Add README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: pytorch
|
| 3 |
+
pipeline_tag: image-classification
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- automl
|
| 7 |
+
- pytorch
|
| 8 |
+
- torchvision
|
| 9 |
+
- optuna
|
| 10 |
+
- early-stopping
|
| 11 |
+
model_name: Tomato vs Not-Tomato — AutoML (Compact CNN / Transfer Learning)
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# Tomato vs Not-Tomato — AutoML (Compact NN)
|
| 17 |
+
|
| 18 |
+
## Purpose
|
| 19 |
+
Course assignment to practice AutoML for neural networks on a small, real dataset.
|
| 20 |
+
We train a compact image classifier to predict whether an image **is a tomato (1) or not (0).**
|
| 21 |
+
|
| 22 |
+
## Dataset
|
| 23 |
+
- **Source:** classmate dataset on Hugging Face → `Iris314/Food_tomatoes_dataset`
|
| 24 |
+
- **Task:** Binary classification (`0 = not_tomato`, `1 = tomato`)
|
| 25 |
+
- **Splits:** Stratified **60/20/20** (train/val/test) created in the notebook
|
| 26 |
+
- **Size:** ~30 images total (very small)
|
| 27 |
+
- **Input resolution:** 224×224
|
| 28 |
+
|
| 29 |
+
## Preprocessing & Augmentation
|
| 30 |
+
- **Normalization:** mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]
|
| 31 |
+
- **Train augmentations:** RandomResizedCrop, HorizontalFlip(0.5), ColorJitter
|
| 32 |
+
- **Eval transforms:** Resize → CenterCrop → Normalize
|
| 33 |
+
|
| 34 |
+
## AutoML Setup
|
| 35 |
+
- **Search framework:** Optuna (budgeted search with pruning)
|
| 36 |
+
- **Architectures:** `smallcnn` (from scratch), `resnet18`, `mobilenet_v3_small`
|
| 37 |
+
- **Hyperparams:** optimizer ∈ {adamw, sgd}, lr ∈ [1e-5, 5e-3] (log), weight_decay ∈ [1e-6, 1e-2] (log),
|
| 38 |
+
dropout ∈ [0, 0.6], batch_size ∈ {8, 12, 16}, `freeze_backbone` ∈ {True, False} (for pretrained)
|
| 39 |
+
- **Early stopping:** patience = 6 epochs on validation F1
|
| 40 |
+
- **Budget:** 10 trials, max 20 epochs per trial, ~5 min wall-clock
|
| 41 |
+
- **Seed:** 42
|
| 42 |
+
- **Compute:** Google Colab GPU runtime
|
| 43 |
+
|
| 44 |
+
## Best Model & Hyperparameters
|
| 45 |
+
```json
|
| 46 |
+
{
|
| 47 |
+
"arch": "mobilenet_v3_small",
|
| 48 |
+
"freeze_backbone": false,
|
| 49 |
+
"dropout": 0.4761270681732692,
|
| 50 |
+
"optimizer": "adamw",
|
| 51 |
+
"lr": 1.1860369117967872e-05,
|
| 52 |
+
"weight_decay": 0.00043282443346186894,
|
| 53 |
+
"batch_size": 16
|
| 54 |
+
}
|
| 55 |
+
```
|
| 56 |
+
## Limitations & Known Failure Modes
|
| 57 |
+
- Extremely small dataset → risk of overfitting and unstable metrics.
|
| 58 |
+
- Backgrounds and lighting variations can bias predictions.
|
| 59 |
+
- Out-of-distribution images (e.g., tomato cartoons, extreme angles) may fail.
|
| 60 |
+
|
| 61 |
+
## Ethics
|
| 62 |
+
- This model is for coursework demonstration only; not for production or consequential decisions.
|
| 63 |
+
|
| 64 |
+
## License
|
| 65 |
+
- Code & weights: MIT (adjust per course requirements)
|
| 66 |
+
- Dataset: follow the original dataset’s license/terms
|
| 67 |
+
|
| 68 |
+
## Acknowledgments
|
| 69 |
+
- Dataset: Iris314/Food_tomatoes_dataset
|
| 70 |
+
- AutoML: Optuna
|
| 71 |
+
- Backbones: torchvision models
|
| 72 |
+
- Trained in Google Colab
|
| 73 |
+
- GenAI tools assisted with boilerplate organization and documentation
|