lhkhiem28 commited on
Commit
3b9cfd9
·
verified ·
1 Parent(s): 4214869

Model save

Browse files
Files changed (5) hide show
  1. README.md +1 -1
  2. all_results.json +12 -0
  3. generation_config.json +1 -3
  4. train_results.json +12 -0
  5. trainer_state.json +2586 -0
README.md CHANGED
@@ -4,9 +4,9 @@ library_name: transformers
4
  model_name: qwen2.5-1.5b-sft-iter2
5
  tags:
6
  - generated_from_trainer
7
- - hf_jobs
8
  - trl
9
  - sft
 
10
  licence: license
11
  ---
12
 
 
4
  model_name: qwen2.5-1.5b-sft-iter2
5
  tags:
6
  - generated_from_trainer
 
7
  - trl
8
  - sft
9
+ - hf_jobs
10
  licence: license
11
  ---
12
 
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "entropy": 0.8685899376869202,
3
+ "epoch": 2.0,
4
+ "mean_token_accuracy": 0.7839328944683075,
5
+ "num_tokens": 42794273.0,
6
+ "total_flos": 79316336967680.0,
7
+ "train_loss": 0.8601785458425525,
8
+ "train_runtime": 2840.349,
9
+ "train_samples": 40756,
10
+ "train_samples_per_second": 28.698,
11
+ "train_steps_per_second": 0.449
12
+ }
generation_config.json CHANGED
@@ -1,8 +1,6 @@
1
  {
2
  "do_sample": true,
3
- "eos_token_id": [
4
- 151645
5
- ],
6
  "pad_token_id": 151643,
7
  "repetition_penalty": 1.1,
8
  "temperature": 0.7,
 
1
  {
2
  "do_sample": true,
3
+ "eos_token_id": 151645,
 
 
4
  "pad_token_id": 151643,
5
  "repetition_penalty": 1.1,
6
  "temperature": 0.7,
train_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "entropy": 0.8685899376869202,
3
+ "epoch": 2.0,
4
+ "mean_token_accuracy": 0.7839328944683075,
5
+ "num_tokens": 42794273.0,
6
+ "total_flos": 79316336967680.0,
7
+ "train_loss": 0.8601785458425525,
8
+ "train_runtime": 2840.349,
9
+ "train_samples": 40756,
10
+ "train_samples_per_second": 28.698,
11
+ "train_steps_per_second": 0.449
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,2586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1274,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.8923108279705048,
14
+ "epoch": 0.007849293563579277,
15
+ "grad_norm": 1.0846652671644206,
16
+ "learning_rate": 6.25e-07,
17
+ "loss": 0.9037,
18
+ "mean_token_accuracy": 0.7743591070175171,
19
+ "num_tokens": 178317.0,
20
+ "step": 5
21
+ },
22
+ {
23
+ "entropy": 0.920203971862793,
24
+ "epoch": 0.015698587127158554,
25
+ "grad_norm": 1.054834647195203,
26
+ "learning_rate": 1.40625e-06,
27
+ "loss": 0.9418,
28
+ "mean_token_accuracy": 0.7692570209503173,
29
+ "num_tokens": 357289.0,
30
+ "step": 10
31
+ },
32
+ {
33
+ "entropy": 0.8834264755249024,
34
+ "epoch": 0.023547880690737835,
35
+ "grad_norm": 1.074626954566983,
36
+ "learning_rate": 2.1875000000000002e-06,
37
+ "loss": 0.8905,
38
+ "mean_token_accuracy": 0.77989462018013,
39
+ "num_tokens": 533821.0,
40
+ "step": 15
41
+ },
42
+ {
43
+ "entropy": 0.9269816219806671,
44
+ "epoch": 0.03139717425431711,
45
+ "grad_norm": 1.275445940747145,
46
+ "learning_rate": 2.96875e-06,
47
+ "loss": 0.948,
48
+ "mean_token_accuracy": 0.7666654944419861,
49
+ "num_tokens": 698178.0,
50
+ "step": 20
51
+ },
52
+ {
53
+ "entropy": 0.9225781202316284,
54
+ "epoch": 0.03924646781789639,
55
+ "grad_norm": 1.2339414545355725,
56
+ "learning_rate": 3.7500000000000005e-06,
57
+ "loss": 0.8796,
58
+ "mean_token_accuracy": 0.7792899131774902,
59
+ "num_tokens": 859082.0,
60
+ "step": 25
61
+ },
62
+ {
63
+ "entropy": 0.9789364576339722,
64
+ "epoch": 0.04709576138147567,
65
+ "grad_norm": 1.1769021864963694,
66
+ "learning_rate": 4.53125e-06,
67
+ "loss": 0.9546,
68
+ "mean_token_accuracy": 0.7612079977989197,
69
+ "num_tokens": 1034131.0,
70
+ "step": 30
71
+ },
72
+ {
73
+ "entropy": 0.9308826148509979,
74
+ "epoch": 0.054945054945054944,
75
+ "grad_norm": 1.012055593605149,
76
+ "learning_rate": 5.3125e-06,
77
+ "loss": 0.9083,
78
+ "mean_token_accuracy": 0.7734895884990692,
79
+ "num_tokens": 1205811.0,
80
+ "step": 35
81
+ },
82
+ {
83
+ "entropy": 0.9731091439723969,
84
+ "epoch": 0.06279434850863422,
85
+ "grad_norm": 1.2998416722317658,
86
+ "learning_rate": 6.093750000000001e-06,
87
+ "loss": 0.9675,
88
+ "mean_token_accuracy": 0.7617174565792084,
89
+ "num_tokens": 1360770.0,
90
+ "step": 40
91
+ },
92
+ {
93
+ "entropy": 0.8953827381134033,
94
+ "epoch": 0.0706436420722135,
95
+ "grad_norm": 0.9856112544308491,
96
+ "learning_rate": 6.875e-06,
97
+ "loss": 0.8916,
98
+ "mean_token_accuracy": 0.7822651624679565,
99
+ "num_tokens": 1533946.0,
100
+ "step": 45
101
+ },
102
+ {
103
+ "entropy": 0.9609230756759644,
104
+ "epoch": 0.07849293563579278,
105
+ "grad_norm": 1.1151960140633406,
106
+ "learning_rate": 7.656250000000001e-06,
107
+ "loss": 0.952,
108
+ "mean_token_accuracy": 0.7624362647533417,
109
+ "num_tokens": 1701883.0,
110
+ "step": 50
111
+ },
112
+ {
113
+ "entropy": 0.9360766351222992,
114
+ "epoch": 0.08634222919937205,
115
+ "grad_norm": 0.9956541686878148,
116
+ "learning_rate": 8.4375e-06,
117
+ "loss": 0.9278,
118
+ "mean_token_accuracy": 0.7703767657279968,
119
+ "num_tokens": 1874081.0,
120
+ "step": 55
121
+ },
122
+ {
123
+ "entropy": 0.9806451737880707,
124
+ "epoch": 0.09419152276295134,
125
+ "grad_norm": 1.159466881871733,
126
+ "learning_rate": 9.21875e-06,
127
+ "loss": 0.9592,
128
+ "mean_token_accuracy": 0.7591827690601349,
129
+ "num_tokens": 2041363.0,
130
+ "step": 60
131
+ },
132
+ {
133
+ "entropy": 0.9667136311531067,
134
+ "epoch": 0.10204081632653061,
135
+ "grad_norm": 1.1293730384420282,
136
+ "learning_rate": 1e-05,
137
+ "loss": 0.9653,
138
+ "mean_token_accuracy": 0.7633151412010193,
139
+ "num_tokens": 2200578.0,
140
+ "step": 65
141
+ },
142
+ {
143
+ "entropy": 0.991092300415039,
144
+ "epoch": 0.10989010989010989,
145
+ "grad_norm": 1.1315667226075667,
146
+ "learning_rate": 1.0781250000000001e-05,
147
+ "loss": 0.9597,
148
+ "mean_token_accuracy": 0.7614585816860199,
149
+ "num_tokens": 2356944.0,
150
+ "step": 70
151
+ },
152
+ {
153
+ "entropy": 0.9186211705207825,
154
+ "epoch": 0.11773940345368916,
155
+ "grad_norm": 0.9750633684496991,
156
+ "learning_rate": 1.1562500000000002e-05,
157
+ "loss": 0.8825,
158
+ "mean_token_accuracy": 0.7805460155010223,
159
+ "num_tokens": 2544833.0,
160
+ "step": 75
161
+ },
162
+ {
163
+ "entropy": 1.0243119478225708,
164
+ "epoch": 0.12558869701726844,
165
+ "grad_norm": 1.1378562830275354,
166
+ "learning_rate": 1.234375e-05,
167
+ "loss": 0.9967,
168
+ "mean_token_accuracy": 0.7553607821464539,
169
+ "num_tokens": 2713694.0,
170
+ "step": 80
171
+ },
172
+ {
173
+ "entropy": 0.9048753321170807,
174
+ "epoch": 0.13343799058084774,
175
+ "grad_norm": 0.9899557134460932,
176
+ "learning_rate": 1.3125e-05,
177
+ "loss": 0.8766,
178
+ "mean_token_accuracy": 0.7808430552482605,
179
+ "num_tokens": 2887769.0,
180
+ "step": 85
181
+ },
182
+ {
183
+ "entropy": 0.9815359652042389,
184
+ "epoch": 0.141287284144427,
185
+ "grad_norm": 1.1366400203542357,
186
+ "learning_rate": 1.3906250000000001e-05,
187
+ "loss": 0.9827,
188
+ "mean_token_accuracy": 0.7579309821128846,
189
+ "num_tokens": 3059822.0,
190
+ "step": 90
191
+ },
192
+ {
193
+ "entropy": 0.9039746880531311,
194
+ "epoch": 0.14913657770800628,
195
+ "grad_norm": 1.5861385589334023,
196
+ "learning_rate": 1.4687500000000001e-05,
197
+ "loss": 0.8752,
198
+ "mean_token_accuracy": 0.7799261450767517,
199
+ "num_tokens": 3232425.0,
200
+ "step": 95
201
+ },
202
+ {
203
+ "entropy": 0.9870649099349975,
204
+ "epoch": 0.15698587127158556,
205
+ "grad_norm": 1.2371253838104694,
206
+ "learning_rate": 1.546875e-05,
207
+ "loss": 0.9574,
208
+ "mean_token_accuracy": 0.7566253483295441,
209
+ "num_tokens": 3385232.0,
210
+ "step": 100
211
+ },
212
+ {
213
+ "entropy": 0.9329905152320862,
214
+ "epoch": 0.16483516483516483,
215
+ "grad_norm": 1.0837180728086673,
216
+ "learning_rate": 1.6250000000000002e-05,
217
+ "loss": 0.9102,
218
+ "mean_token_accuracy": 0.77213174700737,
219
+ "num_tokens": 3558956.0,
220
+ "step": 105
221
+ },
222
+ {
223
+ "entropy": 0.9576933801174163,
224
+ "epoch": 0.1726844583987441,
225
+ "grad_norm": 1.0184373297120872,
226
+ "learning_rate": 1.703125e-05,
227
+ "loss": 0.9446,
228
+ "mean_token_accuracy": 0.7666807472705841,
229
+ "num_tokens": 3741267.0,
230
+ "step": 110
231
+ },
232
+ {
233
+ "entropy": 0.9833621561527253,
234
+ "epoch": 0.18053375196232338,
235
+ "grad_norm": 1.081495146597845,
236
+ "learning_rate": 1.7812500000000003e-05,
237
+ "loss": 0.9751,
238
+ "mean_token_accuracy": 0.760509479045868,
239
+ "num_tokens": 3901752.0,
240
+ "step": 115
241
+ },
242
+ {
243
+ "entropy": 1.09641934633255,
244
+ "epoch": 0.18838304552590268,
245
+ "grad_norm": 1.2012234349363566,
246
+ "learning_rate": 1.859375e-05,
247
+ "loss": 1.0963,
248
+ "mean_token_accuracy": 0.7360260009765625,
249
+ "num_tokens": 4072999.0,
250
+ "step": 120
251
+ },
252
+ {
253
+ "entropy": 0.9882058680057526,
254
+ "epoch": 0.19623233908948196,
255
+ "grad_norm": 0.9937322506697319,
256
+ "learning_rate": 1.9375e-05,
257
+ "loss": 0.9853,
258
+ "mean_token_accuracy": 0.7576613247394561,
259
+ "num_tokens": 4246177.0,
260
+ "step": 125
261
+ },
262
+ {
263
+ "entropy": 1.0119176387786866,
264
+ "epoch": 0.20408163265306123,
265
+ "grad_norm": 1.0694914434524772,
266
+ "learning_rate": 1.999996242489157e-05,
267
+ "loss": 0.9631,
268
+ "mean_token_accuracy": 0.758573442697525,
269
+ "num_tokens": 4410505.0,
270
+ "step": 130
271
+ },
272
+ {
273
+ "entropy": 0.9016034841537476,
274
+ "epoch": 0.2119309262166405,
275
+ "grad_norm": 1.3380668664631206,
276
+ "learning_rate": 1.9998647325745995e-05,
277
+ "loss": 0.9024,
278
+ "mean_token_accuracy": 0.7715110659599305,
279
+ "num_tokens": 4585906.0,
280
+ "step": 135
281
+ },
282
+ {
283
+ "entropy": 0.9409748911857605,
284
+ "epoch": 0.21978021978021978,
285
+ "grad_norm": 1.2699863477033326,
286
+ "learning_rate": 1.9995453753547198e-05,
287
+ "loss": 0.9172,
288
+ "mean_token_accuracy": 0.769565087556839,
289
+ "num_tokens": 4752246.0,
290
+ "step": 140
