060273252725609e-05,
1367
+ "loss": 0.6798,
1368
+ "mean_token_accuracy": 0.8233359634876252,
1369
+ "num_tokens": 23566679.0,
1370
+ "step": 680
1371
+ },
1372
+ {
1373
+ "entropy": 0.7596145629882812,
1374
+ "epoch": 1.0753532182103611,
1375
+ "grad_norm": 1.0519914319465944,
1376
+ "learning_rate": 1.0465861651394673e-05,
1377
+ "loss": 0.7398,
1378
+ "mean_token_accuracy": 0.807163268327713,
1379
+ "num_tokens": 23734603.0,
1380
+ "step": 685
1381
+ },
1382
+ {
1383
+ "entropy": 0.8438076853752137,
1384
+ "epoch": 1.0832025117739403,
1385
+ "grad_norm": 1.010162565294131,
1386
+ "learning_rate": 1.0328903252838415e-05,
1387
+ "loss": 0.807,
1388
+ "mean_token_accuracy": 0.7967108964920044,
1389
+ "num_tokens": 23907452.0,
1390
+ "step": 690
1391
+ },
1392
+ {
1393
+ "entropy": 0.8150090396404266,
1394
+ "epoch": 1.0910518053375196,
1395
+ "grad_norm": 1.1025673371779265,
1396
+ "learning_rate": 1.0191883062333964e-05,
1397
+ "loss": 0.7941,
1398
+ "mean_token_accuracy": 0.7991038501262665,
1399
+ "num_tokens": 24086886.0,
1400
+ "step": 695
1401
+ },
1402
+ {
1403
+ "entropy": 0.8430601418018341,
1404
+ "epoch": 1.098901098901099,
1405
+ "grad_norm": 1.1686836852182256,
1406
+ "learning_rate": 1.0054826822236983e-05,
1407
+ "loss": 0.815,
1408
+ "mean_token_accuracy": 0.7933471858501434,
1409
+ "num_tokens": 24269544.0,
1410
+ "step": 700
1411
+ },
1412
+ {
1413
+ "entropy": 0.7452099084854126,
1414
+ "epoch": 1.1067503924646782,
1415
+ "grad_norm": 1.0384817866517992,
1416
+ "learning_rate": 9.917760281675867e-06,
1417
+ "loss": 0.7082,
1418
+ "mean_token_accuracy": 0.8164697706699371,
1419
+ "num_tokens": 24432459.0,
1420
+ "step": 705
1421
+ },
1422
+ {
1423
+ "entropy": 0.7132114350795746,
1424
+ "epoch": 1.1145996860282574,
1425
+ "grad_norm": 1.0978729216338197,
1426
+ "learning_rate": 9.780709191714187e-06,
1427
+ "loss": 0.6812,
1428
+ "mean_token_accuracy": 0.8240931987762451,
1429
+ "num_tokens": 24605266.0,
1430
+ "step": 710
1431
+ },
1432
+ {
1433
+ "entropy": 0.7563946485519409,
1434
+ "epoch": 1.1224489795918366,
1435
+ "grad_norm": 1.0867424849017002,
1436
+ "learning_rate": 9.643699300512781e-06,
1437
+ "loss": 0.7296,
1438
+ "mean_token_accuracy": 0.809756588935852,
1439
+ "num_tokens": 24779069.0,
1440
+ "step": 715
1441
+ },
1442
+ {
1443
+ "entropy": 0.710528165102005,
1444
+ "epoch": 1.130298273155416,
1445
+ "grad_norm": 0.9845284457581449,
1446
+ "learning_rate": 9.506756348492348e-06,
1447
+ "loss": 0.6812,
1448
+ "mean_token_accuracy": 0.8224820852279663,
1449
+ "num_tokens": 24957407.0,
1450
+ "step": 720
1451
+ },
1452
+ {
1453
+ "entropy": 0.8000864565372467,
1454
+ "epoch": 1.1381475667189953,
1455
+ "grad_norm": 1.1737896254270752,
1456
+ "learning_rate": 9.369906063497547e-06,
1457
+ "loss": 0.7684,
1458
+ "mean_token_accuracy": 0.8047536969184875,
1459
+ "num_tokens": 25121812.0,
1460
+ "step": 725
1461
+ },
1462
+ {
1463
+ "entropy": 0.7189730703830719,
1464
+ "epoch": 1.1459968602825745,
1465
+ "grad_norm": 0.9521077284632468,
1466
+ "learning_rate": 9.233174155963432e-06,
1467
+ "loss": 0.6861,
1468
+ "mean_token_accuracy": 0.8211529731750489,
1469
+ "num_tokens": 25285446.0,
1470
+ "step": 730
1471
+ },
1472
+ {
1473
+ "entropy": 0.7064558744430542,
1474
+ "epoch": 1.1538461538461537,
1475
+ "grad_norm": 1.043485092283603,
1476
+ "learning_rate": 9.096586314085162e-06,
1477
+ "loss": 0.678,
1478
+ "mean_token_accuracy": 0.8234798550605774,
1479
+ "num_tokens": 25458020.0,
1480
+ "step": 735
1481
+ },
1482
+ {
1483
+ "entropy": 0.7466062486171723,
1484
+ "epoch": 1.1616954474097332,
1485
+ "grad_norm": 1.2213633388808025,
1486
+ "learning_rate": 8.960168198991885e-06,
1487
+ "loss": 0.6949,
1488
+ "mean_token_accuracy": 0.8208145558834076,
1489
+ "num_tokens": 25625912.0,
1490
+ "step": 740
1491
+ },
1492
+ {
1493
+ "entropy": 0.7840892434120178,
1494
+ "epoch": 1.1695447409733124,
1495
+ "grad_norm": 1.109353824907887,
1496
+ "learning_rate": 8.823945439925725e-06,
1497
+ "loss": 0.767,
1498
+ "mean_token_accuracy": 0.8053321063518524,
1499
+ "num_tokens": 25788553.0,
1500
+ "step": 745
1501
+ },
1502
+ {
1503
+ "entropy": 0.8060290336608886,
1504
+ "epoch": 1.1773940345368916,
1505
+ "grad_norm": 0.9554272875147919,
1506
+ "learning_rate": 8.687943629426725e-06,
1507
+ "loss": 0.7634,
1508
+ "mean_token_accuracy": 0.8066822409629821,
1509
+ "num_tokens": 25969620.0,
1510
+ "step": 750
1511
+ },
1512
+ {
1513
+ "entropy": 0.7449215769767761,
1514
+ "epoch": 1.185243328100471,
1515
+ "grad_norm": 1.0153681710820686,
1516
+ "learning_rate": 8.552188318524737e-06,
1517
+ "loss": 0.7083,
1518
