Upload lora_finetune_distributed.py with huggingface_hub
Browse files- lora_finetune_distributed.py +615 -0
lora_finetune_distributed.py
ADDED
|
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the BSD-style license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import sys
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
from functools import partial
|
| 11 |
+
from typing import Any, Dict, Optional, Tuple
|
| 12 |
+
from warnings import warn
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from omegaconf import DictConfig
|
| 16 |
+
|
| 17 |
+
from torch import nn
|
| 18 |
+
from torch.distributed import destroy_process_group, init_process_group
|
| 19 |
+
from torch.distributed.fsdp import (
|
| 20 |
+
FullOptimStateDictConfig,
|
| 21 |
+
FullStateDictConfig,
|
| 22 |
+
FullyShardedDataParallel as FSDP,
|
| 23 |
+
StateDictType,
|
| 24 |
+
)
|
| 25 |
+
from torch.optim import Optimizer
|
| 26 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
| 27 |
+
from torchtune import config, modules, utils
|
| 28 |
+
from torchtune.modules.peft.peft_utils import (
|
| 29 |
+
get_adapter_params,
|
| 30 |
+
get_merged_lora_ckpt,
|
| 31 |
+
set_trainable_params,
|
| 32 |
+
validate_state_dict_for_lora,
|
| 33 |
+
)
|
| 34 |
+
from torchtune.recipe_interfaces import FTRecipeInterface
|
| 35 |
+
|
| 36 |
+
from tqdm import tqdm
|
| 37 |
+
|
| 38 |
+
log = utils.get_logger("DEBUG")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class LoRAFinetuneRecipeDistributed(FTRecipeInterface):
|
| 42 |
+
"""
|
| 43 |
+
Distributed LoRA finetuning recipe for dense transformer-based LLMs such as Llama2. This recipe supports
|
| 44 |
+
distributed training and can be run on a single node (1 to 8 GPUs).
|
| 45 |
+
|
| 46 |
+
Features:
|
| 47 |
+
- FSDP. Supported using PyTorch's FSDP APIs. DDP is currently not supported. Traning on CPU is not
|
| 48 |
+
supported.
|
| 49 |
+
|
| 50 |
+
- Activation Checkpointing. This can be controlled using the ``activation_checkpointing``
|
| 51 |
+
flag. Activation checkpointing helps reduce the memory footprint since we no longer keep
|
| 52 |
+
activations in memory and instead recompute them during the backward pass. This is especially
|
| 53 |
+
helpful for larger batch sizes when you're memory constrained. But these savings in memory
|
| 54 |
+
come at the cost of training performance. In most cases training can slow-down quite a bit as
|
| 55 |
+
a result of this activation recomputation.
|
| 56 |
+
|
| 57 |
+
- Precision. Full fp32 and bf16 training are supported. Precision is controlled using the ``dtype``
|
| 58 |
+
flag. When ``dtype=bf16``, all activations, gradients and optimizer states are in bfloat16. In
|
| 59 |
+
most cases this should halve the memory footprint of full precision (fp32) training, without
|
| 60 |
+
loss in model quality (will depend on the model, training data and other settings). For
|
| 61 |
+
GPUs which do not support bfloat16, we fall back to fp32. Mixed precision training and fp16
|
| 62 |
+
precision are currently not supported.
|
| 63 |
+
|
| 64 |
+
- Gradient Accumulation. You can simulate larger batch sizes by accumulating gradients. This is
|
| 65 |
+
controlled using the ``gradient_accumulation_steps`` flag.
|
| 66 |
+
|
| 67 |
+
Total Batch Size = batch_size * number of GPUs * gradient accumulation steps.
|
| 68 |
+
|
| 69 |
+
For example: with batch_size=1, nproc_per_node=2 and gradient_accumulation_steps=32 we get a
|
| 70 |
+
total batch size of 64.
|
| 71 |
+
|
| 72 |
+
Gradient accumulation is especially useful when you are memory constrained. In this case,
|
| 73 |
+
accumulating gradients might give you better training speed than enabling activation
|
| 74 |
+
checkpointing.