291
+ },
292
+ {
293
+ "entropy": 0.9414529740810395,
294
+ "epoch": 0.22762951334379905,
295
+ "grad_norm": 1.015452830363856,
296
+ "learning_rate": 1.9990382308280272e-05,
297
+ "loss": 0.931,
298
+ "mean_token_accuracy": 0.7670335710048676,
299
+ "num_tokens": 4911595.0,
300
+ "step": 145
301
+ },
302
+ {
303
+ "entropy": 1.0376124560832978,
304
+ "epoch": 0.23547880690737832,
305
+ "grad_norm": 1.1058546158019706,
306
+ "learning_rate": 1.9983433942731427e-05,
307
+ "loss": 1.0206,
308
+ "mean_token_accuracy": 0.749090451002121,
309
+ "num_tokens": 5086433.0,
310
+ "step": 150
311
+ },
312
+ {
313
+ "entropy": 0.9030189216136932,
314
+ "epoch": 0.24332810047095763,
315
+ "grad_norm": 1.0525541372324732,
316
+ "learning_rate": 1.9974609962308986e-05,
317
+ "loss": 0.9007,
318
+ "mean_token_accuracy": 0.7748336374759675,
319
+ "num_tokens": 5253732.0,
320
+ "step": 155
321
+ },
322
+ {
323
+ "entropy": 0.9299406290054322,
324
+ "epoch": 0.25117739403453687,
325
+ "grad_norm": 1.2018132967943806,
326
+ "learning_rate": 1.9963912024798136e-05,
327
+ "loss": 0.9244,
328
+ "mean_token_accuracy": 0.7697316825389862,
329
+ "num_tokens": 5417674.0,
330
+ "step": 160
331
+ },
332
+ {
333
+ "entropy": 1.0168113708496094,
334
+ "epoch": 0.25902668759811615,
335
+ "grad_norm": 1.9151888617227308,
336
+ "learning_rate": 1.9951342140049483e-05,
337
+ "loss": 0.9865,
338
+ "mean_token_accuracy": 0.7549250602722168,
339
+ "num_tokens": 5583642.0,
340
+ "step": 165
341
+ },
342
+ {
343
+ "entropy": 1.0209120154380797,
344
+ "epoch": 0.2668759811616955,
345
+ "grad_norm": 1.1470899446647818,
346
+ "learning_rate": 1.9936902669601436e-05,
347
+ "loss": 1.0185,
348
+ "mean_token_accuracy": 0.7463882029056549,
349
+ "num_tokens": 5749362.0,
350
+ "step": 170
351
+ },
352
+ {
353
+ "entropy": 1.000859671831131,
354
+ "epoch": 0.27472527472527475,
355
+ "grad_norm": 1.0314754852223484,
356
+ "learning_rate": 1.992059632623657e-05,
357
+ "loss": 0.9795,
358
+ "mean_token_accuracy": 0.7567110538482666,
359
+ "num_tokens": 5931525.0,
360
+ "step": 175
361
+ },
362
+ {
363
+ "entropy": 0.9324127018451691,
364
+ "epoch": 0.282574568288854,
365
+ "grad_norm": 1.1948728155140573,
366
+ "learning_rate": 1.9902426173471933e-05,
367
+ "loss": 0.9432,
368
+ "mean_token_accuracy": 0.7646886527538299,
369
+ "num_tokens": 6107352.0,
370
+ "step": 180
371
+ },
372
+ {
373
+ "entropy": 0.8979306757450104,
374
+ "epoch": 0.2904238618524333,
375
+ "grad_norm": 1.149225401693029,
376
+ "learning_rate": 1.9882395624983522e-05,
377
+ "loss": 0.8723,
378
+ "mean_token_accuracy": 0.7772454380989074,
379
+ "num_tokens": 6284190.0,
380
+ "step": 185
381
+ },
382
+ {
383
+ "entropy": 0.9475451648235321,
384
+ "epoch": 0.29827315541601257,
385
+ "grad_norm": 1.0633396188858635,
386
+ "learning_rate": 1.986050844396493e-05,
387
+ "loss": 0.9477,
388
+ "mean_token_accuracy": 0.7611142456531524,
389
+ "num_tokens": 6448910.0,
390
+ "step": 190
391
+ },
392
+ {
393
+ "entropy": 0.9558171093463897,
394
+ "epoch": 0.30612244897959184,
395
+ "grad_norm": 1.2123998006858923,
396
+ "learning_rate": 1.9836768742420355e-05,
397
+ "loss": 0.9448,
398
+ "mean_token_accuracy": 0.7647868692874908,
399
+ "num_tokens": 6605130.0,
400
+ "step": 195
401
+ },
402
+ {
403
+ "entropy": 0.957121080160141,
404
+ "epoch": 0.3139717425431711,
405
+ "grad_norm": 1.060560663378554,
406
+ "learning_rate": 1.9811180980392054e-05,
407
+ "loss": 0.9441,
408
+ "mean_token_accuracy": 0.763433963060379,
409
+ "num_tokens": 6774784.0,
410
+ "step": 200
411
+ },
412
+ {
413
+ "entropy": 0.9790769934654235,
414
+ "epoch": 0.3218210361067504,
415
+ "grad_norm": 1.0269436730850807,
416
+ "learning_rate": 1.9783749965122444e-05,
417
+ "loss": 0.9694,
418
+ "mean_token_accuracy": 0.7610109508037567,
419
+ "num_tokens": 6951192.0,
420
+ "step": 205
421
+ },
422
+ {
423
+ "entropy": 0.944574511051178,
424
+ "epoch": 0.32967032967032966,
425
+ "grad_norm": 1.207945428006486,
426
+ "learning_rate": 1.975448085015093e-05,
427
+ "loss": 0.921,
428
+ "mean_token_accuracy": 0.7690154552459717,
429
+ "num_tokens": 7126342.0,
430
+ "step": 210
431
+ },
432
+ {
433
+ "entropy": 0.941559374332428,
434
+ "epoch": 0.33751962323390894,
435
+ "grad_norm": 1.3645198482716716,
436
+ "learning_rate": 1.9723379134345698e-05,
437
+ "loss": 0.9277,
438
+ "mean_token_accuracy": 0.7681373357772827,
439
+ "num_tokens": 7291928.0,
440
+ "step": 215
441
+ },
442
+ {
443
+ "entropy": 0.8783131539821625,
444
+ "epoch": 0.3453689167974882,
445
+ "grad_norm": 1.1324121467643162,
446
+ "learning_rate": 1.9690450660870657e-05,
447
+ "loss": 0.8823,
448
+ "mean_token_accuracy": 0.7756971180438995,
449
+ "num_tokens": 7455891.0,
450
+ "step": 220
451
+ },
452
+ {
453
+ "entropy": 0.9457615196704865,
454
+ "epoch": 0.3532182103610675,
455
+ "grad_norm": 1.4176003588865003,
456
+ "learning_rate": 1.965570161608762e-05,
457
+ "loss": 0.9054,
458
+ "mean_token_accuracy": 0.7736207127571106,
459
+ "num_tokens": 7614914.0,
460
+ "step": 225
461
+ },
462
+ {
463
+ "entropy": 0.9694023311138154,
464
+ "epoch": 0.36106750392464676,
465
+ "grad_norm": 1.0480976699894644,
466
+ "learning_rate": 1.961913852839409e-05,
467
+ "loss": 0.9443,
468
+ "mean_token_accuracy": 0.7673780143260955,
469
+ "num_tokens": 7779157.0,
470
+ "step": 230
471
+ },
472
+ {
473
+ "entropy": 1.0053590416908265,
474
+ "epoch": 0.36891679748822603,
475
+ "grad_norm": 1.1458460377251418,
476
+ "learning_rate": 1.958076826699676e-05,
477
+ "loss": 1.0173,
478
+ "mean_token_accuracy": 0.7478827059268951,
479
+ "num_tokens": 7944245.0,
480
+ "step": 235
481
+ },
482
+ {
483
+ "entropy": 0.9745344460010529,
484
+ "epoch": 0.37676609105180536,
485
+ "grad_norm": 1.0262121083072202,
486
+ "learning_rate": 1.954059804062092e-05,
487
+ "loss": 0.9545,
488
+ "mean_token_accuracy": 0.7606645584106445,
489
+ "num_tokens": 8108061.0,
490
+ "step": 240
491
+ },
492
+ {
493
+ "entropy": 0.9760924875736237,
494
+ "epoch": 0.38461538461538464,
495
+ "grad_norm": 1.102383611635918,
496
+ "learning_rate": 1.9498635396156217e-05,
497
+ "loss": 0.9593,
498
+ "mean_token_accuracy": 0.7614710688591003,
499
+ "num_tokens": 8276341.0,
500
+ "step": 245
501
+ },
502
+ {
503
+ "entropy": 1.015894317626953,
504
+ "epoch": 0.3924646781789639,
505
+ "grad_norm": 1.0921383863500178,
506
+ "learning_rate": 1.945488821723873e-05,
507
+ "loss": 1.008,
508
+ "mean_token_accuracy": 0.7551724553108216,
509
+ "num_tokens": 8451051.0,
510
+ "step": 250
511
+ },
512
+ {
513
+ "entropy": 0.9748592793941497,
514
+ "epoch": 0.4003139717425432,
515
+ "grad_norm": 1.2778893065222514,
516
+ "learning_rate": 1.9409364722769882e-05,
517
+ "loss": 0.9637,
518
+ "mean_token_accuracy": 0.7573827385902405,
519
+ "num_tokens": 8618022.0,
520
+ "step": 255
521
+ },
522
+ {
523
+ "entropy": 0.9644428014755249,
524
+ "epoch": 0.40816326530612246,
525
+ "grad_norm": 1.1784396768189709,
526
+ "learning_rate": 1.936207346537233e-05,
527
+ "loss": 0.9545,
528
+ "mean_token_accuracy": 0.7592711687088013,
529
+ "num_tokens": 8787213.0,
530
+ "step": 260
531
+ },
532
+ {
533
+ "entropy": 0.9041996359825134,
534
+ "epoch": 0.41601255886970173,
535
+ "grad_norm": 1.0883429235361104,
536
+ "learning_rate": 1.931302332978316e-05,
537
+ "loss": 0.8941,
538
+ "mean_token_accuracy": 0.7768190681934357,
539
+ "num_tokens": 8958532.0,
540
+ "step": 265
541
+ },
542
+ {
543
+ "entropy": 1.011337196826935,
544
+ "epoch": 0.423861852433281,
545
+ "grad_norm": 1.0113459071796085,
546
+ "learning_rate": 1.9262223531184678e-05,
547
+ "loss": 1.0015,
548
+ "mean_token_accuracy": 0.7520352244377136,
549
+ "num_tokens": 9121824.0,
550
+ "step": 270
551
+ },
552
+ {
553
+ "entropy": 1.041982936859131,
554
+ "epoch": 0.4317111459968603,
555
+ "grad_norm": 1.0776344102623627,
556
+ "learning_rate": 1.9209683613473143e-05,
557
+ "loss": 1.0368,
558
+ "mean_token_accuracy": 0.7477185308933259,
559
+ "num_tokens": 9283293.0,
560
+ "step": 275
561
+ },
562
+ {
563
+ "entropy": 0.9901135206222534,
564
+ "epoch": 0.43956043956043955,
565
+ "grad_norm": 1.1557566124905563,
566
+ "learning_rate": 1.9155413447465715e-05,
567
+ "loss": 0.9556,
568
+ "mean_token_accuracy": 0.7589726448059082,
569
+ "num_tokens": 9444880.0,
570
+ "step": 280
571
+ },
572
+ {
573
+ "entropy": 0.9939525187015533,
574
+ "epoch": 0.4474097331240188,
575
+ "grad_norm": 1.2709530119251884,
576
+ "learning_rate": 1.9099423229046015e-05,
577
+ "loss": 0.9939,
578
+ "mean_token_accuracy": 0.7533400356769562,
579
+ "num_tokens": 9603203.0,
580
+ "step": 285
581
+ },
582
+ {
583
+ "entropy": 1.0107034623622895,
584
+ "epoch": 0.4552590266875981,
585
+ "grad_norm": 1.024836086226542,
586
+ "learning_rate": 1.9041723477248575e-05,
587
+ "loss": 0.9986,
588
+ "mean_token_accuracy": 0.7503722310066223,
589
+ "num_tokens": 9773987.0,
590
+ "step": 290
591
+ },
592
+ {
593
+ "entropy": 0.9630116701126099,
594
+ "epoch": 0.4631083202511774,
595
+ "grad_norm": 1.1004965555660209,
596
+ "learning_rate": 1.8982325032282616e-05,
597
+ "loss": 0.945,
598
+ "mean_token_accuracy": 0.7651254773139954,
599
+ "num_tokens": 9946995.0,
600
+ "step": 295
601
+ },
602
+ {
603
+ "entropy": 0.9473274886608124,
604
+ "epoch": 0.47095761381475665,
605
+ "grad_norm": 1.0501422807822132,
606
+ "learning_rate": 1.8921239053495465e-05,
607
+ "loss": 0.9258,
608
+ "mean_token_accuracy": 0.7670532703399658,
609
+ "num_tokens": 10120753.0,
610
+ "step": 300
611
+ },
612
+ {
613
+ "entropy": 1.024631142616272,
614
+ "epoch": 0.478806907378336,
615
+ "grad_norm": 1.154364710157582,
616
+ "learning_rate": 1.8858477017276002e-05,
617
+ "loss": 1.0069,
618
+ "mean_token_accuracy": 0.750711727142334,
619
+ "num_tokens": 10282985.0,
620
+ "step": 305
621
+ },
622
+ {
623
+ "entropy": 0.9688675343990326,
624
+ "epoch": 0.48665620094191525,
625
+ "grad_norm": 1.1885072584895293,
626
+ "learning_rate": 1.8794050714898596e-05,