+ "mean_token_accuracy": 0.8185421526432037,
1519
+ "num_tokens": 26137243.0,
1520
+ "step": 755
1521
+ },
1522
+ {
1523
+ "entropy": 0.7598817825317383,
1524
+ "epoch": 1.1930926216640503,
1525
+ "grad_norm": 1.1148526922237674,
1526
+ "learning_rate": 8.416705011939052e-06,
1527
+ "loss": 0.7215,
1528
+ "mean_token_accuracy": 0.8128451645374298,
1529
+ "num_tokens": 26309369.0,
1530
+ "step": 760
1531
+ },
1532
+ {
1533
+ "entropy": 0.8180647373199463,
1534
+ "epoch": 1.2009419152276295,
1535
+ "grad_norm": 0.9697988215195751,
1536
+ "learning_rate": 8.281519163286772e-06,
1537
+ "loss": 0.7793,
1538
+ "mean_token_accuracy": 0.7985901713371277,
1539
+ "num_tokens": 26478271.0,
1540
+ "step": 765
1541
+ },
1542
+ {
1543
+ "entropy": 0.7889492332935333,
1544
+ "epoch": 1.2087912087912087,
1545
+ "grad_norm": 1.0961453371634604,
1546
+ "learning_rate": 8.146656170300772e-06,
1547
+ "loss": 0.7535,
1548
+ "mean_token_accuracy": 0.8075653672218323,
1549
+ "num_tokens": 26650108.0,
1550
+ "step": 770
1551
+ },
1552
+ {
1553
+ "entropy": 0.8263973355293274,
1554
+ "epoch": 1.2166405023547882,
1555
+ "grad_norm": 1.1372349318727981,
1556
+ "learning_rate": 8.01214137005815e-06,
1557
+ "loss": 0.8102,
1558
+ "mean_token_accuracy": 0.7948281407356262,
1559
+ "num_tokens": 26806351.0,
1560
+ "step": 775
1561
+ },
1562
+ {
1563
+ "entropy": 0.7929559528827668,
1564
+ "epoch": 1.2244897959183674,
1565
+ "grad_norm": 1.0296994608984924,
1566
+ "learning_rate": 7.878000034220092e-06,
1567
+ "loss": 0.7529,
1568
+ "mean_token_accuracy": 0.8051678776741028,
1569
+ "num_tokens": 26969924.0,
1570
+ "step": 780
1571
+ },
1572
+ {
1573
+ "entropy": 0.7902487933635711,
1574
+ "epoch": 1.2323390894819466,
1575
+ "grad_norm": 1.0791629511954908,
1576
+ "learning_rate": 7.74425736428401e-06,
1577
+ "loss": 0.7574,
1578
+ "mean_token_accuracy": 0.8084256410598755,
1579
+ "num_tokens": 27142124.0,
1580
+ "step": 785
1581
+ },
1582
+ {
1583
+ "entropy": 0.7469228625297546,
1584
+ "epoch": 1.2401883830455258,
1585
+ "grad_norm": 1.0687704847271504,
1586
+ "learning_rate": 7.6109384868488646e-06,
1587
+ "loss": 0.7032,
1588
+ "mean_token_accuracy": 0.8183998763561249,
1589
+ "num_tokens": 27312215.0,
1590
+ "step": 790
1591
+ },
1592
+ {
1593
+ "entropy": 0.8152945578098297,
1594
+ "epoch": 1.2480376766091053,
1595
+ "grad_norm": 1.0872739057077088,
1596
+ "learning_rate": 7.478068448894577e-06,
1597
+ "loss": 0.7834,
1598
+ "mean_token_accuracy": 0.8003781199455261,
1599
+ "num_tokens": 27485329.0,
1600
+ "step": 795
1601
+ },
1602
+ {
1603
+ "entropy": 0.8239603579044342,
1604
+ "epoch": 1.2558869701726845,
1605
+ "grad_norm": 1.0313737729784547,
1606
+ "learning_rate": 7.3456722130763665e-06,
1607
+ "loss": 0.7796,
1608
+ "mean_token_accuracy": 0.800631833076477,
1609
+ "num_tokens": 27659473.0,
1610
+ "step": 800
1611
+ },
1612
+ {
1613
+ "entropy": 0.7372841238975525,
1614
+ "epoch": 1.2637362637362637,
1615
+ "grad_norm": 1.0140214612877798,
1616
+ "learning_rate": 7.213774653034958e-06,
1617
+ "loss": 0.7111,
1618
+ "mean_token_accuracy": 0.8198559761047364,
1619
+ "num_tokens": 27836596.0,
1620
+ "step": 805
1621
+ },
1622
+ {
1623
+ "entropy": 0.8302432537078858,
1624
+ "epoch": 1.2715855572998431,
1625
+ "grad_norm": 1.195383430631737,
1626
+ "learning_rate": 7.082400548723505e-06,
1627
+ "loss": 0.7802,
1628
+ "mean_token_accuracy": 0.8028365015983582,
1629
+ "num_tokens": 28010873.0,
1630
+ "step": 810
1631
+ },
1632
+ {
1633
+ "entropy": 0.7505487859249115,
1634
+ "epoch": 1.2794348508634223,
1635
+ "grad_norm": 1.0541093957812713,
1636
+ "learning_rate": 6.951574581752111e-06,
1637
+ "loss": 0.7173,
1638
+ "mean_token_accuracy": 0.8157029390335083,
1639
+ "num_tokens": 28183079.0,
1640
+ "step": 815
1641
+ },
1642
+ {
1643
+ "entropy": 0.6992400705814361,
1644
+ "epoch": 1.2872841444270016,
1645
+ "grad_norm": 1.0729057339050787,
1646
+ "learning_rate": 6.8213213307508205e-06,
1647
+ "loss": 0.6678,
1648
+ "mean_token_accuracy": 0.8294937908649445,
1649
+ "num_tokens": 28360877.0,
1650
+ "step": 820
1651
+ },
1652
+ {
1653
+ "entropy": 0.7824932038784027,
1654
+ "epoch": 1.2951334379905808,
1655
+ "grad_norm": 1.0332673992286026,
1656
+ "learning_rate": 6.6916652667519855e-06,
1657
+ "loss": 0.7553,
1658
+ "mean_token_accuracy": 0.8045825779438018,
1659
+ "num_tokens": 28534091.0,
1660
+ "step": 825
1661
+ },
1662
+ {
1663
+ "entropy": 0.758563756942749,
1664
+ "epoch": 1.30298273155416,
1665
+ "grad_norm": 0.8579037082746532,
1666
+ "learning_rate": 6.562630748592794e-06,
1667
+ "loss": 0.7231,
1668
+ "mean_token_accuracy": 0.8134595215320587,
1669
+ "num_tokens": 28702510.0,
1670