|
| 75 |
+
|
| 76 |
+
- Checkpointing. Model weights are checkpointed both at the end of each epoch and at the end of
|
| 77 |
+
training. Currently we checkpoint both the adapter weights (trainable params only) and the
|
| 78 |
+
complete merged weights (adapter weights added back to the base model). For more details
|
| 79 |
+
please take a look at our LoRA tutorial
|
| 80 |
+
(https://pytorch.org/torchtune/main/tutorials/lora_finetune.html).
|
| 81 |
+
|
| 82 |
+
Optimizer State and recipe state (seed, total_epochs, number of epochs run etc) are
|
| 83 |
+
only saved at the end of a given epoch and used in case of resuming training. Resuming
|
| 84 |
+
training is controlled by the ``resume_from_checkpoint`` flag. Mid-epoch checkpointing is
|
| 85 |
+
currently not supported.
|
| 86 |
+
|
| 87 |
+
For more details on the checkpointer, please take a look at
|
| 88 |
+
our checkpointer deepdive (https://pytorch.org/torchtune/main/tutorials/checkpointer.html).
|
| 89 |
+
|
| 90 |
+
- Logging. Terminal, Disk, WandB and TensorBoard are all supported.
|
| 91 |
+
|
| 92 |
+
For a full list of example configs for this recipe, run ``tune ls`` on the command line. Each config
|
| 93 |
+
has example commands for how to kick-off training.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
cfg (DictConfig): OmegaConf object parsed from yaml file
|
| 97 |
+
|
| 98 |
+
Raises:
|
| 99 |
+
ValueError: If ``dtype`` is set to fp16.
|
| 100 |
+
ValueError: If world_size is 1
|
| 101 |
+
RuntimeError: If ``dtype`` is set to bf16 and the hardware does not support bf16.
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
def __init__(self, cfg: DictConfig) -> None:
|
| 105 |
+
self._device = utils.get_device(device=cfg.device)
|
| 106 |
+
self._dtype = utils.get_dtype(cfg.dtype, device=self._device)
|
| 107 |
+
|
| 108 |
+
if self._dtype == torch.float16:
|
| 109 |
+
raise ValueError(
|
| 110 |
+
"full fp16 training is not supported with this recipe. Please use bf16 or fp32 instead."
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
_, rank = utils.get_world_size_and_rank()
|
| 114 |
+
|
| 115 |
+
# _is_rank_zero is used primarily for logging. In the future, the logger
|
| 116 |
+
# should directly take care of this
|
| 117 |
+
self._is_rank_zero = rank == 0
|
| 118 |
+
|
| 119 |
+
# logging attributes
|
| 120 |
+
self._output_dir = cfg.output_dir
|
| 121 |
+
self._log_every_n_steps = cfg.log_every_n_steps if cfg.log_every_n_steps else 1
|
| 122 |
+
self._log_peak_memory_every_n_steps = 100
|
| 123 |
+
|
| 124 |
+
# training attributes
|
| 125 |
+
self._enable_activation_checkpointing = cfg.enable_activation_checkpointing
|
| 126 |
+
|
| 127 |
+
# These attributes constitute the recipe state and are updated by ``load_checkpoint``
|
| 128 |
+
# when ``resume_from_checkpoint`` is ``True``
|
| 129 |
+
self.seed = utils.set_seed(seed=cfg.seed)
|
| 130 |
+
self.epochs_run = 0
|
| 131 |
+
self.total_epochs = cfg.epochs
|
| 132 |
+
self.max_steps_per_epoch = cfg.max_steps_per_epoch
|
| 133 |
+
self.total_training_steps = 0
|
| 134 |
+
|