627
+ "loss": 0.9633,
628
+ "mean_token_accuracy": 0.7601287066936493,
629
+ "num_tokens": 10448522.0,
630
+ "step": 310
631
+ },
632
+ {
633
+ "entropy": 1.006821882724762,
634
+ "epoch": 0.4945054945054945,
635
+ "grad_norm": 1.11770193555216,
636
+ "learning_rate": 1.87279722503078e-05,
637
+ "loss": 0.9778,
638
+ "mean_token_accuracy": 0.7547464072704315,
639
+ "num_tokens": 10609140.0,
640
+ "step": 315
641
+ },
642
+ {
643
+ "entropy": 0.9243999183177948,
644
+ "epoch": 0.5023547880690737,
645
+ "grad_norm": 1.0034673037415462,
646
+ "learning_rate": 1.866025403784439e-05,
647
+ "loss": 0.9233,
648
+ "mean_token_accuracy": 0.7648786187171936,
649
+ "num_tokens": 10788613.0,
650
+ "step": 320
651
+ },
652
+ {
653
+ "entropy": 1.0077704966068268,
654
+ "epoch": 0.5102040816326531,
655
+ "grad_norm": 1.1068829395312032,
656
+ "learning_rate": 1.859090879991302e-05,
657
+ "loss": 0.9831,
658
+ "mean_token_accuracy": 0.7548430681228637,
659
+ "num_tokens": 10959077.0,
660
+ "step": 325
661
+ },
662
+ {
663
+ "entropy": 0.9248578608036041,
664
+ "epoch": 0.5180533751962323,
665
+ "grad_norm": 1.3266089337457716,
666
+ "learning_rate": 1.8519949564592047e-05,
667
+ "loss": 0.9237,
668
+ "mean_token_accuracy": 0.770110958814621,
669
+ "num_tokens": 11125485.0,
670
+ "step": 330
671
+ },
672
+ {
673
+ "entropy": 0.9888102948665619,
674
+ "epoch": 0.5259026687598116,
675
+ "grad_norm": 0.983419114939915,
676
+ "learning_rate": 1.8447389663185905e-05,
677
+ "loss": 0.9709,
678
+ "mean_token_accuracy": 0.7550422787666321,
679
+ "num_tokens": 11303037.0,
680
+ "step": 335
681
+ },
682
+ {
683
+ "entropy": 0.9655410647392273,
684
+ "epoch": 0.533751962323391,
685
+ "grad_norm": 1.4182083064120892,
686
+ "learning_rate": 1.837324272772052e-05,
687
+ "loss": 0.9662,
688
+ "mean_token_accuracy": 0.7561042129993438,
689
+ "num_tokens": 11476471.0,
690
+ "step": 340
691
+ },
692
+ {
693
+ "entropy": 0.9178342401981354,
694
+ "epoch": 0.5416012558869702,
695
+ "grad_norm": 1.0185913242694713,
696
+ "learning_rate": 1.829752268838222e-05,
697
+ "loss": 0.8979,
698
+ "mean_token_accuracy": 0.770701014995575,
699
+ "num_tokens": 11650594.0,
700
+ "step": 345
701
+ },
702
+ {
703
+ "entropy": 0.961567485332489,
704
+ "epoch": 0.5494505494505495,
705
+ "grad_norm": 1.0035892038018919,
706
+ "learning_rate": 1.8220243770900623e-05,
707
+ "loss": 0.9243,
708
+ "mean_token_accuracy": 0.7712348163127899,
709
+ "num_tokens": 11825780.0,
710
+ "step": 350
711
+ },
712
+ {
713
+ "entropy": 0.9918673753738403,
714
+ "epoch": 0.5572998430141287,
715
+ "grad_norm": 1.105682266658899,
716
+ "learning_rate": 1.8141420493876035e-05,
717
+ "loss": 1.003,
718
+ "mean_token_accuracy": 0.7465662598609925,
719
+ "num_tokens": 11988358.0,
720
+ "step": 355
721
+ },
722
+ {
723
+ "entropy": 0.9163014113903045,
724
+ "epoch": 0.565149136577708,
725
+ "grad_norm": 1.049630919575967,
726
+ "learning_rate": 1.806106766605178e-05,
727
+ "loss": 0.8911,
728
+ "mean_token_accuracy": 0.7753135740756989,
729
+ "num_tokens": 12163426.0,
730
+ "step": 360
731
+ },
732
+ {
733
+ "entropy": 0.9849283695220947,
734
+ "epoch": 0.5729984301412873,
735
+ "grad_norm": 1.170395657785239,
736
+ "learning_rate": 1.7979200383532055e-05,
737
+ "loss": 0.968,
738
+ "mean_token_accuracy": 0.7599095821380615,
739
+ "num_tokens": 12332951.0,
740
+ "step": 365
741
+ },
742
+ {
743
+ "entropy": 0.9746610879898071,
744
+ "epoch": 0.5808477237048666,
745
+ "grad_norm": 1.1325528608232394,
746
+ "learning_rate": 1.789583402694577e-05,
747
+ "loss": 0.937,
748
+ "mean_token_accuracy": 0.7656144857406616,
749
+ "num_tokens": 12502149.0,
750
+ "step": 370
751
+ },
752
+ {
753
+ "entropy": 0.9254151880741119,
754
+ "epoch": 0.5886970172684458,
755
+ "grad_norm": 1.1231042460652556,
756
+ "learning_rate": 1.7810984258556955e-05,
757
+ "loss": 0.9305,
758
+ "mean_token_accuracy": 0.7643348395824432,
759
+ "num_tokens": 12663339.0,
760
+ "step": 375
761
+ },
762
+ {
763
+ "entropy": 0.9249713122844696,
764
+ "epoch": 0.5965463108320251,
765
+ "grad_norm": 1.0211861003034832,
766
+ "learning_rate": 1.7724667019322258e-05,
767
+ "loss": 0.9084,
768
+ "mean_token_accuracy": 0.7695456087589264,
769
+ "num_tokens": 12836294.0,
770
+ "step": 380
771
+ },
772
+ {
773
+ "entropy": 0.9364533722400665,
774
+ "epoch": 0.6043956043956044,
775
+ "grad_norm": 1.1150645843653726,
776
+ "learning_rate": 1.7636898525896057e-05,
777
+ "loss": 0.9429,
778
+ "mean_token_accuracy": 0.7654342174530029,
779
+ "num_tokens": 13006335.0,
780
+ "step": 385
781
+ },
782
+ {
783
+ "entropy": 0.9740090370178223,
784
+ "epoch": 0.6122448979591837,
785
+ "grad_norm": 0.9949354603131415,
786
+ "learning_rate": 1.7547695267583794e-05,
787
+ "loss": 0.9343,
788
+ "mean_token_accuracy": 0.7641371607780456,
789
+ "num_tokens": 13174822.0,
790
+ "step": 390
791
+ },
792
+ {
793
+ "entropy": 1.0029440701007843,
794
+ "epoch": 0.6200941915227629,
795
+ "grad_norm": 1.065256944897286,
796
+ "learning_rate": 1.74570740032441e-05,
797
+ "loss": 1.0214,
798
+ "mean_token_accuracy": 0.7473598957061768,
799
+ "num_tokens": 13345589.0,
800
+ "step": 395
801
+ },
802
+ {
803
+ "entropy": 1.03370258808136,
804
+ "epoch": 0.6279434850863422,
805
+ "grad_norm": 1.063443882967833,
806
+ "learning_rate": 1.736505175814025e-05,
807
+ "loss": 1.0078,
808
+ "mean_token_accuracy": 0.7507629573345185,
809
+ "num_tokens": 13521755.0,
810
+ "step": 400
811
+ },
812
+ {
813
+ "entropy": 0.9608456194400787,
814
+ "epoch": 0.6357927786499215,
815
+ "grad_norm": 1.1864725278261707,
816
+ "learning_rate": 1.7271645820741586e-05,
817
+ "loss": 0.972,
818
+ "mean_token_accuracy": 0.758358484506607,
819
+ "num_tokens": 13688708.0,
820
+ "step": 405
821
+ },
822
+ {
823
+ "entropy": 0.9463632822036743,
824
+ "epoch": 0.6436420722135008,
825
+ "grad_norm": 1.0890362990595408,
826
+ "learning_rate": 1.7176873739475475e-05,
827
+ "loss": 0.9391,
828
+ "mean_token_accuracy": 0.7674518883228302,
829
+ "num_tokens": 13860224.0,
830
+ "step": 410
831
+ },
832
+ {
833
+ "entropy": 0.9748165845870972,
834
+ "epoch": 0.6514913657770801,
835
+ "grad_norm": 0.9520771806522914,
836
+ "learning_rate": 1.7080753319430452e-05,
837
+ "loss": 0.9696,
838
+ "mean_token_accuracy": 0.7622897684574127,
839
+ "num_tokens": 14023392.0,
840
+ "step": 415
841
+ },
842
+ {
843
+ "entropy": 0.9707380533218384,
844
+ "epoch": 0.6593406593406593,
845
+ "grad_norm": 1.2204279651479377,
846
+ "learning_rate": 1.6983302619011125e-05,
847
+ "loss": 0.966,
848
+ "mean_token_accuracy": 0.7559765994548797,
849
+ "num_tokens": 14191662.0,
850
+ "step": 420
851
+ },
852
+ {
853
+ "entropy": 0.9302991569042206,
854
+ "epoch": 0.6671899529042387,
855
+ "grad_norm": 0.9961924695228186,
856
+ "learning_rate": 1.6884539946545486e-05,
857
+ "loss": 0.9207,
858
+ "mean_token_accuracy": 0.7661088109016418,
859
+ "num_tokens": 14349448.0,
860
+ "step": 425
861
+ },
862
+ {
863
+ "entropy": 0.9614250659942627,
864
+ "epoch": 0.6750392464678179,
865
+ "grad_norm": 0.9998907901716252,
866
+ "learning_rate": 1.6784483856845287e-05,
867
+ "loss": 0.9574,
868
+ "mean_token_accuracy": 0.7567176103591919,
869
+ "num_tokens": 14521779.0,
870
+ "step": 430
871
+ },
872
+ {
873
+ "entropy": 0.9261027753353119,
874
+ "epoch": 0.6828885400313972,
875
+ "grad_norm": 1.0424535740324896,
876
+ "learning_rate": 1.6683153147720098e-05,
877
+ "loss": 0.911,
878
+ "mean_token_accuracy": 0.7726584434509277,
879
+ "num_tokens": 14689226.0,
880
+ "step": 435
881
+ },
882
+ {
883
+ "entropy": 0.9621528267860413,
884
+ "epoch": 0.6907378335949764,
885
+ "grad_norm": 0.9502816401280559,
886
+ "learning_rate": 1.6580566856445684e-05,
887
+ "loss": 0.9364,
888
+ "mean_token_accuracy": 0.7639203608036041,
889
+ "num_tokens": 14858582.0,
890
+ "step": 440
891
+ },
892
+ {
893
+ "entropy": 1.0020318806171418,
894
+ "epoch": 0.6985871271585558,
895
+ "grad_norm": 1.0159981652474168,
896
+ "learning_rate": 1.647674425618747e-05,
897
+ "loss": 0.9902,
898
+ "mean_token_accuracy": 0.7512995481491089,
899
+ "num_tokens": 15023085.0,
900
+ "step": 445
901
+ },
902
+ {
903
+ "entropy": 0.9520144641399384,
904
+ "epoch": 0.706436420722135,
905
+ "grad_norm": 1.1375644230651754,
906
+ "learning_rate": 1.6371704852379587e-05,
907
+ "loss": 0.9387,
908
+ "mean_token_accuracy": 0.764590722322464,
909
+ "num_tokens": 15188234.0,
910
+ "step": 450
911
+ },
912
+ {
913
+ "entropy": 0.9459578275680542,
914
+ "epoch": 0.7142857142857143,
915
+ "grad_norm": 1.2071178598300847,
916
+ "learning_rate": 1.6265468379060364e-05,
917
+ "loss": 0.9294,
918
+ "mean_token_accuracy": 0.7656639575958252,
919
+ "num_tokens": 15350283.0,
920
+ "step": 455
921
+ },
922
+ {
923
+ "entropy": 0.9672309875488281,
924
+ "epoch": 0.7221350078492935,
925
+ "grad_norm": 0.9739572209997952,
926
+ "learning_rate": 1.615805479516484e-05,
927
+ "loss": 0.944,
928
+ "mean_token_accuracy": 0.7605835914611816,
929
+ "num_tokens": 15520942.0,
930
+ "step": 460
931
+ },
932
+ {
933
+ "entropy": 0.9020306468009949,
934
+ "epoch": 0.7299843014128728,
935
+ "grad_norm": 0.9384604260954476,
936
+ "learning_rate": 1.6049484280775012e-05,
937
+ "loss": 0.9007,
938
+ "mean_token_accuracy": 0.7723349690437317,
939
+ "num_tokens": 15696815.0,
940
+ "step": 465
941
+ },
942
+ {
943
+ "entropy": 1.0272919476032256,
944
+ "epoch": 0.7378335949764521,
945
+ "grad_norm": 1.1057780899513212,
946
+ "learning_rate": 1.593977723332855e-05,
947
+ "loss": 1.0052,
948
+ "mean_token_accuracy": 0.7468396842479705,
949
+ "num_tokens": 15865973.0,
950
+ "step": 470
951
+ },
952
+ {
953
+ "entropy": 0.9665712773799896,
954
+ "epoch": 0.7456828885400314,
955
+ "grad_norm": 1.1136016104932442,
956
+ "learning_rate": 1.5828954263786688e-05,
957
+ "loss": 0.9556,
958
+ "mean_token_accuracy": 0.7609355866909027,
959
+ "num_tokens": 16039387.0,
960
+ "step": 475
961
+ },
962