+ "step": 830
1671
+ },
1672
+ {
1673
+ "entropy": 0.7485720455646515,
1674
+ "epoch": 1.3108320251177394,
1675
+ "grad_norm": 1.1032315275229168,
1676
+ "learning_rate": 6.434242018338948e-06,
1677
+ "loss": 0.7135,
1678
+ "mean_token_accuracy": 0.8138790249824523,
1679
+ "num_tokens": 28869202.0,
1680
+ "step": 835
1681
+ },
1682
+ {
1683
+ "entropy": 0.7081598818302155,
1684
+ "epoch": 1.3186813186813187,
1685
+ "grad_norm": 1.2926883727866398,
1686
+ "learning_rate": 6.3065231967302055e-06,
1687
+ "loss": 0.6877,
1688
+ "mean_token_accuracy": 0.8219043374061584,
1689
+ "num_tokens": 29047688.0,
1690
+ "step": 840
1691
+ },
1692
+ {
1693
+ "entropy": 0.7217587053775787,
1694
+ "epoch": 1.3265306122448979,
1695
+ "grad_norm": 0.9647827235839158,
1696
+ "learning_rate": 6.179498278648766e-06,
1697
+ "loss": 0.6921,
1698
+ "mean_token_accuracy": 0.8186693727970124,
1699
+ "num_tokens": 29211116.0,
1700
+ "step": 845
1701
+ },
1702
+ {
1703
+ "entropy": 0.7131186187267303,
1704
+ "epoch": 1.3343799058084773,
1705
+ "grad_norm": 0.9642324922108514,
1706
+ "learning_rate": 6.053191128611298e-06,
1707
+ "loss": 0.6795,
1708
+ "mean_token_accuracy": 0.8252093970775605,
1709
+ "num_tokens": 29388013.0,
1710
+ "step": 850
1711
+ },
1712
+ {
1713
+ "entropy": 0.808360344171524,
1714
+ "epoch": 1.3422291993720565,
1715
+ "grad_norm": 1.1425125845873223,
1716
+ "learning_rate": 5.927625476285426e-06,
1717
+ "loss": 0.7847,
1718
+ "mean_token_accuracy": 0.8026682198047638,
1719
+ "num_tokens": 29561476.0,
1720
+ "step": 855
1721
+ },
1722
+ {
1723
+ "entropy": 0.8005856335163116,
1724
+ "epoch": 1.3500784929356358,
1725
+ "grad_norm": 1.052049778399339,
1726
+ "learning_rate": 5.802824912031588e-06,
1727
+ "loss": 0.759,
1728
+ "mean_token_accuracy": 0.8061301648616791,
1729
+ "num_tokens": 29734151.0,
1730
+ "step": 860
1731
+ },
1732
+ {
1733
+ "entropy": 0.82352135181427,
1734
+ "epoch": 1.3579277864992152,
1735
+ "grad_norm": 1.0292162301427903,
1736
+ "learning_rate": 5.678812882471047e-06,
1737
+ "loss": 0.7945,
1738
+ "mean_token_accuracy": 0.7953687846660614,
1739
+ "num_tokens": 29910350.0,
1740
+ "step": 865
1741
+ },
1742
+ {
1743
+ "entropy": 0.7866579949855804,
1744
+ "epoch": 1.3657770800627944,
1745
+ "grad_norm": 0.9141555943055724,
1746
+ "learning_rate": 5.555612686080909e-06,
1747
+ "loss": 0.7544,
1748
+ "mean_token_accuracy": 0.8068086981773377,
1749
+ "num_tokens": 30095477.0,
1750
+ "step": 870
1751
+ },
1752
+ {
1753
+ "entropy": 0.7515675663948059,
1754
+ "epoch": 1.3736263736263736,
1755
+ "grad_norm": 1.3734821220091946,
1756
+ "learning_rate": 5.4332474688169766e-06,
1757
+ "loss": 0.7126,
1758
+ "mean_token_accuracy": 0.817071932554245,
1759
+ "num_tokens": 30254534.0,
1760
+ "step": 875
1761
+ },
1762
+ {
1763
+ "entropy": 0.7033804953098297,
1764
+ "epoch": 1.3814756671899528,
1765
+ "grad_norm": 1.009853481950846,
1766
+ "learning_rate": 5.311740219765247e-06,
1767
+ "loss": 0.6686,
1768
+ "mean_token_accuracy": 0.8260440528392792,
1769
+ "num_tokens": 30432482.0,
1770
+ "step": 880
1771
+ },
1772
+ {
1773
+ "entropy": 0.8076533257961274,
1774
+ "epoch": 1.389324960753532,
1775
+ "grad_norm": 1.1546369741177995,
1776
+ "learning_rate": 5.191113766822905e-06,
1777
+ "loss": 0.7629,
1778
+ "mean_token_accuracy": 0.8017266094684601,
1779
+ "num_tokens": 30597862.0,
1780
+ "step": 885
1781
+ },
1782
+ {
1783
+ "entropy": 0.7331224024295807,
1784
+ "epoch": 1.3971742543171115,
1785
+ "grad_norm": 0.9580174823172668,
1786
+ "learning_rate": 5.071390772409579e-06,
1787
+ "loss": 0.7074,
1788
+ "mean_token_accuracy": 0.8177399694919586,
1789
+ "num_tokens": 30786569.0,
1790
+ "step": 890
1791
+ },
1792
+ {
1793
+ "entropy": 0.7439928412437439,
1794
+ "epoch": 1.4050235478806907,
1795
+ "grad_norm": 0.9939593222383326,
1796
+ "learning_rate": 4.952593729209671e-06,
1797
+ "loss": 0.7067,
1798
+ "mean_token_accuracy": 0.8167553603649139,
1799
+ "num_tokens": 30957357.0,
1800
+ "step": 895
1801
+ },
1802
+ {
1803
+ "entropy": 0.8284706950187684,
1804
+ "epoch": 1.41287284144427,
1805
+ "grad_norm": 1.1769304803532192,
1806
+ "learning_rate": 4.834744955946631e-06,
1807
+ "loss": 0.8071,
1808
+ "mean_token_accuracy": 0.7944119453430176,
1809
+ "num_tokens": 31134538.0,
1810
+ "step": 900
1811
+ },
1812
+ {
1813
+ "entropy": 0.7811824798583984,
1814
+ "epoch": 1.4207221350078494,
1815
+ "grad_norm": 1.0205967836729852,
1816
+ "learning_rate": 4.717866593189847e-06,
1817
+ "loss": 0.7452,
1818
+ "mean_token_accuracy": 0.8065027713775634,
1819
+ "num_tokens": 31292574.0,
1820
+ "step": 905
1821
+ },
1822
+ {
1823
+ "entropy": 0.7434688091278077,
1824