| 135 |
+
self._resume_from_checkpoint = cfg.resume_from_checkpoint
|
| 136 |
+
self._gradient_accumulation_steps = cfg.gradient_accumulation_steps
|
| 137 |
+
|
| 138 |
+
def load_checkpoint(self, cfg_checkpointer: DictConfig) -> Dict[str, Any]:
|
| 139 |
+
"""
|
| 140 |
+
Extract the checkpoint state from file and validate. This includes the
|
| 141 |
+
base model weights. If resume_from_checkpoint is True, this also includes
|
| 142 |
+
the adapter weights and recipe state
|
| 143 |
+
"""
|
| 144 |
+
self._checkpointer = config.instantiate(
|
| 145 |
+
cfg_checkpointer,
|
| 146 |
+
resume_from_checkpoint=self._resume_from_checkpoint,
|
| 147 |
+
)
|
| 148 |
+
checkpoint_dict = self._checkpointer.load_checkpoint()
|
| 149 |
+
|
| 150 |
+
# When resuming from checkpoint for LoRA, the recipe expects the adapter weights
|
| 151 |
+
# and recipe state to be present. The keys should match up with what ``save_checkpoint``
|
| 152 |
+
# used to create these intermediate checkpoints
|
| 153 |
+
if self._resume_from_checkpoint:
|
| 154 |
+
if utils.ADAPTER_KEY not in checkpoint_dict:
|
| 155 |
+
raise ValueError(
|
| 156 |
+
"Adapter weights not found. Please ensure a valid adapter checkpoint is provided."
|
| 157 |
+
)
|
| 158 |
+
# _update_recipe_state will throw an exception if the recipe state is not corrctly loaded
|
| 159 |
+
# no need to check here
|
| 160 |
+
self._update_recipe_state(checkpoint_dict)
|
| 161 |
+
return checkpoint_dict
|
| 162 |
+
|
| 163 |
+
def _update_recipe_state(self, ckpt_dict: Dict[str, Any]) -> None:
|
| 164 |
+
"""
|
| 165 |
+
Updates the recipe state from checkpoint.
|
| 166 |
+
"""
|
| 167 |
+
if not (
|
| 168 |
+
utils.SEED_KEY in ckpt_dict
|
| 169 |
+
and utils.TOTAL_EPOCHS_KEY in ckpt_dict
|
| 170 |
+
and utils.MAX_STEPS_KEY in ckpt_dict
|
| 171 |
+
):
|
| 172 |
+
raise KeyError(
|
| 173 |
+
"Checkpoint does not contain the required keys needed for updating recipe state."
|
| 174 |
+
"Are you sure you passed in the right recipe checkpoint?"
|
| 175 |
+
)
|
| 176 |
+
# If seed, total_epoch or max_steps_per_epoch don't match,
|
| 177 |
+
# warn the user and overwrite
|
| 178 |
+
if (
|
| 179 |
+
self.seed != ckpt_dict[utils.SEED_KEY]
|
| 180 |
+
or self.total_epochs != ckpt_dict[utils.TOTAL_EPOCHS_KEY]
|
| 181 |
+
or self.max_steps_per_epoch != ckpt_dict[utils.MAX_STEPS_KEY]
|
| 182 |
+
):
|
| 183 |
+
warn(
|
| 184 |
+
message="""Configured value for seed, epochs or max_steps_per_epoch
|
| 185 |
+
does not match the value stored in checkpoint."""
|
| 186 |
+
)
|
| 187 |
+
self.seed = utils.set_seed(seed=ckpt_dict[utils.SEED_KEY])
|
| 188 |
+
self.epochs_run = ckpt_dict[utils.EPOCHS_KEY]
|
| 189 |
+
self.total_epochs = ckpt_dict[utils.TOTAL_EPOCHS_KEY]
|
| 190 |
+
self.max_steps_per_epoch = ckpt_dict[utils.MAX_STEPS_KEY]
|
| 191 |
+
|
| 192 |
+
def setup(self, cfg: DictConfig) -> None:
|
| 193 |
+
"""
|
| 194 |
+
Setup the recipe state. This includes recipe state (if resume_from_checkpoint is True),
|
| 195 |
+
model, tokenizer, loss, optimizer, learning rate scheduler, sampler, and dataloader.