+ {
963
+ "entropy": 0.933134937286377,
964
+ "epoch": 0.7535321821036107,
965
+ "grad_norm": 0.9548295867670389,
966
+ "learning_rate": 1.571703619276197e-05,
967
+ "loss": 0.9306,
968
+ "mean_token_accuracy": 0.7638529598712921,
969
+ "num_tokens": 16206056.0,
970
+ "step": 480
971
+ },
972
+ {
973
+ "entropy": 0.9867853939533233,
974
+ "epoch": 0.7613814756671899,
975
+ "grad_norm": 1.0975317101204531,
976
+ "learning_rate": 1.5604044046606638e-05,
977
+ "loss": 0.9564,
978
+ "mean_token_accuracy": 0.7611208140850068,
979
+ "num_tokens": 16374570.0,
980
+ "step": 485
981
+ },
982
+ {
983
+ "entropy": 0.9764430522918701,
984
+ "epoch": 0.7692307692307693,
985
+ "grad_norm": 1.0751088885823445,
986
+ "learning_rate": 1.548999905346234e-05,
987
+ "loss": 0.9784,
988
+ "mean_token_accuracy": 0.7565559089183808,
989
+ "num_tokens": 16534261.0,
990
+ "step": 490
991
+ },
992
+ {
993
+ "entropy": 0.8999385595321655,
994
+ "epoch": 0.7770800627943485,
995
+ "grad_norm": 0.9254165712526795,
996
+ "learning_rate": 1.537492263927196e-05,
997
+ "loss": 0.8757,
998
+ "mean_token_accuracy": 0.7786536812782288,
999
+ "num_tokens": 16707250.0,
1000
+ "step": 495
1001
+ },
1002
+ {
1003
+ "entropy": 0.9715596318244935,
1004
+ "epoch": 0.7849293563579278,
1005
+ "grad_norm": 1.0969480560873561,
1006
+ "learning_rate": 1.5258836423754258e-05,
1007
+ "loss": 0.9645,
1008
+ "mean_token_accuracy": 0.7627908825874329,
1009
+ "num_tokens": 16876707.0,
1010
+ "step": 500
1011
+ },
1012
+ {
1013
+ "entropy": 0.9281849145889283,
1014
+ "epoch": 0.792778649921507,
1015
+ "grad_norm": 1.0763995618308921,
1016
+ "learning_rate": 1.5141762216342107e-05,
1017
+ "loss": 0.9161,
1018
+ "mean_token_accuracy": 0.767313414812088,
1019
+ "num_tokens": 17034946.0,
1020
+ "step": 505
1021
+ },
1022
+ {
1023
+ "entropy": 0.9874213755130767,
1024
+ "epoch": 0.8006279434850864,
1025
+ "grad_norm": 1.0756471428565888,
1026
+ "learning_rate": 1.5023722012085098e-05,
1027
+ "loss": 0.9616,
1028
+ "mean_token_accuracy": 0.7579117834568023,
1029
+ "num_tokens": 17195368.0,
1030
+ "step": 510
1031
+ },
1032
+ {
1033
+ "entropy": 0.9650024175643921,
1034
+ "epoch": 0.8084772370486656,
1035
+ "grad_norm": 1.1457012639077697,
1036
+ "learning_rate": 1.4904737987517293e-05,
1037
+ "loss": 0.9521,
1038
+ "mean_token_accuracy": 0.7610667467117309,
1039
+ "num_tokens": 17349182.0,
1040
+ "step": 515
1041
+ },
1042
+ {
1043
+ "entropy": 0.9764435827732086,
1044
+ "epoch": 0.8163265306122449,
1045
+ "grad_norm": 1.0593991307798754,
1046
+ "learning_rate": 1.4784832496490824e-05,
1047
+ "loss": 0.9714,
1048
+ "mean_token_accuracy": 0.7524283647537231,
1049
+ "num_tokens": 17517371.0,
1050
+ "step": 520
1051
+ },
1052
+ {
1053
+ "entropy": 1.021035259962082,
1054
+ "epoch": 0.8241758241758241,
1055
+ "grad_norm": 1.1807579798750705,
1056
+ "learning_rate": 1.4664028065976245e-05,
1057
+ "loss": 0.9827,
1058
+ "mean_token_accuracy": 0.752406656742096,
1059
+ "num_tokens": 17691303.0,
1060
+ "step": 525
1061
+ },
1062
+ {
1063
+ "entropy": 0.9431538581848145,
1064
+ "epoch": 0.8320251177394035,
1065
+ "grad_norm": 1.1578643533684798,
1066
+ "learning_rate": 1.4542347391830308e-05,
1067
+ "loss": 0.9507,
1068
+ "mean_token_accuracy": 0.7616939425468445,
1069
+ "num_tokens": 17855630.0,
1070
+ "step": 530
1071
+ },
1072
+ {
1073
+ "entropy": 0.9709876954555512,
1074
+ "epoch": 0.8398744113029827,
1075
+ "grad_norm": 1.0499244127175924,
1076
+ "learning_rate": 1.4419813334532037e-05,
1077
+ "loss": 0.9543,
1078
+ "mean_token_accuracy": 0.7565864741802215,
1079
+ "num_tokens": 18013194.0,
1080
+ "step": 535
1081
+ },
1082
+ {
1083
+ "entropy": 0.9452216863632202,
1084
+ "epoch": 0.847723704866562,
1085
+ "grad_norm": 1.1743849862757485,
1086
+ "learning_rate": 1.4296448914887866e-05,
1087
+ "loss": 0.9157,
1088
+ "mean_token_accuracy": 0.7641405820846557,
1089
+ "num_tokens": 18176197.0,
1090
+ "step": 540
1091
+ },
1092
+ {
1093
+ "entropy": 0.9463288307189941,
1094
+ "epoch": 0.8555729984301413,
1095
+ "grad_norm": 1.0534691968313326,
1096
+ "learning_rate": 1.4172277309706677e-05,
1097
+ "loss": 0.9362,
1098
+ "mean_token_accuracy": 0.7646844327449799,
1099
+ "num_tokens": 18341936.0,
1100
+ "step": 545
1101
+ },
1102
+ {
1103
+ "entropy": 0.9249040186405182,
1104
+ "epoch": 0.8634222919937206,
1105
+ "grad_norm": 1.1519006839776653,
1106
+ "learning_rate": 1.4047321847445474e-05,
1107
+ "loss": 0.9273,
1108
+ "mean_token_accuracy": 0.7698991119861602,
1109
+ "num_tokens": 18506253.0,
1110
+ "step": 550
1111
+ },
1112
+ {
1113
+ "entropy": 0.9990038812160492,
1114
+ "epoch": 0.8712715855572999,
1115
+ "grad_norm": 1.0521190280976112,
1116
+ "learning_rate": 1.392160600382663e-05,
1117
+ "loss": 0.9652,
1118
+ "mean_token_accuracy": 0.7603400409221649,
1119
+ "num_tokens": 18669225.0,
1120
+ "step": 555
1121
+ },
1122
+ {
1123
+ "entropy": 0.976806640625,
1124
+ "epoch": 0.8791208791208791,
1125
+ "grad_norm": 0.9873791768090713,
1126
+ "learning_rate": 1.3795153397427426e-05,
1127
+ "loss": 0.9662,
1128
+ "mean_token_accuracy": 0.7616451740264892,
1129
+ "num_tokens": 18839983.0,
1130
+ "step": 560
1131
+ },
1132
+ {
1133
+ "entropy": 0.9923348844051361,
1134
+ "epoch": 0.8869701726844584,
1135
+ "grad_norm": 1.0387842421398645,
1136
+ "learning_rate": 1.3667987785242776e-05,
1137
+ "loss": 0.966,
1138
+ "mean_token_accuracy": 0.7592363655567169,
1139
+ "num_tokens": 19004847.0,
1140
+ "step": 565
1141
+ },
1142
+ {
1143
+ "entropy": 0.9111327111721039,
1144
+ "epoch": 0.8948194662480377,
1145
+ "grad_norm": 1.1091766330035904,
1146
+ "learning_rate": 1.3540133058221927e-05,
1147
+ "loss": 0.8894,
1148
+ "mean_token_accuracy": 0.7733675181865692,
1149
+ "num_tokens": 19164281.0,
1150
+ "step": 570
1151
+ },
1152
+ {
1153
+ "entropy": 0.953569757938385,
1154
+ "epoch": 0.902668759811617,
1155
+ "grad_norm": 1.1650697131207366,
1156
+ "learning_rate": 1.3411613236779996e-05,
1157
+ "loss": 0.9536,
1158
+ "mean_token_accuracy": 0.7601088881492615,
1159
+ "num_tokens": 19324666.0,
1160
+ "step": 575
1161
+ },
1162
+ {
1163
+ "entropy": 0.903479254245758,
1164
+ "epoch": 0.9105180533751962,
1165
+ "grad_norm": 1.0217432944115734,
1166
+ "learning_rate": 1.328245246628521e-05,
1167
+ "loss": 0.8938,
1168
+ "mean_token_accuracy": 0.7746713519096374,
1169
+ "num_tokens": 19487917.0,
1170
+ "step": 580
1171
+ },
1172
+ {
1173
+ "entropy": 0.9520645260810852,
1174
+ "epoch": 0.9183673469387755,
1175
+ "grad_norm": 1.0027838924807486,
1176
+ "learning_rate": 1.3152675012522629e-05,
1177
+ "loss": 0.9298,
1178
+ "mean_token_accuracy": 0.7667790412902832,
1179
+ "num_tokens": 19658140.0,
1180
+ "step": 585
1181
+ },
1182
+ {
1183
+ "entropy": 0.9800197124481201,
1184
+ "epoch": 0.9262166405023547,
1185
+ "grad_norm": 1.1007589371451882,
1186
+ "learning_rate": 1.302230525713527e-05,
1187
+ "loss": 0.9875,
1188
+ "mean_token_accuracy": 0.7534834921360016,
1189
+ "num_tokens": 19822714.0,
1190
+ "step": 590
1191
+ },
1192
+ {
1193
+ "entropy": 0.9933344900608063,
1194
+ "epoch": 0.9340659340659341,
1195
+ "grad_norm": 1.1374557236032408,
1196
+ "learning_rate": 1.2891367693043477e-05,
1197
+ "loss": 1.0055,
1198
+ "mean_token_accuracy": 0.7489987254142761,
1199
+ "num_tokens": 19978750.0,
1200
+ "step": 595
1201
+ },
1202
+ {
1203
+ "entropy": 0.8856159925460816,
1204
+ "epoch": 0.9419152276295133,
1205
+ "grad_norm": 1.0409967495386052,
1206
+ "learning_rate": 1.2759886919843354e-05,
1207
+ "loss": 0.8475,
1208
+ "mean_token_accuracy": 0.7862884163856506,
1209
+ "num_tokens": 20142475.0,
1210
+ "step": 600
1211
+ },
1212
+ {
1213
+ "entropy": 0.9482007265090943,
1214
+ "epoch": 0.9497645211930926,
1215
+ "grad_norm": 1.124699481009541,
1216
+ "learning_rate": 1.262788763918518e-05,
1217
+ "loss": 0.9616,
1218
+ "mean_token_accuracy": 0.7595623314380646,
1219
+ "num_tokens": 20304529.0,
1220
+ "step": 605
1221
+ },
1222
+ {
1223
+ "entropy": 1.0299462676048279,
1224
+ "epoch": 0.957613814756672,
1225
+ "grad_norm": 1.040395105371751,
1226
+ "learning_rate": 1.2495394650132628e-05,
1227
+ "loss": 0.9978,
1228
+ "mean_token_accuracy": 0.7538327634334564,
1229
+ "num_tokens": 20469501.0,
1230
+ "step": 610
1231
+ },
1232
+ {
1233
+ "entropy": 0.9115546882152558,
1234
+ "epoch": 0.9654631083202512,
1235
+ "grad_norm": 1.1694196529690937,
1236
+ "learning_rate": 1.2362432844503725e-05,
1237
+ "loss": 0.9081,
1238
+ "mean_token_accuracy": 0.7722381055355072,
1239
+ "num_tokens": 20640991.0,
1240
+ "step": 615
1241
+ },
1242
+ {
1243
+ "entropy": 0.9577880501747131,
1244
+ "epoch": 0.9733124018838305,
1245
+ "grad_norm": 1.103459451739408,
1246
+ "learning_rate": 1.222902720219433e-05,
1247
+ "loss": 0.9528,
1248
+ "mean_token_accuracy": 0.7636137962341308,
1249
+ "num_tokens": 20810696.0,
1250
+ "step": 620
1251
+ },
1252
+ {
1253
+ "entropy": 0.935895311832428,
1254
+ "epoch": 0.9811616954474097,
1255
+ "grad_norm": 0.9487913233732936,
1256
+ "learning_rate": 1.209520278648512e-05,
1257
+ "loss": 0.9021,
1258
+ "mean_token_accuracy": 0.7763786315917969,
1259
+ "num_tokens": 20990530.0,
1260
+ "step": 625
1261
+ },
1262
+ {
1263
+ "entropy": 0.8163468480110169,
1264
+ "epoch": 0.989010989010989,
1265
+ "grad_norm": 0.9330276032956102,
1266
+ "learning_rate": 1.1960984739332851e-05,
1267
+ "loss": 0.7945,
1268
+ "mean_token_accuracy": 0.7963767290115357,
1269
+ "num_tokens": 21168734.0,
1270
+ "step": 630
1271
+ },
1272
+ {
1273
+ "entropy": 0.9846008777618408,
1274
+ "epoch": 0.9968602825745683,
1275
+ "grad_norm": 1.0256914219636313,
1276
+ "learning_rate": 1.1826398276646897e-05,
1277
+ "loss": 0.9983,
1278
+ "mean_token_accuracy": 0.7496028244495392,
1279
+ "num_tokens": 21327447.0,
1280
+ "step": 635
1281
+ },
1282
+ {
1283
+ "entropy": 0.9138310849666595,
1284
+ "epoch": 1.0047095761381475,
1285
+ "grad_norm": 1.0812559144942584,
1286
+ "learning_rate": 1.1691468683551865e-05,