+ "epoch": 1.4285714285714286,
1825
+ "grad_norm": 1.17640303075045,
1826
+ "learning_rate": 4.60198059919505e-06,
1827
+ "loss": 0.7222,
1828
+ "mean_token_accuracy": 0.8119749605655671,
1829
+ "num_tokens": 31466900.0,
1830
+ "step": 910
1831
+ },
1832
+ {
1833
+ "entropy": 0.7614912867546082,
1834
+ "epoch": 1.4364207221350078,
1835
+ "grad_norm": 1.09194971242214,
1836
+ "learning_rate": 4.487108745778958e-06,
1837
+ "loss": 0.7291,
1838
+ "mean_token_accuracy": 0.8132352232933044,
1839
+ "num_tokens": 31633650.0,
1840
+ "step": 915
1841
+ },
1842
+ {
1843
+ "entropy": 0.7988339602947235,
1844
+ "epoch": 1.4442700156985873,
1845
+ "grad_norm": 1.0325427829033988,
1846
+ "learning_rate": 4.373272614228932e-06,
1847
+ "loss": 0.7695,
1848
+ "mean_token_accuracy": 0.8069939136505127,
1849
+ "num_tokens": 31810997.0,
1850
+ "step": 920
1851
+ },
1852
+ {
1853
+ "entropy": 0.7399954378604889,
1854
+ "epoch": 1.4521193092621665,
1855
+ "grad_norm": 1.1227025074827583,
1856
+ "learning_rate": 4.260493591248458e-06,
1857
+ "loss": 0.7189,
1858
+ "mean_token_accuracy": 0.8156515836715699,
1859
+ "num_tokens": 31992766.0,
1860
+ "step": 925
1861
+ },
1862
+ {
1863
+ "entropy": 0.7610946953296661,
1864
+ "epoch": 1.4599686028257457,
1865
+ "grad_norm": 1.0467966246302984,
1866
+ "learning_rate": 4.148792864939164e-06,
1867
+ "loss": 0.734,
1868
+ "mean_token_accuracy": 0.8122463166713715,
1869
+ "num_tokens": 32169798.0,
1870
+ "step": 930
1871
+ },
1872
+ {
1873
+ "entropy": 0.7842764675617218,
1874
+ "epoch": 1.467817896389325,
1875
+ "grad_norm": 1.1046053394107165,
1876
+ "learning_rate": 4.038191420820139e-06,
1877
+ "loss": 0.7473,
1878
+ "mean_token_accuracy": 0.8097300291061401,
1879
+ "num_tokens": 32342698.0,
1880
+ "step": 935
1881
+ },
1882
+ {
1883
+ "entropy": 0.7263700187206268,
1884
+ "epoch": 1.4756671899529041,
1885
+ "grad_norm": 1.068405010510942,
1886
+ "learning_rate": 3.92871003788535e-06,
1887
+ "loss": 0.6998,
1888
+ "mean_token_accuracy": 0.8196493089199066,
1889
+ "num_tokens": 32511074.0,
1890
+ "step": 940
1891
+ },
1892
+ {
1893
+ "entropy": 0.7874405086040497,
1894
+ "epoch": 1.4835164835164836,
1895
+ "grad_norm": 1.078751709104006,
1896
+ "learning_rate": 3.820369284699823e-06,
1897
+ "loss": 0.7757,
1898
+ "mean_token_accuracy": 0.7983383655548095,
1899
+ "num_tokens": 32682947.0,
1900
+ "step": 945
1901
+ },
1902
+ {
1903
+ "entropy": 0.7737679719924927,
1904
+ "epoch": 1.4913657770800628,
1905
+ "grad_norm": 1.205902073384002,
1906
+ "learning_rate": 3.713189515535368e-06,
1907
+ "loss": 0.7504,
1908
+ "mean_token_accuracy": 0.8100473582744598,
1909
+ "num_tokens": 32852818.0,
1910
+ "step": 950
1911
+ },
1912
+ {
1913
+ "entropy": 0.8018546581268311,
1914
+ "epoch": 1.499215070643642,
1915
+ "grad_norm": 0.9361968594164458,
1916
+ "learning_rate": 3.607190866546578e-06,
1917
+ "loss": 0.7758,
1918
+ "mean_token_accuracy": 0.8025070548057556,
1919
+ "num_tokens": 33026448.0,
1920
+ "step": 955
1921
+ },
1922
+ {
1923
+ "entropy": 0.7231043696403503,
1924
+ "epoch": 1.5070643642072215,
1925
+ "grad_norm": 1.0711929118084884,
1926
+ "learning_rate": 3.502393251987776e-06,
1927
+ "loss": 0.6923,
1928
+ "mean_token_accuracy": 0.8229861438274384,
1929
+ "num_tokens": 33210608.0,
1930
+ "step": 960
1931
+ },
1932
+ {
1933
+ "entropy": 0.7571441352367401,
1934
+ "epoch": 1.5149136577708007,
1935
+ "grad_norm": 0.9557251499243243,
1936
+ "learning_rate": 3.3988163604716928e-06,
1937
+ "loss": 0.728,
1938
+ "mean_token_accuracy": 0.8144880294799804,
1939
+ "num_tokens": 33396247.0,
1940
+ "step": 965
1941
+ },
1942
+ {
1943
+ "entropy": 0.7268884181976318,
1944
+ "epoch": 1.5227629513343799,
1945
+ "grad_norm": 0.9422133776984754,
1946
+ "learning_rate": 3.296479651270502e-06,
1947
+ "loss": 0.7079,
1948
+ "mean_token_accuracy": 0.8194284439086914,
1949
+ "num_tokens": 33579682.0,
1950
+ "step": 970
1951
+ },
1952
+ {
1953
+ "entropy": 0.7654901921749115,
1954
+ "epoch": 1.5306122448979593,
1955
+ "grad_norm": 1.155192407934643,
1956
+ "learning_rate": 3.195402350659945e-06,
1957
+ "loss": 0.7388,
1958
+ "mean_token_accuracy": 0.8088930904865265,
1959
+ "num_tokens": 33746791.0,
1960
+ "step": 975
1961
+ },
1962
+ {
1963
+ "entropy": 0.7446938633918763,
1964
+ "epoch": 1.5384615384615383,
1965
+ "grad_norm": 1.0738719073936893,
1966
+ "learning_rate": 3.0956034483072573e-06,
1967
+ "loss": 0.7434,
1968
+ "mean_token_accuracy": 0.8123556435108185,
1969
+ "num_tokens": 33931168.0,
1970
+ "step": 980
1971
+ },
1972
+ {
1973
+ "entropy": 0.7372089266777039,
1974
+ "epoch": 1.5463108320251178,
1975
+ "grad_norm": 1.0284690241688972,