|
| 196 |
+
"""
|
| 197 |
+
if self._is_rank_zero:
|
| 198 |
+
self._metric_logger = config.instantiate(cfg.metric_logger)
|
| 199 |
+
|
| 200 |
+
# log config with parameter override
|
| 201 |
+
self._metric_logger.log_config(cfg)
|
| 202 |
+
|
| 203 |
+
checkpoint_dict = self.load_checkpoint(cfg_checkpointer=cfg.checkpointer)
|
| 204 |
+
|
| 205 |
+
self._model = self._setup_model(
|
| 206 |
+
cfg_model=cfg.model,
|
| 207 |
+
enable_activation_checkpointing=cfg.enable_activation_checkpointing,
|
| 208 |
+
base_model_state_dict=checkpoint_dict[utils.MODEL_KEY],
|
| 209 |
+
lora_weights_state_dict=(
|
| 210 |
+
checkpoint_dict[utils.ADAPTER_KEY]
|
| 211 |
+
if self._resume_from_checkpoint
|
| 212 |
+
else None
|
| 213 |
+
),
|
| 214 |
+
)
|
| 215 |
+
self._tokenizer = config.instantiate(cfg.tokenizer)
|
| 216 |
+
|
| 217 |
+
self._optimizer = self._setup_optimizer(
|
| 218 |
+
cfg_optimizer=cfg.optimizer,
|
| 219 |
+
opt_state_dict=checkpoint_dict[utils.OPT_KEY]
|
| 220 |
+
if self._resume_from_checkpoint
|
| 221 |
+
else None,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
self._loss_fn = config.instantiate(cfg.loss)
|
| 225 |
+
|
| 226 |
+
# sampler and dataloader depend on the tokenizer and loss_fn and should be
|
| 227 |
+
# setup after all of these are setup
|
| 228 |
+
self._sampler, self._dataloader = self._setup_data(
|
| 229 |
+
cfg_dataset=cfg.dataset,
|
| 230 |
+
shuffle=cfg.shuffle,
|
| 231 |
+
batch_size=cfg.batch_size,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Finally update the recipe state which can only be correctly set after all of the
|
| 235 |
+
# other components have been initialized and updated.
|
| 236 |
+
|
| 237 |
+
# Number of training steps in each epoch depends on the number of batches produced
|
| 238 |
+
# by the dataloader and the max_steps_per_epoch param set by the user and is used
|
| 239 |
+
# for logging and tracking training state. This should be computed after the dataloader
|
| 240 |
+
# has been setup
|
| 241 |
+
self._steps_per_epoch = (
|
| 242 |
+
len(self._dataloader) // self._gradient_accumulation_steps
|
| 243 |
+
)
|
| 244 |
+
if (
|
| 245 |
+
self.max_steps_per_epoch is not None
|
| 246 |
+
and self.max_steps_per_epoch < self._steps_per_epoch
|
| 247 |
+
):
|
| 248 |
+
self._steps_per_epoch = self.max_steps_per_epoch
|
| 249 |
+
self.total_training_steps = self.epochs_run * self._steps_per_epoch
|
| 250 |
+
|
| 251 |
+
# Learning rate scheduler can only be set up after number of steps
|
| 252 |
+
# has been computed
|
| 253 |
+
self._lr_scheduler = self._setup_lr_scheduler(
|
| 254 |
+
cfg_lr_scheduler=cfg.lr_scheduler,
|
| 255 |
+
num_training_steps=self.total_epochs * self._steps_per_epoch,
|
| 256 |
+
last_epoch=self.total_training_steps - 1,
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
def _setup_model(
|
| 260 |
+
self,
|
| 261 |
+
cfg_model: DictConfig,
|
| 262 |
+
enable_activation_checkpointing: bool,
|
| 263 |
+
base_model_state_dict: Dict[str, Any],
|
| 264 |
+
lora_weights_state_dict: Optional[Dict[str, Any]] = None,
|
| 265 |
+
) -> nn.Module:
|
| 266 |
+
"""
|
| 267 |
+
Model initialization has some important considerations:
|
| 268 |
+
a. To minimize GPU peak memory, we load the model on CPU with the right
|
| 269 |
+
dtype. To ensure that we don't instantiate ``world_size`` number of models,
|
| 270 |
+
we initialize on meta_device for all ranks other than rank 0.