1287
+ "loss": 0.8344,
1288
+ "mean_token_accuracy": 0.7886788547039032,
1289
+ "num_tokens": 21499715.0,
1290
+ "step": 640
1291
+ },
1292
+ {
1293
+ "entropy": 0.8012929916381836,
1294
+ "epoch": 1.012558869701727,
1295
+ "grad_norm": 1.0532908535496344,
1296
+ "learning_rate": 1.1556221309637204e-05,
1297
+ "loss": 0.7737,
1298
+ "mean_token_accuracy": 0.7994522035121918,
1299
+ "num_tokens": 21664223.0,
1300
+ "step": 645
1301
+ },
1302
+ {
1303
+ "entropy": 0.8007775723934174,
1304
+ "epoch": 1.0204081632653061,
1305
+ "grad_norm": 1.2247973138776649,
1306
+ "learning_rate": 1.1420681564194694e-05,
1307
+ "loss": 0.778,
1308
+ "mean_token_accuracy": 0.7998305559158325,
1309
+ "num_tokens": 21826895.0,
1310
+ "step": 650
1311
+ },
1312
+ {
1313
+ "entropy": 0.8300498962402344,
1314
+ "epoch": 1.0282574568288854,
1315
+ "grad_norm": 0.9966548585427317,
1316
+ "learning_rate": 1.1284874911444763e-05,
1317
+ "loss": 0.7699,
1318
+ "mean_token_accuracy": 0.8034215152263642,
1319
+ "num_tokens": 21993866.0,
1320
+ "step": 655
1321
+ },
1322
+ {
1323
+ "entropy": 0.7994357228279114,
1324
+ "epoch": 1.0361067503924646,
1325
+ "grad_norm": 1.0501870540204665,
1326
+ "learning_rate": 1.1148826865752445e-05,
1327
+ "loss": 0.7898,
1328
+ "mean_token_accuracy": 0.7990375220775604,
1329
+ "num_tokens": 22163013.0,
1330
+ "step": 660
1331
+ },
1332
+ {
1333
+ "entropy": 0.801983118057251,
1334
+ "epoch": 1.043956043956044,
1335
+ "grad_norm": 0.9191498252681857,
1336
+ "learning_rate": 1.1012562986833909e-05,
1337
+ "loss": 0.7637,
1338
+ "mean_token_accuracy": 0.8037278771400451,
1339
+ "num_tokens": 22336561.0,
1340
+ "step": 665
1341
+ },
1342
+ {
1343
+ "entropy": 0.7570578813552856,
1344
+ "epoch": 1.0518053375196232,
1345
+ "grad_norm": 0.9832626897663099,
1346
+ "learning_rate": 1.0876108874954498e-05,
1347
+ "loss": 0.7129,
1348
+ "mean_token_accuracy": 0.8170925438404083,
1349
+ "num_tokens": 22503077.0,
1350
+ "step": 670
1351
+ },
1352
+ {
1353
+ "entropy": 0.8149272561073303,
1354
+ "epoch": 1.0596546310832025,
1355
+ "grad_norm": 1.1304521768941131,
1356
+ "learning_rate": 1.0739490166119155e-05,
1357
+ "loss": 0.7865,
1358
+ "mean_token_accuracy": 0.8010401368141175,
1359
+ "num_tokens": 22675010.0,
1360
+ "step": 675
1361
+ },
1362
+ {
1363
+ "entropy": 0.7653459012508392,
1364
+ "epoch": 1.0675039246467817,
1365
+ "grad_norm": 1.4761235017107492,
1366
+ "learning_rate": 1.060273252725609e-05,
1367
+ "loss": 0.7315,
1368
+ "mean_token_accuracy": 0.8124203622341156,
1369
+ "num_tokens": 22837858.0,
1370
+ "step": 680
1371
+ },
1372
+ {
1373
+ "entropy": 0.8208756923675538,
1374
+ "epoch": 1.0753532182103611,
1375
+ "grad_norm": 1.0741850631374394,
1376
+ "learning_rate": 1.0465861651394673e-05,
1377
+ "loss": 0.7885,
1378
+ "mean_token_accuracy": 0.7971214592456818,
1379
+ "num_tokens": 22998267.0,
1380
+ "step": 685
1381
+ },
1382
+ {
1383
+ "entropy": 0.8316072285175323,
1384
+ "epoch": 1.0832025117739403,
1385
+ "grad_norm": 1.05989384509782,
1386
+ "learning_rate": 1.0328903252838415e-05,
1387
+ "loss": 0.8138,
1388
+ "mean_token_accuracy": 0.7903102576732636,
1389
+ "num_tokens": 23163250.0,
1390
+ "step": 690
1391
+ },
1392
+ {
1393
+ "entropy": 0.8117113530635833,
1394
+ "epoch": 1.0910518053375196,
1395
+ "grad_norm": 0.9620563544580413,
1396
+ "learning_rate": 1.0191883062333964e-05,
1397
+ "loss": 0.7643,
1398
+ "mean_token_accuracy": 0.8044250011444092,
1399
+ "num_tokens": 23338134.0,
1400
+ "step": 695
1401
+ },
1402
+ {
1403
+ "entropy": 0.7617044448852539,
1404
+ "epoch": 1.098901098901099,
1405
+ "grad_norm": 0.9834039954530569,
1406
+ "learning_rate": 1.0054826822236983e-05,
1407
+ "loss": 0.7273,
1408
+ "mean_token_accuracy": 0.8108560085296631,
1409
+ "num_tokens": 23499035.0,
1410
+ "step": 700
1411
+ },
1412
+ {
1413
+ "entropy": 0.8119458794593811,
1414
+ "epoch": 1.1067503924646782,
1415
+ "grad_norm": 0.8922309018148304,
1416
+ "learning_rate": 9.917760281675867e-06,
1417
+ "loss": 0.8056,
1418
+ "mean_token_accuracy": 0.7917751908302307,
1419
+ "num_tokens": 23666069.0,
1420
+ "step": 705
1421
+ },
1422
+ {
1423
+ "entropy": 0.796909236907959,
1424
+ "epoch": 1.1145996860282574,
1425
+ "grad_norm": 1.0705197733359055,
1426
+ "learning_rate": 9.780709191714187e-06,
1427
+ "loss": 0.7719,
1428
+ "mean_token_accuracy": 0.8027232766151429,
1429
+ "num_tokens": 23835714.0,
1430
+ "step": 710
1431
+ },
1432
+ {
1433
+ "entropy": 0.8005717933177948,
1434
+ "epoch": 1.1224489795918366,
1435
+ "grad_norm": 1.0642859073819562,
1436
+ "learning_rate": 9.643699300512781e-06,
1437
+ "loss": 0.7706,
1438
+ "mean_token_accuracy": 0.8004081726074219,
1439
+ "num_tokens": 23995150.0,
1440
+ "step": 715
1441
+ },
1442
+ {
1443
+ "entropy": 0.855769693851471,
1444
+ "epoch": 1.130298273155416,
1445
+ "grad_norm": 1.0460745966572866,
1446
+ "learning_rate": 9.506756348492348e-06,
1447
+ "loss": 0.8374,
1448
+ "mean_token_accuracy": 0.7850587904453278,
1449
+ "num_tokens": 24158757.0,
1450
+ "step": 720
1451
+ },
1452
+ {
1453
+ "entropy": 0.7870798826217651,
1454
+ "epoch": 1.1381475667189953,
1455
+ "grad_norm": 0.9976832224332017,
1456
+ "learning_rate": 9.369906063497547e-06,
1457
+ "loss": 0.7445,
1458
+ "mean_token_accuracy": 0.8053227722644806,
1459
+ "num_tokens": 24326311.0,
1460
+ "step": 725
1461
+ },
1462
+ {
1463
+ "entropy": 0.8291393995285035,
1464
+ "epoch": 1.1459968602825745,
1465
+ "grad_norm": 0.996673672294385,
1466
+ "learning_rate": 9.233174155963432e-06,
1467
+ "loss": 0.8141,
1468
+ "mean_token_accuracy": 0.7964518368244171,
1469
+ "num_tokens": 24492165.0,
1470
+ "step": 730
1471
+ },
1472
+ {
1473
+ "entropy": 0.7422019600868225,
1474
+ "epoch": 1.1538461538461537,
1475
+ "grad_norm": 1.0756638757031713,
1476
+ "learning_rate": 9.096586314085162e-06,
1477
+ "loss": 0.7197,
1478
+ "mean_token_accuracy": 0.8132814466953278,
1479
+ "num_tokens": 24664507.0,
1480
+ "step": 735
1481
+ },
1482
+ {
1483
+ "entropy": 0.7962768793106079,
1484
+ "epoch": 1.1616954474097332,
1485
+ "grad_norm": 1.1377928625620208,
1486
+ "learning_rate": 8.960168198991885e-06,
1487
+ "loss": 0.7557,
1488
+ "mean_token_accuracy": 0.8038122892379761,
1489
+ "num_tokens": 24824172.0,
1490
+ "step": 740
1491
+ },
1492
+ {
1493
+ "entropy": 0.6977714002132416,
1494
+ "epoch": 1.1695447409733124,
1495
+ "grad_norm": 0.9708645265144701,
1496
+ "learning_rate": 8.823945439925725e-06,
1497
+ "loss": 0.6836,
1498
+ "mean_token_accuracy": 0.8212838768959045,
1499
+ "num_tokens": 24992172.0,
1500
+ "step": 745
1501
+ },
1502
+ {
1503
+ "entropy": 0.7833775043487549,
1504
+ "epoch": 1.1773940345368916,
1505
+ "grad_norm": 1.1739278827813637,
1506
+ "learning_rate": 8.687943629426725e-06,
1507
+ "loss": 0.758,
1508
+ "mean_token_accuracy": 0.8031582951545715,
1509
+ "num_tokens": 25159967.0,
1510
+ "step": 750
1511
+ },
1512
+ {
1513
+ "entropy": 0.8251801669597626,
1514
+ "epoch": 1.185243328100471,
1515
+ "grad_norm": 1.1814132581564163,
1516
+ "learning_rate": 8.552188318524737e-06,
1517
+ "loss": 0.8154,
1518
+ "mean_token_accuracy": 0.7922390282154084,
1519
+ "num_tokens": 25318992.0,
1520
+ "step": 755
1521
+ },
1522
+ {
1523
+ "entropy": 0.7560604989528656,
1524
+ "epoch": 1.1930926216640503,
1525
+ "grad_norm": 0.8951739538342747,
1526
+ "learning_rate": 8.416705011939052e-06,
1527
+ "loss": 0.7366,
1528
+ "mean_token_accuracy": 0.8119826078414917,
1529
+ "num_tokens": 25493572.0,
1530
+ "step": 760
1531
+ },
1532
+ {
1533
+ "entropy": 0.8065792441368103,
1534
+ "epoch": 1.2009419152276295,
1535
+ "grad_norm": 1.1315496393007614,
1536
+ "learning_rate": 8.281519163286772e-06,
1537
+ "loss": 0.7634,
1538
+ "mean_token_accuracy": 0.802753496170044,
1539
+ "num_tokens": 25665824.0,
1540
+ "step": 765
1541
+ },
1542
+ {
1543
+ "entropy": 0.8229409158229828,
1544
+ "epoch": 1.2087912087912087,
1545
+ "grad_norm": 1.0384454910962662,
1546
+ "learning_rate": 8.146656170300772e-06,
1547
+ "loss": 0.7831,
1548
+ "mean_token_accuracy": 0.8028485774993896,
1549
+ "num_tokens": 25826600.0,
1550
+ "step": 770
1551
+ },
1552
+ {
1553
+ "entropy": 0.8109376728534698,
1554
+ "epoch": 1.2166405023547882,
1555
+ "grad_norm": 1.0826233765035977,
1556
+ "learning_rate": 8.01214137005815e-06,
1557
+ "loss": 0.7867,
1558
+ "mean_token_accuracy": 0.797510153055191,
1559
+ "num_tokens": 25990358.0,
1560
+ "step": 775
1561
+ },
1562
+ {
1563
+ "entropy": 0.7986651659011841,
1564
+ "epoch": 1.2244897959183674,
1565
+ "grad_norm": 0.9510634195804456,
1566
+ "learning_rate": 7.878000034220092e-06,
1567
+ "loss": 0.7693,
1568
+ "mean_token_accuracy": 0.801447582244873,
1569
+ "num_tokens": 26166469.0,
1570
+ "step": 780
1571
+ },
1572
+ {
1573
+ "entropy": 0.7796730637550354,
1574
+ "epoch": 1.2323390894819466,
1575
+ "grad_norm": 0.9674095865305092,
1576
+ "learning_rate": 7.74425736428401e-06,
1577
+ "loss": 0.7547,
1578
+ "mean_token_accuracy": 0.808059710264206,
1579
+ "num_tokens": 26339746.0,
1580
+ "step": 785
1581
+ },
1582
+ {
1583
+ "entropy": 0.7995173811912537,
1584
+ "epoch": 1.2401883830455258,
1585
+ "grad_norm": 1.0518387365429118,
1586
+ "learning_rate": 7.6109384868488646e-06,
1587
+ "loss": 0.7883,
1588
+ "mean_token_accuracy": 0.8016106963157654,
1589
+ "num_tokens": 26505540.0,
1590
+ "step": 790
1591
+ },
1592
+ {
1593
+ "entropy": 0.8127647697925567,
1594
+ "epoch": 1.2480376766091053,
1595
+ "grad_norm": 0.9711975789074598,
1596
+ "learning_rate": 7.478068448894577e-06,
1597
+ "loss": 0.7656,
1598
+ "mean_token_accuracy": 0.801650446653366,
1599
+ "num_tokens": 26669521.0,
1600
+ "step": 795
1601
+ },
1602
+ {
1603
+ "entropy": 0.7887676239013672,
1604
+ "epoch": 1.2558869701726845,
1605
+ "grad_norm": 0.9327700469775977,
1606
+ "learning_rate": 7.3456722130763665e-06,
1607
+ "loss": 0.7799,
1608
+ "mean_token_accuracy": 0.8046572506427765,
1609
+ "num_tokens": 26848214.0,
1610
+ "step": 800