1976
+ "learning_rate": 2.997101693703518e-06,
1977
+ "loss": 0.7125,
1978
+ "mean_token_accuracy": 0.8171460390090942,
1979
+ "num_tokens": 34101318.0,
1980
+ "step": 985
1981
+ },
1982
+ {
1983
+ "entropy": 0.8061294555664062,
1984
+ "epoch": 1.554160125588697,
1985
+ "grad_norm": 1.0979658300755306,
1986
+ "learning_rate": 2.8999155926411203e-06,
1987
+ "loss": 0.775,
1988
+ "mean_token_accuracy": 0.8037243723869324,
1989
+ "num_tokens": 34275221.0,
1990
+ "step": 990
1991
+ },
1992
+ {
1993
+ "entropy": 0.7024177730083465,
1994
+ "epoch": 1.5620094191522762,
1995
+ "grad_norm": 1.1149414761077525,
1996
+ "learning_rate": 2.8040634037370727e-06,
1997
+ "loss": 0.6627,
1998
+ "mean_token_accuracy": 0.8271960079669952,
1999
+ "num_tokens": 34449489.0,
2000
+ "step": 995
2001
+ },
2002
+ {
2003
+ "entropy": 0.7341989576816559,
2004
+ "epoch": 1.5698587127158556,
2005
+ "grad_norm": 1.0252396995695812,
2006
+ "learning_rate": 2.7095631350026585e-06,
2007
+ "loss": 0.7135,
2008
+ "mean_token_accuracy": 0.818608695268631,
2009
+ "num_tokens": 34626482.0,
2010
+ "step": 1000
2011
+ },
2012
+ {
2013
+ "entropy": 0.7887276947498322,
2014
+ "epoch": 1.5777080062794349,
2015
+ "grad_norm": 1.109840681861973,
2016
+ "learning_rate": 2.616432540460255e-06,
2017
+ "loss": 0.7811,
2018
+ "mean_token_accuracy": 0.802685284614563,
2019
+ "num_tokens": 34799654.0,
2020
+ "step": 1005
2021
+ },
2022
+ {
2023
+ "entropy": 0.7374858558177948,
2024
+ "epoch": 1.585557299843014,
2025
+ "grad_norm": 1.0885574920459062,
2026
+ "learning_rate": 2.524689116807826e-06,
2027
+ "loss": 0.7048,
2028
+ "mean_token_accuracy": 0.8160154044628143,
2029
+ "num_tokens": 34964471.0,
2030
+ "step": 1010
2031
+ },
2032
+ {
2033
+ "entropy": 0.8409409046173095,
2034
+ "epoch": 1.5934065934065935,
2035
+ "grad_norm": 1.0739270382383985,
2036
+ "learning_rate": 2.4343501001317604e-06,
2037
+ "loss": 0.8075,
2038
+ "mean_token_accuracy": 0.7921725928783416,
2039
+ "num_tokens": 35140306.0,
2040
+ "step": 1015
2041
+ },
2042
+ {
2043
+ "entropy": 0.7362240254878998,
2044
+ "epoch": 1.6012558869701727,
2045
+ "grad_norm": 0.9447388084070718,
2046
+ "learning_rate": 2.345432462668702e-06,
2047
+ "loss": 0.6953,
2048
+ "mean_token_accuracy": 0.8209097445011139,
2049
+ "num_tokens": 35309125.0,
2050
+ "step": 1020
2051
+ },
2052
+ {
2053
+ "entropy": 0.7052482396364212,
2054
+ "epoch": 1.609105180533752,
2055
+ "grad_norm": 1.1012801898422637,
2056
+ "learning_rate": 2.257952909616914e-06,
2057
+ "loss": 0.6567,
2058
+ "mean_token_accuracy": 0.8268081605434418,
2059
+ "num_tokens": 35485155.0,
2060
+ "step": 1025
2061
+ },
2062
+ {
2063
+ "entropy": 0.8337755322456359,
2064
+ "epoch": 1.6169544740973314,
2065
+ "grad_norm": 1.029258990587255,
2066
+ "learning_rate": 2.1719278759978225e-06,
2067
+ "loss": 0.8042,
2068
+ "mean_token_accuracy": 0.7914208948612214,
2069
+ "num_tokens": 35656831.0,
2070
+ "step": 1030
2071
+ },
2072
+ {
2073
+ "entropy": 0.7973357439041138,
2074
+ "epoch": 1.6248037676609104,
2075
+ "grad_norm": 1.4720644132708556,
2076
+ "learning_rate": 2.0873735235683535e-06,
2077
+ "loss": 0.7717,
2078
+ "mean_token_accuracy": 0.8006492376327514,
2079
+ "num_tokens": 35814525.0,
2080
+ "step": 1035
2081
+ },
2082
+ {
2083
+ "entropy": 0.7017957627773285,
2084
+ "epoch": 1.6326530612244898,
2085
+ "grad_norm": 0.9715989094299542,
2086
+ "learning_rate": 2.004305737784541e-06,
2087
+ "loss": 0.6749,
2088
+ "mean_token_accuracy": 0.8254691541194916,
2089
+ "num_tokens": 35993668.0,
2090
+ "step": 1040
2091
+ },
2092
+ {
2093
+ "entropy": 0.7294360339641571,
2094
+ "epoch": 1.640502354788069,
2095
+ "grad_norm": 0.9614785852132816,
2096
+ "learning_rate": 1.922740124817113e-06,
2097
+ "loss": 0.6985,
2098
+ "mean_token_accuracy": 0.819702285528183,
2099
+ "num_tokens": 36176100.0,
2100
+ "step": 1045
2101
+ },
2102
+ {
2103
+ "entropy": 0.8033683061599731,
2104
+ "epoch": 1.6483516483516483,
2105
+ "grad_norm": 1.0753763952381454,
2106
+ "learning_rate": 1.8426920086195065e-06,
2107
+ "loss": 0.7672,
2108
+ "mean_token_accuracy": 0.8043890595436096,
2109
+ "num_tokens": 36356539.0,
2110
+ "step": 1050
2111
+ },
2112
+ {
2113
+ "entropy": 0.7480413377285003,
2114
+ "epoch": 1.6562009419152277,
2115
+ "grad_norm": 0.962269164446154,
2116
+ "learning_rate": 1.7641764280489081e-06,
2117
+ "loss": 0.7176,
2118
+ "mean_token_accuracy": 0.8175517320632935,
2119
+ "num_tokens": 36536140.0,
2120
+ "step": 1055
2121
+ },
2122
+ {
2123
+ "entropy": 0.7604970157146453,
2124
+ "epoch": 1.664050235478807,
2125
+ "grad_norm": 0.9716439388873243,
2126
+ "learning_rate": 1.6872081340408763e-06,
2127