|
| 271 |
+
b. Rank 0 is also responsible for calling ``load_state_dict`` and loading the
|
| 272 |
+
model weights from checkpoint.
|
| 273 |
+
c. While wrapping the model with FSDP, we set ``sync_module_states``
|
| 274 |
+
to TRUE and broadcast module params and buffers from rank 0.
|
| 275 |
+
d. The ``device_id`` param ensures that the FSDP initialization happens on
|
| 276 |
+
the correct device.
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
if self._is_rank_zero:
|
| 280 |
+
log.info("FSDP is enabled. Instantiating Model on CPU for Rank 0 ...")
|
| 281 |
+
init_start = time.perf_counter()
|
| 282 |
+
|
| 283 |
+
with utils.set_default_dtype(self._dtype):
|
| 284 |
+
model = config.instantiate(cfg_model)
|
| 285 |
+
|
| 286 |
+
log.info(
|
| 287 |
+
f"Model instantiation took {time.perf_counter() - init_start:.2f} secs"
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# The model contains LoRA params which won't have any matching keys in
|
| 291 |
+
# the state dict. As a result, we need to load with strict=False.
|
| 292 |
+
# Before loading the state dict, ensure the state dict keys for the base
|
| 293 |
+
# model and adapters (if available) match the keys in the full LoRA model
|
| 294 |
+
# This is a good sanity check to prevent silent errors
|
| 295 |
+
validate_state_dict_for_lora(
|
| 296 |
+
lora_attn_modules=cfg_model.lora_attn_modules,
|
| 297 |
+
apply_lora_to_mlp=cfg_model.apply_lora_to_mlp,
|
| 298 |
+
apply_lora_to_output=cfg_model.apply_lora_to_output,
|
| 299 |
+
full_model_state_dict_keys=model.state_dict().keys(),
|
| 300 |
+
lora_state_dict_keys=(
|
| 301 |
+
lora_weights_state_dict.keys()
|
| 302 |
+
if lora_weights_state_dict is not None
|
| 303 |
+
else None
|
| 304 |
+
),
|
| 305 |
+
base_model_state_dict_keys=base_model_state_dict.keys(),
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Load both the base model weights and (if available) the adapter weights. Both
|
| 309 |
+
# of this should happen only on Rank 0
|
| 310 |
+
model.load_state_dict(base_model_state_dict, strict=False)
|
| 311 |
+
if lora_weights_state_dict:
|
| 312 |
+
model.load_state_dict(lora_weights_state_dict, strict=False)
|
| 313 |
+
|
| 314 |
+
else:
|
| 315 |
+
# For non-zero ranks, load the model on meta device
|
| 316 |
+
with utils.set_default_dtype(self._dtype), torch.device("meta"):
|
| 317 |
+
model = config.instantiate(cfg_model)
|
| 318 |
+
|
| 319 |
+
if self._dtype == torch.bfloat16:
|
| 320 |
+
model = model.to(torch.bfloat16)
|
| 321 |
+
|
| 322 |
+
# LoRA hyper-params needed for merging weights while saving checkpoints
|
| 323 |
+
self._lora_rank = cfg_model.lora_rank
|
| 324 |
+
self._lora_alpha = cfg_model.lora_alpha
|
| 325 |
+
|
| 326 |
+
# Note: this needs to be set before wrapping with FSDP
|
| 327 |
+
self.adapter_params = get_adapter_params(model)
|
| 328 |
+
set_trainable_params(model, self.adapter_params)
|
| 329 |
+
|
| 330 |
+
model = FSDP(
|
| 331 |
+
module=model,
|
| 332 |
+
auto_wrap_policy=utils.lora_fsdp_wrap_policy(
|
| 333 |
+
modules_to_wrap={modules.TransformerDecoderLayer}