1611
+ },
1612
+ {
1613
+ "entropy": 0.8123725712299347,
1614
+ "epoch": 1.2637362637362637,
1615
+ "grad_norm": 1.0537567232285652,
1616
+ "learning_rate": 7.213774653034958e-06,
1617
+ "loss": 0.7953,
1618
+ "mean_token_accuracy": 0.7974987208843232,
1619
+ "num_tokens": 27015893.0,
1620
+ "step": 805
1621
+ },
1622
+ {
1623
+ "entropy": 0.8397608995437622,
1624
+ "epoch": 1.2715855572998431,
1625
+ "grad_norm": 1.104054891980114,
1626
+ "learning_rate": 7.082400548723505e-06,
1627
+ "loss": 0.8154,
1628
+ "mean_token_accuracy": 0.7920099139213562,
1629
+ "num_tokens": 27180368.0,
1630
+ "step": 810
1631
+ },
1632
+ {
1633
+ "entropy": 0.7759601533412933,
1634
+ "epoch": 1.2794348508634223,
1635
+ "grad_norm": 1.0490176058805003,
1636
+ "learning_rate": 6.951574581752111e-06,
1637
+ "loss": 0.7502,
1638
+ "mean_token_accuracy": 0.807463413476944,
1639
+ "num_tokens": 27343682.0,
1640
+ "step": 815
1641
+ },
1642
+ {
1643
+ "entropy": 0.8411307275295258,
1644
+ "epoch": 1.2872841444270016,
1645
+ "grad_norm": 1.166847601682725,
1646
+ "learning_rate": 6.8213213307508205e-06,
1647
+ "loss": 0.7991,
1648
+ "mean_token_accuracy": 0.7980861485004425,
1649
+ "num_tokens": 27516238.0,
1650
+ "step": 820
1651
+ },
1652
+ {
1653
+ "entropy": 0.7412167847156524,
1654
+ "epoch": 1.2951334379905808,
1655
+ "grad_norm": 1.0923464885518581,
1656
+ "learning_rate": 6.6916652667519855e-06,
1657
+ "loss": 0.7196,
1658
+ "mean_token_accuracy": 0.8138726353645325,
1659
+ "num_tokens": 27688076.0,
1660
+ "step": 825
1661
+ },
1662
+ {
1663
+ "entropy": 0.82211754322052,
1664
+ "epoch": 1.30298273155416,
1665
+ "grad_norm": 1.160628687991898,
1666
+ "learning_rate": 6.562630748592794e-06,
1667
+ "loss": 0.795,
1668
+ "mean_token_accuracy": 0.7955183386802673,
1669
+ "num_tokens": 27851949.0,
1670
+ "step": 830
1671
+ },
1672
+ {
1673
+ "entropy": 0.8261380314826965,
1674
+ "epoch": 1.3108320251177394,
1675
+ "grad_norm": 1.0586659878919926,
1676
+ "learning_rate": 6.434242018338948e-06,
1677
+ "loss": 0.8086,
1678
+ "mean_token_accuracy": 0.7943514943122864,
1679
+ "num_tokens": 28013184.0,
1680
+ "step": 835
1681
+ },
1682
+ {
1683
+ "entropy": 0.7742564082145691,
1684
+ "epoch": 1.3186813186813187,
1685
+ "grad_norm": 1.1470217200167852,
1686
+ "learning_rate": 6.3065231967302055e-06,
1687
+ "loss": 0.7459,
1688
+ "mean_token_accuracy": 0.8088241875171661,
1689
+ "num_tokens": 28180563.0,
1690
+ "step": 840
1691
+ },
1692
+ {
1693
+ "entropy": 0.8125581502914428,
1694
+ "epoch": 1.3265306122448979,
1695
+ "grad_norm": 1.180920424036568,
1696
+ "learning_rate": 6.179498278648766e-06,
1697
+ "loss": 0.7844,
1698
+ "mean_token_accuracy": 0.7975386023521424,
1699
+ "num_tokens": 28348933.0,
1700
+ "step": 845
1701
+ },
1702
+ {
1703
+ "entropy": 0.85399090051651,
1704
+ "epoch": 1.3343799058084773,
1705
+ "grad_norm": 1.017696845491611,
1706
+ "learning_rate": 6.053191128611298e-06,
1707
+ "loss": 0.8317,
1708
+ "mean_token_accuracy": 0.7885974526405335,
1709
+ "num_tokens": 28510060.0,
1710
+ "step": 850
1711
+ },
1712
+ {
1713
+ "entropy": 0.7950326681137085,
1714
+ "epoch": 1.3422291993720565,
1715
+ "grad_norm": 0.9519056545968589,
1716
+ "learning_rate": 5.927625476285426e-06,
1717
+ "loss": 0.7737,
1718
+ "mean_token_accuracy": 0.798821222782135,
1719
+ "num_tokens": 28673404.0,
1720
+ "step": 855
1721
+ },
1722
+ {
1723
+ "entropy": 0.7562436521053314,
1724
+ "epoch": 1.3500784929356358,
1725
+ "grad_norm": 1.1866713225060308,
1726
+ "learning_rate": 5.802824912031588e-06,
1727
+ "loss": 0.7237,
1728
+ "mean_token_accuracy": 0.8115784227848053,
1729
+ "num_tokens": 28846665.0,
1730
+ "step": 860
1731
+ },
1732
+ {
1733
+ "entropy": 0.8442178428173065,
1734
+ "epoch": 1.3579277864992152,
1735
+ "grad_norm": 1.0527704560360036,
1736
+ "learning_rate": 5.678812882471047e-06,
1737
+ "loss": 0.8088,
1738
+ "mean_token_accuracy": 0.7886203587055206,
1739
+ "num_tokens": 29016122.0,
1740
+ "step": 865
1741
+ },
1742
+ {
1743
+ "entropy": 0.7864629566669464,
1744
+ "epoch": 1.3657770800627944,
1745
+ "grad_norm": 1.0568094694328418,
1746
+ "learning_rate": 5.555612686080909e-06,
1747
+ "loss": 0.7514,
1748
+ "mean_token_accuracy": 0.8058109283447266,
1749
+ "num_tokens": 29180726.0,
1750
+ "step": 870
1751
+ },
1752
+ {
1753
+ "entropy": 0.8194212853908539,
1754
+ "epoch": 1.3736263736263736,
1755
+ "grad_norm": 1.1492348193285462,
1756
+ "learning_rate": 5.4332474688169766e-06,
1757
+ "loss": 0.7897,
1758
+ "mean_token_accuracy": 0.7988565325736999,
1759
+ "num_tokens": 29354903.0,
1760
+ "step": 875
1761
+ },
1762
+ {
1763
+ "entropy": 0.7987347841262817,
1764
+ "epoch": 1.3814756671899528,
1765
+ "grad_norm": 0.8999725861039704,
1766
+ "learning_rate": 5.311740219765247e-06,
1767
+ "loss": 0.7757,
1768
+ "mean_token_accuracy": 0.80171217918396,
1769
+ "num_tokens": 29537609.0,
1770
+ "step": 880
1771
+ },
1772
+ {
1773
+ "entropy": 0.8379440605640411,
1774
+ "epoch": 1.389324960753532,
1775
+ "grad_norm": 1.1068737293584308,
1776
+ "learning_rate": 5.191113766822905e-06,
1777
+ "loss": 0.8081,
1778
+ "mean_token_accuracy": 0.7938673734664917,
1779
+ "num_tokens": 29703501.0,
1780
+ "step": 885
1781
+ },
1782
+ {
1783
+ "entropy": 0.8395914256572723,
1784
+ "epoch": 1.3971742543171115,
1785
+ "grad_norm": 0.9692236763696376,
1786
+ "learning_rate": 5.071390772409579e-06,
1787
+ "loss": 0.8263,
1788
+ "mean_token_accuracy": 0.7933382868766785,
1789
+ "num_tokens": 29873409.0,
1790
+ "step": 890
1791
+ },
1792
+ {
1793
+ "entropy": 0.8258692562580109,
1794
+ "epoch": 1.4050235478806907,
1795
+ "grad_norm": 1.1584118626238182,
1796
+ "learning_rate": 4.952593729209671e-06,
1797
+ "loss": 0.8016,
1798
+ "mean_token_accuracy": 0.7933484017848969,
1799
+ "num_tokens": 30027021.0,
1800
+ "step": 895
1801
+ },
1802
+ {
1803
+ "entropy": 0.7889597296714783,
1804
+ "epoch": 1.41287284144427,
1805
+ "grad_norm": 1.072165602590816,
1806
+ "learning_rate": 4.834744955946631e-06,
1807
+ "loss": 0.7632,
1808
+ "mean_token_accuracy": 0.8002647578716278,
1809
+ "num_tokens": 30185182.0,
1810
+ "step": 900
1811
+ },
1812
+ {
1813
+ "entropy": 0.8507044613361359,
1814
+ "epoch": 1.4207221350078494,
1815
+ "grad_norm": 1.103567455594152,
1816
+ "learning_rate": 4.717866593189847e-06,
1817
+ "loss": 0.8193,
1818
+ "mean_token_accuracy": 0.7897421777248382,
1819
+ "num_tokens": 30339297.0,
1820
+ "step": 905
1821
+ },
1822
+ {
1823
+ "entropy": 0.8800127923488616,
1824
+ "epoch": 1.4285714285714286,
1825
+ "grad_norm": 1.1458812579100477,
1826
+ "learning_rate": 4.60198059919505e-06,
1827
+ "loss": 0.8706,
1828
+ "mean_token_accuracy": 0.7778860569000244,
1829
+ "num_tokens": 30493963.0,
1830
+ "step": 910
1831
+ },
1832
+ {
1833
+ "entropy": 0.7648905456066132,
1834
+ "epoch": 1.4364207221350078,
1835
+ "grad_norm": 1.0500741631200436,
1836
+ "learning_rate": 4.487108745778958e-06,
1837
+ "loss": 0.7182,
1838
+ "mean_token_accuracy": 0.8138745665550232,
1839
+ "num_tokens": 30666803.0,
1840
+ "step": 915
1841
+ },
1842
+ {
1843
+ "entropy": 0.7712486982345581,
1844
+ "epoch": 1.4442700156985873,
1845
+ "grad_norm": 1.0542089160734922,
1846
+ "learning_rate": 4.373272614228932e-06,
1847
+ "loss": 0.7553,
1848
+ "mean_token_accuracy": 0.8085428476333618,
1849
+ "num_tokens": 30836059.0,
1850
+ "step": 920
1851
+ },
1852
+ {
1853
+ "entropy": 0.7824968814849853,
1854
+ "epoch": 1.4521193092621665,
1855
+ "grad_norm": 1.1739948319837288,
1856
+ "learning_rate": 4.260493591248458e-06,
1857
+ "loss": 0.7488,
1858
+ "mean_token_accuracy": 0.8080036818981171,
1859
+ "num_tokens": 31002260.0,
1860
+ "step": 925
1861
+ },
1862
+ {
1863
+ "entropy": 0.8732044517993927,
1864
+ "epoch": 1.4599686028257457,
1865
+ "grad_norm": 1.218588367639695,
1866
+ "learning_rate": 4.148792864939164e-06,
1867
+ "loss": 0.8311,
1868
+ "mean_token_accuracy": 0.7848361492156982,
1869
+ "num_tokens": 31168586.0,
1870
+ "step": 930
1871
+ },
1872
+ {
1873
+ "entropy": 0.7919686675071717,
1874
+ "epoch": 1.467817896389325,
1875
+ "grad_norm": 1.0395587921432232,
1876
+ "learning_rate": 4.038191420820139e-06,
1877
+ "loss": 0.7583,
1878
+ "mean_token_accuracy": 0.8057900071144104,
1879
+ "num_tokens": 31329810.0,
1880
+ "step": 935
1881
+ },
1882
+ {
1883
+ "entropy": 0.857411801815033,
1884
+ "epoch": 1.4756671899529041,
1885
+ "grad_norm": 1.2129732997330736,
1886
+ "learning_rate": 3.92871003788535e-06,
1887
+ "loss": 0.8246,
1888
+ "mean_token_accuracy": 0.7912562787532806,
1889
+ "num_tokens": 31491966.0,
1890
+ "step": 940
1891
+ },
1892
+ {
1893
+ "entropy": 0.8164745211601258,
1894
+ "epoch": 1.4835164835164836,
1895
+ "grad_norm": 1.0962169271219249,
1896
+ "learning_rate": 3.820369284699823e-06,
1897
+ "loss": 0.7797,
1898
+ "mean_token_accuracy": 0.7972842991352082,
1899
+ "num_tokens": 31654493.0,
1900
+ "step": 945
1901
+ },
1902
+ {
1903
+ "entropy": 0.8125701963901519,
1904
+ "epoch": 1.4913657770800628,
1905
+ "grad_norm": 1.0866004282193915,
1906
+ "learning_rate": 3.713189515535368e-06,
1907
+ "loss": 0.7922,
1908
+ "mean_token_accuracy": 0.7976612865924835,
1909
+ "num_tokens": 31819877.0,
1910
+ "step": 950
1911
+ },
1912
+ {
1913
+ "entropy": 0.7080917954444885,
1914
+ "epoch": 1.499215070643642,
1915
+ "grad_norm": 0.9180013433354448,
1916
+ "learning_rate": 3.607190866546578e-06,
1917
+ "loss": 0.6795,
1918
+ "mean_token_accuracy": 0.8217414200305939,
1919
+ "num_tokens": 32000700.0,
1920
+ "step": 955
1921
+ },
1922
+ {
1923
+ "entropy": 0.7802863955497742,
1924
+ "epoch": 1.5070643642072215,
1925
+ "grad_norm": 1.0444040538958685,
1926
+ "learning_rate": 3.502393251987776e-06,
1927
+ "loss": 0.7541,
1928
+ "mean_token_accuracy": 0.8063533782958985,
1929
+ "num_tokens": 32162701.0,
1930
+ "step": 960
1931
+ },
1932
+ {
1933
+ "entropy": 0.7960240602493286,
1934
+ "epoch": 1.5149136577708007,
1935
+ "grad_norm": 1.0318984478840416,
1936