+ "loss": 0.7454,
2128
+ "mean_token_accuracy": 0.811210823059082,
2129
+ "num_tokens": 36712630.0,
2130
+ "step": 1060
2131
+ },
2132
+ {
2133
+ "entropy": 0.7632730364799499,
2134
+ "epoch": 1.6718995290423861,
2135
+ "grad_norm": 1.2272725702345333,
2136
+ "learning_rate": 1.6118015868380387e-06,
2137
+ "loss": 0.7356,
2138
+ "mean_token_accuracy": 0.8110851764678955,
2139
+ "num_tokens": 36887372.0,
2140
+ "step": 1065
2141
+ },
2142
+ {
2143
+ "entropy": 0.7362485527992249,
2144
+ "epoch": 1.6797488226059656,
2145
+ "grad_norm": 1.1746096004583477,
2146
+ "learning_rate": 1.5379709532733944e-06,
2147
+ "loss": 0.6949,
2148
+ "mean_token_accuracy": 0.8170979440212249,
2149
+ "num_tokens": 37053888.0,
2150
+ "step": 1070
2151
+ },
2152
+ {
2153
+ "entropy": 0.7311192810535431,
2154
+ "epoch": 1.6875981161695446,
2155
+ "grad_norm": 0.9437733453218101,
2156
+ "learning_rate": 1.4657301041087812e-06,
2157
+ "loss": 0.7014,
2158
+ "mean_token_accuracy": 0.8156128406524659,
2159
+ "num_tokens": 37215605.0,
2160
+ "step": 1075
2161
+ },
2162
+ {
2163
+ "entropy": 0.7565422177314758,
2164
+ "epoch": 1.695447409733124,
2165
+ "grad_norm": 1.0310359746231883,
2166
+ "learning_rate": 1.395092611428902e-06,
2167
+ "loss": 0.7168,
2168
+ "mean_token_accuracy": 0.8165917098522186,
2169
+ "num_tokens": 37393301.0,
2170
+ "step": 1080
2171
+ },
2172
+ {
2173
+ "entropy": 0.7824719250202179,
2174
+ "epoch": 1.7032967032967035,
2175
+ "grad_norm": 0.9957182949083399,
2176
+ "learning_rate": 1.3260717460915296e-06,
2177
+ "loss": 0.7544,
2178
+ "mean_token_accuracy": 0.807805722951889,
2179
+ "num_tokens": 37570438.0,
2180
+ "step": 1085
2181
+ },
2182
+ {
2183
+ "entropy": 0.7544129610061645,
2184
+ "epoch": 1.7111459968602825,
2185
+ "grad_norm": 0.9703625828087117,
2186
+ "learning_rate": 1.2586804752342596e-06,
2187
+ "loss": 0.7188,
2188
+ "mean_token_accuracy": 0.8151076018810273,
2189
+ "num_tokens": 37737499.0,
2190
+ "step": 1090
2191
+ },
2192
+ {
2193
+ "entropy": 0.743044650554657,
2194
+ "epoch": 1.718995290423862,
2195
+ "grad_norm": 0.9690074212452209,
2196
+ "learning_rate": 1.1929314598383423e-06,
2197
+ "loss": 0.7063,
2198
+ "mean_token_accuracy": 0.8181752383708953,
2199
+ "num_tokens": 37913627.0,
2200
+ "step": 1095
2201
+ },
2202
+ {
2203
+ "entropy": 0.7185172259807586,
2204
+ "epoch": 1.7268445839874411,
2205
+ "grad_norm": 1.1373129697584625,
2206
+ "learning_rate": 1.1288370523500303e-06,
2207
+ "loss": 0.6835,
2208
+ "mean_token_accuracy": 0.8257754504680633,
2209
+ "num_tokens": 38089486.0,
2210
+ "step": 1100
2211
+ },
2212
+ {
2213
+ "entropy": 0.7122299313545227,
2214
+ "epoch": 1.7346938775510203,
2215
+ "grad_norm": 0.9475780042691163,
2216
+ "learning_rate": 1.0664092943598936e-06,
2217
+ "loss": 0.6738,
2218
+ "mean_token_accuracy": 0.825401759147644,
2219
+ "num_tokens": 38265989.0,
2220
+ "step": 1105
2221
+ },
2222
+ {
2223
+ "entropy": 0.7239093542098999,
2224
+ "epoch": 1.7425431711145998,
2225
+ "grad_norm": 1.001845234555268,
2226
+ "learning_rate": 1.0056599143405244e-06,
2227
+ "loss": 0.6884,
2228
+ "mean_token_accuracy": 0.8226254045963287,
2229
+ "num_tokens": 38439917.0,
2230
+ "step": 1110
2231
+ },
2232
+ {
2233
+ "entropy": 0.7333126664161682,
2234
+ "epoch": 1.750392464678179,
2235
+ "grad_norm": 0.9971190945313598,
2236
+ "learning_rate": 9.466003254430933e-07,
2237
+ "loss": 0.6881,
2238
+ "mean_token_accuracy": 0.8203215301036835,
2239
+ "num_tokens": 38616358.0,
2240
+ "step": 1115
2241
+ },
2242
+ {
2243
+ "entropy": 0.7681297719478607,
2244
+ "epoch": 1.7582417582417582,
2245
+ "grad_norm": 1.245492760724295,
2246
+ "learning_rate": 8.892416233531064e-07,
2247
+ "loss": 0.742,
2248
+ "mean_token_accuracy": 0.8079022407531739,
2249
+ "num_tokens": 38795402.0,
2250
+ "step": 1120
2251
+ },
2252
+ {
2253
+ "entropy": 0.7380172729492187,
2254
+ "epoch": 1.7660910518053377,
2255
+ "grad_norm": 1.115807071873818,
2256
+ "learning_rate": 8.335945842058524e-07,
2257
+ "loss": 0.7159,
2258
+ "mean_token_accuracy": 0.8170927584171295,
2259
+ "num_tokens": 38960049.0,
2260
+ "step": 1125
2261
+ },
2262
+ {
2263
+ "entropy": 0.7784777998924255,
2264
+ "epoch": 1.7739403453689166,
2265
+ "grad_norm": 1.1845649216642042,
2266
+ "learning_rate": 7.79669662561845e-07,
2267
+ "loss": 0.7611,
2268
+ "mean_token_accuracy": 0.8072137892246246,
2269
+ "num_tokens": 39119582.0,
2270
+ "step": 1130
2271
+ },
2272
+ {
2273
+ "entropy": 0.8016350626945495,
2274
+ "epoch": 1.781789638932496,
2275
+ "grad_norm": 1.2308052617784628,
2276
+ "learning_rate": 7.274769894426992e-07,
2277
+ "loss": 0.7617,
2278
+ "mean_token_accuracy": 0.8067909240722656,