|
| 334 |
+
),
|
| 335 |
+
sharding_strategy=torch.distributed.fsdp.ShardingStrategy.FULL_SHARD,
|
| 336 |
+
device_id=self._device,
|
| 337 |
+
# this recipe does not currently support mixed precision training
|
| 338 |
+
mixed_precision=None,
|
| 339 |
+
# Ensure we broadcast params and buffers from rank 0
|
| 340 |
+
sync_module_states=True,
|
| 341 |
+
# Initialize empty modules on all non-zero ranks
|
| 342 |
+
param_init_fn=(
|
| 343 |
+
lambda module: module.to_empty(
|
| 344 |
+
device=torch.device("cuda"), recurse=False
|
| 345 |
+
)
|
| 346 |
+
if not self._is_rank_zero
|
| 347 |
+
else None
|
| 348 |
+
),
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# Ensure no params and buffers are on meta device
|
| 352 |
+
utils.validate_no_params_on_meta_device(model)
|
| 353 |
+
|
| 354 |
+
if enable_activation_checkpointing:
|
| 355 |
+
utils.set_activation_checkpointing(
|
| 356 |
+
model, auto_wrap_policy={modules.TransformerDecoderLayer}
|
| 357 |
+
)
|
| 358 |
+
if self._is_rank_zero:
|
| 359 |
+
memory_stats = utils.memory_stats_log(device=self._device)
|
| 360 |
+
log.info(f"Memory Stats after model init:\n{memory_stats}")
|
| 361 |
+
|
| 362 |
+
# synchronize before training begins
|
| 363 |
+
torch.distributed.barrier()
|
| 364 |
+
|
| 365 |
+
return model
|
| 366 |
+
|
| 367 |
+
def _setup_optimizer(
|
| 368 |
+
self, cfg_optimizer: DictConfig, opt_state_dict: Optional[Dict[str, Any]] = None
|
| 369 |
+
) -> Optimizer:
|
| 370 |
+
optimizer = config.instantiate(cfg_optimizer, self._model.parameters())
|
| 371 |
+
if opt_state_dict:
|
| 372 |
+
# Note: technically we should check _contains_fsdp for
|
| 373 |
+
# just the state dict of the adapter cfg, but should be equivalent
|
| 374 |
+
opt_state_dict = utils.transform_opt_state_dict(
|
| 375 |
+
opt_state_dict, self._model, optimizer
|
| 376 |
+
)
|
| 377 |
+
optimizer.load_state_dict(opt_state_dict)
|
| 378 |
+
|
| 379 |
+
if self._is_rank_zero:
|
| 380 |
+
log.info("Optimizer and loss are initialized.")
|
| 381 |
+
return optimizer
|
| 382 |
+
|
| 383 |
+
def _setup_lr_scheduler(
|
| 384 |
+
self,
|
| 385 |
+
cfg_lr_scheduler: DictConfig,
|
| 386 |
+
num_training_steps: int,
|
| 387 |
+
last_epoch: int,
|
| 388 |
+
) -> Optimizer:
|
| 389 |
+
lr_scheduler = config.instantiate(
|
| 390 |
+
cfg_lr_scheduler,
|
| 391 |
+
self._optimizer,
|
| 392 |
+
num_training_steps=num_training_steps,
|
| 393 |
+
last_epoch=last_epoch,
|
| 394 |
+
)
|
| 395 |
+
if self._is_rank_zero:
|
| 396 |
+
log.info("Learning rate scheduler is initialized.")
|
| 397 |
+
return lr_scheduler
|
| 398 |
+
|
| 399 |
+
def _setup_data(
|
| 400 |
+
self,
|
| 401 |
+
cfg_dataset: DictConfig,
|
| 402 |
+
shuffle: bool,
|
| 403 |
+
batch_size: int,
|
| 404 |
+
) -> Tuple[DistributedSampler, DataLoader]:
|
| 405 |
+
"""
|
| 406 |
+
All data related setup happens here. Currently this recipe only supports the
|
| 407 |
+
DistributedSamplers with Map-style Datasets which fit into memory. Other samplers,
|
| 408 |
+
iterable datasets and streaming datasets are not supported.