+ "learning_rate": 3.3988163604716928e-06,
1937
+ "loss": 0.7762,
1938
+ "mean_token_accuracy": 0.8041753470897675,
1939
+ "num_tokens": 32325569.0,
1940
+ "step": 965
1941
+ },
1942
+ {
1943
+ "entropy": 0.8061594307422638,
1944
+ "epoch": 1.5227629513343799,
1945
+ "grad_norm": 1.012431871323513,
1946
+ "learning_rate": 3.296479651270502e-06,
1947
+ "loss": 0.7674,
1948
+ "mean_token_accuracy": 0.8041636168956756,
1949
+ "num_tokens": 32488499.0,
1950
+ "step": 970
1951
+ },
1952
+ {
1953
+ "entropy": 0.7571884632110596,
1954
+ "epoch": 1.5306122448979593,
1955
+ "grad_norm": 1.1234093176199544,
1956
+ "learning_rate": 3.195402350659945e-06,
1957
+ "loss": 0.7382,
1958
+ "mean_token_accuracy": 0.8137228667736054,
1959
+ "num_tokens": 32655906.0,
1960
+ "step": 975
1961
+ },
1962
+ {
1963
+ "entropy": 0.8204948246479035,
1964
+ "epoch": 1.5384615384615383,
1965
+ "grad_norm": 1.08811573994006,
1966
+ "learning_rate": 3.0956034483072573e-06,
1967
+ "loss": 0.7989,
1968
+ "mean_token_accuracy": 0.7967490673065185,
1969
+ "num_tokens": 32822319.0,
1970
+ "step": 980
1971
+ },
1972
+ {
1973
+ "entropy": 0.8921033620834351,
1974
+ "epoch": 1.5463108320251178,
1975
+ "grad_norm": 1.1469019706898658,
1976
+ "learning_rate": 2.997101693703518e-06,
1977
+ "loss": 0.8717,
1978
+ "mean_token_accuracy": 0.7777008473873138,
1979
+ "num_tokens": 32979290.0,
1980
+ "step": 985
1981
+ },
1982
+ {
1983
+ "entropy": 0.8035219550132752,
1984
+ "epoch": 1.554160125588697,
1985
+ "grad_norm": 1.2978500966418507,
1986
+ "learning_rate": 2.8999155926411203e-06,
1987
+ "loss": 0.7669,
1988
+ "mean_token_accuracy": 0.8013963401317596,
1989
+ "num_tokens": 33147410.0,
1990
+ "step": 990
1991
+ },
1992
+ {
1993
+ "entropy": 0.7756295680999756,
1994
+ "epoch": 1.5620094191522762,
1995
+ "grad_norm": 0.9911883814709748,
1996
+ "learning_rate": 2.8040634037370727e-06,
1997
+ "loss": 0.7473,
1998
+ "mean_token_accuracy": 0.807004177570343,
1999
+ "num_tokens": 33319385.0,
2000
+ "step": 995
2001
+ },
2002
+ {
2003
+ "entropy": 0.7991841673851013,
2004
+ "epoch": 1.5698587127158556,
2005
+ "grad_norm": 1.0475227313712396,
2006
+ "learning_rate": 2.7095631350026585e-06,
2007
+ "loss": 0.7809,
2008
+ "mean_token_accuracy": 0.7999978542327881,
2009
+ "num_tokens": 33481523.0,
2010
+ "step": 1000
2011
+ },
2012
+ {
2013
+ "entropy": 0.7900123536586762,
2014
+ "epoch": 1.5777080062794349,
2015
+ "grad_norm": 1.1397172123077388,
2016
+ "learning_rate": 2.616432540460255e-06,
2017
+ "loss": 0.7702,
2018
+ "mean_token_accuracy": 0.8040990054607391,
2019
+ "num_tokens": 33652162.0,
2020
+ "step": 1005
2021
+ },
2022
+ {
2023
+ "entropy": 0.8678532779216767,
2024
+ "epoch": 1.585557299843014,
2025
+ "grad_norm": 1.108645276204879,
2026
+ "learning_rate": 2.524689116807826e-06,
2027
+ "loss": 0.8332,
2028
+ "mean_token_accuracy": 0.7851932346820831,
2029
+ "num_tokens": 33820982.0,
2030
+ "step": 1010
2031
+ },
2032
+ {
2033
+ "entropy": 0.754007887840271,
2034
+ "epoch": 1.5934065934065935,
2035
+ "grad_norm": 0.9962749875685968,
2036
+ "learning_rate": 2.4343501001317604e-06,
2037
+ "loss": 0.7015,
2038
+ "mean_token_accuracy": 0.8182987689971923,
2039
+ "num_tokens": 34001297.0,
2040
+ "step": 1015
2041
+ },
2042
+ {
2043
+ "entropy": 0.7921090185642242,
2044
+ "epoch": 1.6012558869701727,
2045
+ "grad_norm": 1.0446446137216074,
2046
+ "learning_rate": 2.345432462668702e-06,
2047
+ "loss": 0.7485,
2048
+ "mean_token_accuracy": 0.8051556289196015,
2049
+ "num_tokens": 34165590.0,
2050
+ "step": 1020
2051
+ },
2052
+ {
2053
+ "entropy": 0.774686723947525,
2054
+ "epoch": 1.609105180533752,
2055
+ "grad_norm": 1.015493262986232,
2056
+ "learning_rate": 2.257952909616914e-06,
2057
+ "loss": 0.7384,
2058
+ "mean_token_accuracy": 0.8051503002643585,
2059
+ "num_tokens": 34331619.0,
2060
+ "step": 1025
2061
+ },
2062
+ {
2063
+ "entropy": 0.7873682260513306,
2064
+ "epoch": 1.6169544740973314,
2065
+ "grad_norm": 0.9906531738438915,
2066
+ "learning_rate": 2.1719278759978225e-06,
2067
+ "loss": 0.7661,
2068
+ "mean_token_accuracy": 0.804135799407959,
2069
+ "num_tokens": 34496754.0,
2070
+ "step": 1030
2071
+ },
2072
+ {
2073
+ "entropy": 0.773938137292862,
2074
+ "epoch": 1.6248037676609104,
2075
+ "grad_norm": 1.109452175715515,
2076
+ "learning_rate": 2.0873735235683535e-06,
2077
+ "loss": 0.7551,
2078
+ "mean_token_accuracy": 0.8059284925460816,
2079
+ "num_tokens": 34662861.0,
2080
+ "step": 1035
2081
+ },
2082
+ {
2083
+ "entropy": 0.8283044755458832,
2084
+ "epoch": 1.6326530612244898,
2085
+ "grad_norm": 1.0014049035620205,
2086
+ "learning_rate": 2.004305737784541e-06,
2087
+ "loss": 0.8114,
2088
+ "mean_token_accuracy": 0.7896087825298309,
2089
+ "num_tokens": 34821766.0,
2090
+ "step": 1040
2091
+ },
2092
+ {
2093
+ "entropy": 0.8537304162979126,
2094
+ "epoch": 1.640502354788069,
2095
+ "grad_norm": 1.1516235651478994,
2096
+ "learning_rate": 1.922740124817113e-06,
2097
+ "loss": 0.8335,
2098
+ "mean_token_accuracy": 0.7951138377189636,
2099
+ "num_tokens": 34989416.0,
2100
+ "step": 1045
2101
+ },
2102
+ {
2103
+ "entropy": 0.7588850557804108,
2104
+ "epoch": 1.6483516483516483,
2105
+ "grad_norm": 1.093458446274152,
2106
+ "learning_rate": 1.8426920086195065e-06,
2107
+ "loss": 0.7212,
2108
+ "mean_token_accuracy": 0.8150915265083313,
2109
+ "num_tokens": 35166126.0,
2110
+ "step": 1050
2111
+ },
2112
+ {
2113
+ "entropy": 0.8021154761314392,
2114
+ "epoch": 1.6562009419152277,
2115
+ "grad_norm": 0.9205134757749072,
2116
+ "learning_rate": 1.7641764280489081e-06,
2117
+ "loss": 0.7775,
2118
+ "mean_token_accuracy": 0.8028938889503479,
2119
+ "num_tokens": 35335893.0,
2120
+ "step": 1055
2121
+ },
2122
+ {
2123
+ "entropy": 0.8320653736591339,
2124
+ "epoch": 1.664050235478807,
2125
+ "grad_norm": 1.0614802376501893,
2126
+ "learning_rate": 1.6872081340408763e-06,
2127
+ "loss": 0.8022,
2128
+ "mean_token_accuracy": 0.7986601531505585,
2129
+ "num_tokens": 35504349.0,
2130
+ "step": 1060
2131
+ },
2132
+ {
2133
+ "entropy": 0.7887833297252655,
2134
+ "epoch": 1.6718995290423861,
2135
+ "grad_norm": 0.9602064611345482,
2136
+ "learning_rate": 1.6118015868380387e-06,
2137
+ "loss": 0.7592,
2138
+ "mean_token_accuracy": 0.804213547706604,
2139
+ "num_tokens": 35672314.0,
2140
+ "step": 1065
2141
+ },
2142
+ {
2143
+ "entropy": 0.7736551225185394,
2144
+ "epoch": 1.6797488226059656,
2145
+ "grad_norm": 1.0970164822742665,
2146
+ "learning_rate": 1.5379709532733944e-06,
2147
+ "loss": 0.7438,
2148
+ "mean_token_accuracy": 0.8068382501602173,
2149
+ "num_tokens": 35842346.0,
2150
+ "step": 1070
2151
+ },
2152
+ {
2153
+ "entropy": 0.744723516702652,
2154
+ "epoch": 1.6875981161695446,
2155
+ "grad_norm": 1.1340196314083988,
2156
+ "learning_rate": 1.4657301041087812e-06,
2157
+ "loss": 0.7095,
2158
+ "mean_token_accuracy": 0.8160220980644226,
2159
+ "num_tokens": 36011555.0,
2160
+ "step": 1075
2161
+ },
2162
+ {
2163
+ "entropy": 0.7648721992969513,
2164
+ "epoch": 1.695447409733124,
2165
+ "grad_norm": 1.0060542106159092,
2166
+ "learning_rate": 1.395092611428902e-06,
2167
+ "loss": 0.7382,
2168
+ "mean_token_accuracy": 0.8110412538051606,
2169
+ "num_tokens": 36185171.0,
2170
+ "step": 1080
2171
+ },
2172
+ {
2173
+ "entropy": 0.7410736858844758,
2174
+ "epoch": 1.7032967032967035,
2175
+ "grad_norm": 1.0062154758791388,
2176
+ "learning_rate": 1.3260717460915296e-06,
2177
+ "loss": 0.7187,
2178
+ "mean_token_accuracy": 0.818413233757019,
2179
+ "num_tokens": 36358154.0,
2180
+ "step": 1085
2181
+ },
2182
+ {
2183
+ "entropy": 0.8113618612289428,
2184
+ "epoch": 1.7111459968602825,
2185
+ "grad_norm": 1.0517432840388885,
2186
+ "learning_rate": 1.2586804752342596e-06,
2187
+ "loss": 0.7874,
2188
+ "mean_token_accuracy": 0.7986697673797607,
2189
+ "num_tokens": 36521426.0,
2190
+ "step": 1090
2191
+ },
2192
+ {
2193
+ "entropy": 0.7561818957328796,
2194
+ "epoch": 1.718995290423862,
2195
+ "grad_norm": 1.0638794285921913,
2196
+ "learning_rate": 1.1929314598383423e-06,
2197
+ "loss": 0.7301,
2198
+ "mean_token_accuracy": 0.8118774890899658,
2199
+ "num_tokens": 36704082.0,
2200
+ "step": 1095
2201
+ },
2202
+ {
2203
+ "entropy": 0.7728309392929077,
2204
+ "epoch": 1.7268445839874411,
2205
+ "grad_norm": 1.0250744986378886,
2206
+ "learning_rate": 1.1288370523500303e-06,
2207
+ "loss": 0.7269,
2208
+ "mean_token_accuracy": 0.8104123413562775,
2209
+ "num_tokens": 36868416.0,
2210
+ "step": 1100
2211
+ },
2212
+ {
2213
+ "entropy": 0.7941875874996185,
2214
+ "epoch": 1.7346938775510203,
2215
+ "grad_norm": 1.1537121982654628,
2216
+ "learning_rate": 1.0664092943598936e-06,
2217
+ "loss": 0.7753,
2218
+ "mean_token_accuracy": 0.8011082530021667,
2219
+ "num_tokens": 37032626.0,
2220
+ "step": 1105
2221
+ },
2222
+ {
2223
+ "entropy": 0.7873058438301086,
2224
+ "epoch": 1.7425431711145998,
2225
+ "grad_norm": 1.0152506875692804,
2226
+ "learning_rate": 1.0056599143405244e-06,
2227
+ "loss": 0.7437,
2228
+ "mean_token_accuracy": 0.8103858172893524,
2229
+ "num_tokens": 37204340.0,
2230
+ "step": 1110
2231
+ },
2232
+ {
2233
+ "entropy": 0.7289246320724487,
2234
+ "epoch": 1.750392464678179,
2235
+ "grad_norm": 1.0340442042834421,
2236
+ "learning_rate": 9.466003254430933e-07,
2237
+ "loss": 0.7103,
2238
+ "mean_token_accuracy": 0.817768144607544,
2239
+ "num_tokens": 37367113.0,
2240
+ "step": 1115
2241
+ },
2242
+ {
2243
+ "entropy": 0.791058075428009,
2244
+ "epoch": 1.7582417582417582,
2245
+ "grad_norm": 1.146254149472898,
2246
+ "learning_rate": 8.892416233531064e-07,
2247
+ "loss": 0.7552,
2248
+ "mean_token_accuracy": 0.806511789560318,
2249
+ "num_tokens": 37531543.0,
2250
+ "step": 1120
2251
+ },
2252
+ {
2253
+ "entropy": 0.8607315957546234,
2254
+ "epoch": 1.7660910518053377,
2255
+ "grad_norm": 1.012987781402804,
2256
+ "learning_rate": 8.335945842058524e-07,
2257
+ "loss": 0.8219,
2258
+ "mean_token_accuracy": 0.7920519292354584,