2279
+ "num_tokens": 39283550.0,
2280
+ "step": 1135
2281
+ },
2282
+ {
2283
+ "entropy": 0.7120549559593201,
2284
+ "epoch": 1.7896389324960753,
2285
+ "grad_norm": 1.015873369843229,
2286
+ "learning_rate": 6.770263704277958e-07,
2287
+ "loss": 0.6797,
2288
+ "mean_token_accuracy": 0.825808972120285,
2289
+ "num_tokens": 39458562.0,
2290
+ "step": 1140
2291
+ },
2292
+ {
2293
+ "entropy": 0.7790571570396423,
2294
+ "epoch": 1.7974882260596545,
2295
+ "grad_norm": 1.2069803490153195,
2296
+ "learning_rate": 6.283272838120747e-07,
2297
+ "loss": 0.7413,
2298
+ "mean_token_accuracy": 0.8112108767032623,
2299
+ "num_tokens": 39643414.0,
2300
+ "step": 1145
2301
+ },
2302
+ {
2303
+ "entropy": 0.7301172256469727,
2304
+ "epoch": 1.805337519623234,
2305
+ "grad_norm": 0.9953411823491249,
2306
+ "learning_rate": 5.813888788253153e-07,
2307
+ "loss": 0.6941,
2308
+ "mean_token_accuracy": 0.8256865799427032,
2309
+ "num_tokens": 39822966.0,
2310
+ "step": 1150
2311
+ },
2312
+ {
2313
+ "entropy": 0.7100351989269257,
2314
+ "epoch": 1.8131868131868132,
2315
+ "grad_norm": 0.9830586268356776,
2316
+ "learning_rate": 5.362199739132656e-07,
2317
+ "loss": 0.6798,
2318
+ "mean_token_accuracy": 0.8224455356597901,
2319
+ "num_tokens": 40005726.0,
2320
+ "step": 1155
2321
+ },
2322
+ {
2323
+ "entropy": 0.7516296982765198,
2324
+ "epoch": 1.8210361067503924,
2325
+ "grad_norm": 1.1110106525518082,
2326
+ "learning_rate": 4.928290550808734e-07,
2327
+ "loss": 0.7185,
2328
+ "mean_token_accuracy": 0.8140633761882782,
2329
+ "num_tokens": 40186425.0,
2330
+ "step": 1160
2331
+ },
2332
+ {
2333
+ "entropy": 0.7692579805850983,
2334
+ "epoch": 1.8288854003139718,
2335
+ "grad_norm": 1.0756180170926506,
2336
+ "learning_rate": 4.512242742980155e-07,
2337
+ "loss": 0.7392,
2338
+ "mean_token_accuracy": 0.8081157386302948,
2339
+ "num_tokens": 40350152.0,
2340
+ "step": 1165
2341
+ },
2342
+ {
2343
+ "entropy": 0.7613302409648895,
2344
+ "epoch": 1.836734693877551,
2345
+ "grad_norm": 1.0642137370397113,
2346
+ "learning_rate": 4.114134479679543e-07,
2347
+ "loss": 0.7284,
2348
+ "mean_token_accuracy": 0.8129187166690827,
2349
+ "num_tokens": 40528047.0,
2350
+ "step": 1170
2351
+ },
2352
+ {
2353
+ "entropy": 0.7093900799751282,
2354
+ "epoch": 1.8445839874411303,
2355
+ "grad_norm": 1.0273855983389975,
2356
+ "learning_rate": 3.734040554588514e-07,
2357
+ "loss": 0.6803,
2358
+ "mean_token_accuracy": 0.8240821838378907,
2359
+ "num_tokens": 40704920.0,
2360
+ "step": 1175
2361
+ },
2362
+ {
2363
+ "entropy": 0.8153238594532013,
2364
+ "epoch": 1.8524332810047097,
2365
+ "grad_norm": 1.154167003361903,
2366
+ "learning_rate": 3.372032376986034e-07,
2367
+ "loss": 0.7876,
2368
+ "mean_token_accuracy": 0.8021852433681488,
2369
+ "num_tokens": 40885862.0,
2370
+ "step": 1180
2371
+ },
2372
+ {
2373
+ "entropy": 0.7414963245391846,
2374
+ "epoch": 1.8602825745682887,
2375
+ "grad_norm": 1.091775374088636,
2376
+ "learning_rate": 3.028177958332512e-07,
2377
+ "loss": 0.7215,
2378
+ "mean_token_accuracy": 0.8134265184402466,
2379
+ "num_tokens": 41053122.0,
2380
+ "step": 1185
2381
+ },
2382
+ {
2383
+ "entropy": 0.7713593304157257,
2384
+ "epoch": 1.8681318681318682,
2385
+ "grad_norm": 1.016619935989382,
2386
+ "learning_rate": 2.7025418994922835e-07,
2387
+ "loss": 0.7482,
2388
+ "mean_token_accuracy": 0.8068521022796631,
2389
+ "num_tokens": 41234810.0,
2390
+ "step": 1190
2391
+ },
2392
+ {
2393
+ "entropy": 0.7621817708015441,
2394
+ "epoch": 1.8759811616954474,
2395
+ "grad_norm": 0.9848583742199782,
2396
+ "learning_rate": 2.3951853785969535e-07,
2397
+ "loss": 0.7206,
2398
+ "mean_token_accuracy": 0.8109483242034912,
2399
+ "num_tokens": 41405619.0,
2400
+ "step": 1195
2401
+ },
2402
+ {
2403
+ "entropy": 0.7842711210250854,
2404
+ "epoch": 1.8838304552590266,
2405
+ "grad_norm": 1.0739684117823498,
2406
+ "learning_rate": 2.106166139551602e-07,
2407
+ "loss": 0.7327,
2408
+ "mean_token_accuracy": 0.8116710960865021,
2409
+ "num_tokens": 41590075.0,
2410
+ "step": 1200
2411
+ },
2412
+ {
2413
+ "entropy": 0.7711109399795533,
2414
+ "epoch": 1.891679748822606,
2415
+ "grad_norm": 0.9926553530406242,
2416
+ "learning_rate": 1.8355384811863274e-07,
2417
+ "loss": 0.7334,
2418
+ "mean_token_accuracy": 0.8130580425262451,
2419
+ "num_tokens": 41770027.0,
2420
+ "step": 1205
2421
+ },
2422
+ {
2423
+ "entropy": 0.702984768152237,
2424
+ "epoch": 1.8995290423861853,
2425
+ "grad_norm": 0.917051774339438,
2426
+ "learning_rate": 1.5833532470549862e-07,
2427
+ "loss": 0.6605,
2428
+ "mean_token_accuracy": 0.8280925750732422,
2429
+ "num_tokens": 41936335.0,
2430