2259
+ "num_tokens": 37709584.0,
2260
+ "step": 1125
2261
+ },
2262
+ {
2263
+ "entropy": 0.8378117561340332,
2264
+ "epoch": 1.7739403453689166,
2265
+ "grad_norm": 0.9858004782540654,
2266
+ "learning_rate": 7.79669662561845e-07,
2267
+ "loss": 0.8277,
2268
+ "mean_token_accuracy": 0.7862304747104645,
2269
+ "num_tokens": 37870467.0,
2270
+ "step": 1130
2271
+ },
2272
+ {
2273
+ "entropy": 0.7667446494102478,
2274
+ "epoch": 1.781789638932496,
2275
+ "grad_norm": 0.9733579910483114,
2276
+ "learning_rate": 7.274769894426992e-07,
2277
+ "loss": 0.7315,
2278
+ "mean_token_accuracy": 0.8114334285259247,
2279
+ "num_tokens": 38037411.0,
2280
+ "step": 1135
2281
+ },
2282
+ {
2283
+ "entropy": 0.7864938259124756,
2284
+ "epoch": 1.7896389324960753,
2285
+ "grad_norm": 1.0732339135329727,
2286
+ "learning_rate": 6.770263704277958e-07,
2287
+ "loss": 0.7532,
2288
+ "mean_token_accuracy": 0.807527220249176,
2289
+ "num_tokens": 38213798.0,
2290
+ "step": 1140
2291
+ },
2292
+ {
2293
+ "entropy": 0.815716129541397,
2294
+ "epoch": 1.7974882260596545,
2295
+ "grad_norm": 1.1582020185029405,
2296
+ "learning_rate": 6.283272838120747e-07,
2297
+ "loss": 0.7874,
2298
+ "mean_token_accuracy": 0.7992064177989959,
2299
+ "num_tokens": 38375263.0,
2300
+ "step": 1145
2301
+ },
2302
+ {
2303
+ "entropy": 0.8013858616352081,
2304
+ "epoch": 1.805337519623234,
2305
+ "grad_norm": 0.9712830331555026,
2306
+ "learning_rate": 5.813888788253153e-07,
2307
+ "loss": 0.7648,
2308
+ "mean_token_accuracy": 0.8033481001853943,
2309
+ "num_tokens": 38547445.0,
2310
+ "step": 1150
2311
+ },
2312
+ {
2313
+ "entropy": 0.756001740694046,
2314
+ "epoch": 1.8131868131868132,
2315
+ "grad_norm": 0.9858264012618121,
2316
+ "learning_rate": 5.362199739132656e-07,
2317
+ "loss": 0.7125,
2318
+ "mean_token_accuracy": 0.8135588228702545,
2319
+ "num_tokens": 38722268.0,
2320
+ "step": 1155
2321
+ },
2322
+ {
2323
+ "entropy": 0.871394807100296,
2324
+ "epoch": 1.8210361067503924,
2325
+ "grad_norm": 1.0744537954859468,
2326
+ "learning_rate": 4.928290550808734e-07,
2327
+ "loss": 0.8562,
2328
+ "mean_token_accuracy": 0.7852151751518249,
2329
+ "num_tokens": 38900320.0,
2330
+ "step": 1160
2331
+ },
2332
+ {
2333
+ "entropy": 0.8059657752513886,
2334
+ "epoch": 1.8288854003139718,
2335
+ "grad_norm": 1.0540449615504737,
2336
+ "learning_rate": 4.512242742980155e-07,
2337
+ "loss": 0.7846,
2338
+ "mean_token_accuracy": 0.7966613590717315,
2339
+ "num_tokens": 39062062.0,
2340
+ "step": 1165
2341
+ },
2342
+ {
2343
+ "entropy": 0.8244526743888855,
2344
+ "epoch": 1.836734693877551,
2345
+ "grad_norm": 0.9991737375881368,
2346
+ "learning_rate": 4.114134479679543e-07,
2347
+ "loss": 0.7972,
2348
+ "mean_token_accuracy": 0.7997494339942932,
2349
+ "num_tokens": 39240192.0,
2350
+ "step": 1170
2351
+ },
2352
+ {
2353
+ "entropy": 0.8171651303768158,
2354
+ "epoch": 1.8445839874411303,
2355
+ "grad_norm": 1.0631944976572028,
2356
+ "learning_rate": 3.734040554588514e-07,
2357
+ "loss": 0.7965,
2358
+ "mean_token_accuracy": 0.79867804646492,
2359
+ "num_tokens": 39407568.0,
2360
+ "step": 1175
2361
+ },
2362
+ {
2363
+ "entropy": 0.8014465630054474,
2364
+ "epoch": 1.8524332810047097,
2365
+ "grad_norm": 1.0547329667601317,
2366
+ "learning_rate": 3.372032376986034e-07,
2367
+ "loss": 0.7731,
2368
+ "mean_token_accuracy": 0.8016147315502167,
2369
+ "num_tokens": 39573096.0,
2370
+ "step": 1180
2371
+ },
2372
+ {
2373
+ "entropy": 0.8390758752822876,
2374
+ "epoch": 1.8602825745682887,
2375
+ "grad_norm": 1.1016119489612444,
2376
+ "learning_rate": 3.028177958332512e-07,
2377
+ "loss": 0.7973,
2378
+ "mean_token_accuracy": 0.7978279173374176,
2379
+ "num_tokens": 39752468.0,
2380
+ "step": 1185
2381
+ },
2382
+ {
2383
+ "entropy": 0.7954071164131165,
2384
+ "epoch": 1.8681318681318682,
2385
+ "grad_norm": 1.0681384062877102,
2386
+ "learning_rate": 2.7025418994922835e-07,
2387
+ "loss": 0.7699,
2388
+ "mean_token_accuracy": 0.8014423370361328,
2389
+ "num_tokens": 39925000.0,
2390
+ "step": 1190
2391
+ },
2392
+ {
2393
+ "entropy": 0.7690263390541077,
2394
+ "epoch": 1.8759811616954474,
2395
+ "grad_norm": 1.0897071679243313,
2396
+ "learning_rate": 2.3951853785969535e-07,
2397
+ "loss": 0.7247,
2398
+ "mean_token_accuracy": 0.8128218948841095,
2399
+ "num_tokens": 40101755.0,
2400
+ "step": 1195
2401
+ },
2402
+ {
2403
+ "entropy": 0.7904431164264679,
2404
+ "epoch": 1.8838304552590266,
2405
+ "grad_norm": 1.024203647295983,
2406
+ "learning_rate": 2.106166139551602e-07,
2407
+ "loss": 0.7661,
2408
+ "mean_token_accuracy": 0.8057327687740325,
2409
+ "num_tokens": 40267453.0,
2410
+ "step": 1200
2411
+ },
2412
+ {
2413
+ "entropy": 0.777401077747345,
2414
+ "epoch": 1.891679748822606,
2415
+ "grad_norm": 1.0905304117203938,
2416
+ "learning_rate": 1.8355384811863274e-07,
2417
+ "loss": 0.7457,
2418
+ "mean_token_accuracy": 0.8098066449165344,
2419
+ "num_tokens": 40442554.0,
2420
+ "step": 1205
2421
+ },
2422
+ {
2423
+ "entropy": 0.7975175678730011,
2424
+ "epoch": 1.8995290423861853,
2425
+ "grad_norm": 1.0694029085898318,
2426
+ "learning_rate": 1.5833532470549862e-07,
2427
+ "loss": 0.7671,
2428
+ "mean_token_accuracy": 0.8054138720035553,
2429
+ "num_tokens": 40610140.0,
2430
+ "step": 1210
2431
+ },
2432
+ {
2433
+ "entropy": 0.7842841446399689,
2434
+ "epoch": 1.9073783359497645,
2435
+ "grad_norm": 1.0406692951081211,
2436
+ "learning_rate": 1.349657815883032e-07,
2437
+ "loss": 0.7595,
2438
+ "mean_token_accuracy": 0.8052766740322113,
2439
+ "num_tokens": 40790260.0,
2440
+ "step": 1215
2441
+ },
2442
+ {
2443
+ "entropy": 0.8115567684173584,
2444
+ "epoch": 1.915227629513344,
2445
+ "grad_norm": 1.043901419244555,
2446
+ "learning_rate": 1.134496092666415e-07,
2447
+ "loss": 0.7838,
2448
+ "mean_token_accuracy": 0.7996500730514526,
2449
+ "num_tokens": 40956127.0,
2450
+ "step": 1220
2451
+ },
2452
+ {
2453
+ "entropy": 0.8145834147930145,
2454
+ "epoch": 1.9230769230769231,
2455
+ "grad_norm": 1.1167095476772675,
2456
+ "learning_rate": 9.379085004229571e-08,
2457
+ "loss": 0.7947,
2458
+ "mean_token_accuracy": 0.8002051293849946,
2459
+ "num_tokens": 41129584.0,
2460
+ "step": 1225
2461
+ },
2462
+ {
2463
+ "entropy": 0.7975345253944397,
2464
+ "epoch": 1.9309262166405023,
2465
+ "grad_norm": 1.0430263140771778,
2466
+ "learning_rate": 7.599319725980047e-08,
2467
+ "loss": 0.7683,
2468
+ "mean_token_accuracy": 0.8059882283210754,
2469
+ "num_tokens": 41313026.0,
2470
+ "step": 1230
2471
+ },
2472
+ {
2473
+ "entropy": 0.7508834600448608,
2474
+ "epoch": 1.9387755102040818,
2475
+ "grad_norm": 1.007086000352449,
2476
+ "learning_rate": 6.005999461256684e-08,
2477
+ "loss": 0.7225,
2478
+ "mean_token_accuracy": 0.8129178524017334,
2479
+ "num_tokens": 41474640.0,
2480
+ "step": 1235
2481
+ },
2482
+ {
2483
+ "entropy": 0.7730951249599457,
2484
+ "epoch": 1.9466248037676608,
2485
+ "grad_norm": 0.8290716851619099,
2486
+ "learning_rate": 4.599423551468807e-08,
2487
+ "loss": 0.7361,
2488
+ "mean_token_accuracy": 0.8124108791351319,
2489
+ "num_tokens": 41649075.0,
2490
+ "step": 1240
2491
+ },
2492
+ {
2493
+ "entropy": 0.8062951028347015,
2494
+ "epoch": 1.9544740973312402,
2495
+ "grad_norm": 0.991088255327716,
2496
+ "learning_rate": 3.379856253855951e-08,
2497
+ "loss": 0.7888,
2498
+ "mean_token_accuracy": 0.7999569416046143,
2499
+ "num_tokens": 41826656.0,
2500
+ "step": 1245
2501
+ },
2502
+ {
2503
+ "entropy": 0.8706649959087371,
2504
+ "epoch": 1.9623233908948194,
2505
+ "grad_norm": 1.0157252292092094,
2506
+ "learning_rate": 2.347526691841906e-08,
2507
+ "loss": 0.8462,
2508
+ "mean_token_accuracy": 0.784136426448822,
2509
+ "num_tokens": 41997967.0,
2510
+ "step": 1250
2511
+ },
2512
+ {
2513
+ "entropy": 0.8358751595020294,
2514
+ "epoch": 1.9701726844583987,
2515
+ "grad_norm": 0.9496866968781222,
2516
+ "learning_rate": 1.5026288119874833e-08,
2517
+ "loss": 0.798,
2518
+ "mean_token_accuracy": 0.7961611032485962,
2519
+ "num_tokens": 42162565.0,
2520
+ "step": 1255
2521
+ },
2522
+ {
2523
+ "entropy": 0.7746085405349732,
2524
+ "epoch": 1.978021978021978,
2525
+ "grad_norm": 1.0390321214337483,
2526
+ "learning_rate": 8.453213475543287e-09,
2527
+ "loss": 0.7536,
2528
+ "mean_token_accuracy": 0.8045296788215637,
2529
+ "num_tokens": 42343567.0,
2530
+ "step": 1260
2531
+ },
2532
+ {
2533
+ "entropy": 0.8106873512268067,
2534
+ "epoch": 1.9858712715855573,
2535
+ "grad_norm": 0.8551488607901518,
2536
+ "learning_rate": 3.757277886824451e-09,
2537
+ "loss": 0.7896,
2538
+ "mean_token_accuracy": 0.8025787651538849,
2539
+ "num_tokens": 42498880.0,
2540
+ "step": 1265
2541
+ },
2542
+ {
2543
+ "entropy": 0.7977005839347839,
2544
+ "epoch": 1.9937205651491365,
2545
+ "grad_norm": 1.0550479791927134,
2546
+ "learning_rate": 9.393635919041632e-10,
2547
+ "loss": 0.7593,
2548
+ "mean_token_accuracy": 0.8044815063476562,
2549
+ "num_tokens": 42661916.0,
2550
+ "step": 1270
2551
+ },
2552
+ {
2553
+ "entropy": 0.8685899376869202,
2554
+ "epoch": 2.0,
2555
+ "mean_token_accuracy": 0.7839328944683075,
2556
+ "num_tokens": 42794273.0,
2557
+ "step": 1274,
2558
+ "total_flos": 79316336967680.0,
2559
+ "train_loss": 0.8601785458425525,
2560
+ "train_runtime": 2840.349,
2561
+ "train_samples_per_second": 28.698,
2562
+ "train_steps_per_second": 0.449
2563
+ }
2564
+ ],
2565
+ "logging_steps": 5,
2566
+ "max_steps": 1274,
2567
+ "num_input_tokens_seen": 0,
2568
+ "num_train_epochs": 2,
2569
+ "save_steps": 100,
2570
+ "stateful_callbacks": {
2571
+ "TrainerControl": {
2572
+ "args": {
2573
+ "should_epoch_stop": false,
2574
+ "should_evaluate": false,
2575
+ "should_log": false,
2576
+ "should_save": true,
2577
+ "should_training_stop": true
2578
+ },
2579
+ "attributes": {}
2580
+ }
2581
+ },
2582
+ "total_flos": 79316336967680.0,
2583
+ "train_batch_size": 8,
2584
+ "trial_name": null,
2585
+ "trial_params": null
2586
+ }