+ "step": 1210
2431
+ },
2432
+ {
2433
+ "entropy": 0.7767878472805023,
2434
+ "epoch": 1.9073783359497645,
2435
+ "grad_norm": 0.9957534077102087,
2436
+ "learning_rate": 1.349657815883032e-07,
2437
+ "loss": 0.7362,
2438
+ "mean_token_accuracy": 0.8118787288665772,
2439
+ "num_tokens": 42107912.0,
2440
+ "step": 1215
2441
+ },
2442
+ {
2443
+ "entropy": 0.7855257987976074,
2444
+ "epoch": 1.915227629513344,
2445
+ "grad_norm": 0.9953626270088998,
2446
+ "learning_rate": 1.134496092666415e-07,
2447
+ "loss": 0.7591,
2448
+ "mean_token_accuracy": 0.8073217928409576,
2449
+ "num_tokens": 42281718.0,
2450
+ "step": 1220
2451
+ },
2452
+ {
2453
+ "entropy": 0.7985514104366302,
2454
+ "epoch": 1.9230769230769231,
2455
+ "grad_norm": 1.0438288771925675,
2456
+ "learning_rate": 9.379085004229571e-08,
2457
+ "loss": 0.772,
2458
+ "mean_token_accuracy": 0.8026262700557709,
2459
+ "num_tokens": 42457692.0,
2460
+ "step": 1225
2461
+ },
2462
+ {
2463
+ "entropy": 0.821302056312561,
2464
+ "epoch": 1.9309262166405023,
2465
+ "grad_norm": 1.0650928419707624,
2466
+ "learning_rate": 7.599319725980047e-08,
2467
+ "loss": 0.7918,
2468
+ "mean_token_accuracy": 0.8005186259746552,
2469
+ "num_tokens": 42618439.0,
2470
+ "step": 1230
2471
+ },
2472
+ {
2473
+ "entropy": 0.752595180273056,
2474
+ "epoch": 1.9387755102040818,
2475
+ "grad_norm": 0.9961170535300169,
2476
+ "learning_rate": 6.005999461256684e-08,
2477
+ "loss": 0.7173,
2478
+ "mean_token_accuracy": 0.8164769828319549,
2479
+ "num_tokens": 42793437.0,
2480
+ "step": 1235
2481
+ },
2482
+ {
2483
+ "entropy": 0.808338588476181,
2484
+ "epoch": 1.9466248037676608,
2485
+ "grad_norm": 0.997102022758727,
2486
+ "learning_rate": 4.599423551468807e-08,
2487
+ "loss": 0.7717,
2488
+ "mean_token_accuracy": 0.8039632081985474,
2489
+ "num_tokens": 42970312.0,
2490
+ "step": 1240
2491
+ },
2492
+ {
2493
+ "entropy": 0.7728889286518097,
2494
+ "epoch": 1.9544740973312402,
2495
+ "grad_norm": 1.0591818008335387,
2496
+ "learning_rate": 3.379856253855951e-08,
2497
+ "loss": 0.7481,
2498
+ "mean_token_accuracy": 0.8098339200019836,
2499
+ "num_tokens": 43138629.0,
2500
+ "step": 1245
2501
+ },
2502
+ {
2503
+ "entropy": 0.769390881061554,
2504
+ "epoch": 1.9623233908948194,
2505
+ "grad_norm": 0.9742656195869465,
2506
+ "learning_rate": 2.347526691841906e-08,
2507
+ "loss": 0.7264,
2508
+ "mean_token_accuracy": 0.8145478665828705,
2509
+ "num_tokens": 43326665.0,
2510
+ "step": 1250
2511
+ },
2512
+ {
2513
+ "entropy": 0.7466801643371582,
2514
+ "epoch": 1.9701726844583987,
2515
+ "grad_norm": 1.1004286768763787,
2516
+ "learning_rate": 1.5026288119874833e-08,
2517
+ "loss": 0.7238,
2518
+ "mean_token_accuracy": 0.8128555476665497,
2519
+ "num_tokens": 43496115.0,
2520
+ "step": 1255
2521
+ },
2522
+ {
2523
+ "entropy": 0.7430457651615143,
2524
+ "epoch": 1.978021978021978,
2525
+ "grad_norm": 1.160967766701634,
2526
+ "learning_rate": 8.453213475543287e-09,
2527
+ "loss": 0.714,
2528
+ "mean_token_accuracy": 0.8188326716423034,
2529
+ "num_tokens": 43668507.0,
2530
+ "step": 1260
2531
+ },
2532
+ {
2533
+ "entropy": 0.7921516478061676,
2534
+ "epoch": 1.9858712715855573,
2535
+ "grad_norm": 1.1314914814932062,
2536
+ "learning_rate": 3.757277886824451e-09,
2537
+ "loss": 0.7787,
2538
+ "mean_token_accuracy": 0.8006852388381958,
2539
+ "num_tokens": 43834205.0,
2540
+ "step": 1265
2541
+ },
2542
+ {
2543
+ "entropy": 0.8109793305397034,
2544
+ "epoch": 1.9937205651491365,
2545
+ "grad_norm": 1.1071018013231804,
2546
+ "learning_rate": 9.393635919041632e-10,
2547
+ "loss": 0.7742,
2548
+ "mean_token_accuracy": 0.8020374476909637,
2549
+ "num_tokens": 43991996.0,
2550
+ "step": 1270
2551
+ },
2552
+ {
2553
+ "entropy": 0.7788021937012672,
2554
+ "epoch": 2.0,
2555
+ "mean_token_accuracy": 0.8104717135429382,
2556
+ "num_tokens": 44139265.0,
2557
+ "step": 1274,
2558
+ "total_flos": 81886852153344.0,
2559
+ "train_loss": 0.8234564670401053,
2560
+ "train_runtime": 2821.943,
2561
+ "train_samples_per_second": 28.885,
2562
+ "train_steps_per_second": 0.451
2563
+ }
2564
+ ],
2565
+ "logging_steps": 5,
2566
+ "max_steps": 1274,
2567
+ "num_input_tokens_seen": 0,
2568
+ "num_train_epochs": 2,
2569
+ "save_steps": 100,
2570
+ "stateful_callbacks": {
2571
+ "TrainerControl": {
2572
+ "args": {
2573
+ "should_epoch_stop": false,
2574
+ "should_evaluate": false,
2575
+ "should_log": false,
2576
+ "should_save": true,
2577
+ "should_training_stop": true
2578
+ },
2579
+ "attributes": {}
2580
+ }
2581
+ },
2582
+ "total_flos": 81886852153344.0,
2583
+ "train_batch_size": 8,
2584
+ "trial_name": null,
2585
+ "trial_params": null
2586
+ }