|
| 409 |
+
"""
|
| 410 |
+
world_size, rank = utils.get_world_size_and_rank()
|
| 411 |
+
ds = config.instantiate(cfg_dataset, tokenizer=self._tokenizer)
|
| 412 |
+
sampler = DistributedSampler(
|
| 413 |
+
ds, num_replicas=world_size, rank=rank, shuffle=shuffle, seed=0
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
dataloader = DataLoader(
|
| 417 |
+
dataset=ds,
|
| 418 |
+
batch_size=batch_size,
|
| 419 |
+
sampler=sampler,
|
| 420 |
+
collate_fn=partial(
|
| 421 |
+
utils.padded_collate,
|
| 422 |
+
padding_idx=self._tokenizer.pad_id,
|
| 423 |
+
ignore_idx=self._loss_fn.ignore_index,
|
| 424 |
+
),
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if self._is_rank_zero:
|
| 428 |
+
log.info("Dataset and Sampler are initialized.")
|
| 429 |
+
|
| 430 |
+
return sampler, dataloader
|
| 431 |
+
|
| 432 |
+
def save_checkpoint(
|
| 433 |
+
self,
|
| 434 |
+
epoch: int,
|
| 435 |
+
) -> None:
|
| 436 |
+
"""
|
| 437 |
+
Checkpoint the state of the recipe. The constructed checkpoint state dict
|
| 438 |
+
contains the following information:
|
| 439 |
+
- Merged weights with key MODEL_KEY
|
| 440 |
+
- Adapter weights with key ADAPTER_KEY
|
| 441 |
+
- Relevant recipe state if training is not complete
|
| 442 |
+
|
| 443 |
+
Checkpointer will save the merged weights, adapter weights and recipe state in
|
| 444 |
+
different checkpoint files. To correctly resume from training, the adapter weights
|
| 445 |
+
and recipe state must be provided along with the base model weights.
|
| 446 |
+
"""
|
| 447 |
+
# final dict passed onto the checkpointer
|
| 448 |
+
checkpoint_dict = {}
|
| 449 |
+
|
| 450 |
+
intermediate_checkpoint = epoch + 1 < self.total_epochs
|
| 451 |
+
# To prevent GPU memory from spiking during checkpoint save,
|
| 452 |
+
# we consolidate the full model and optim state dicts on CPU for rank 0
|
| 453 |
+
with FSDP.state_dict_type(
|
| 454 |
+
self._model,
|
| 455 |
+
StateDictType.FULL_STATE_DICT,
|
| 456 |
+
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
|
| 457 |
+
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
|
| 458 |
+
):
|
| 459 |
+
cpu_state_dict = self._model.state_dict()
|
| 460 |
+
if intermediate_checkpoint:
|
| 461 |
+
opt_state_dict = FSDP.optim_state_dict(self._model, self._optimizer)
|
| 462 |
+
else:
|
| 463 |
+
opt_state_dict = None
|
| 464 |
+
|
| 465 |
+
# Now that we have the model and opt state dict, create the actual checkpoint dict
|
| 466 |
+
# to be sent to the checkpointer and ultimately written to file
|
| 467 |
+
if self._is_rank_zero:
|
| 468 |
+
|
| 469 |
+
# Filter out the adapter keys and weights from the model state dict. These will
|
| 470 |
+
# be saved separately
|
| 471 |
+
adapter_key_filter = lambda x: x in self.adapter_params
|
| 472 |
+
adapter_state_dict = {
|
| 473 |
+
k: v for k, v in cpu_state_dict.items() if adapter_key_filter(k)
|
| 474 |
+
}
|
| 475 |
+
checkpoint_dict.update({utils.ADAPTER_KEY: adapter_state_dict})
|
| 476 |
+
|
| 477 |
+
# merge the adapter weights and base weights to create the model checkpoint
|
| 478 |
+
merged_state_dict = get_merged_lora_ckpt(
|
| 479 |
+
cpu_state_dict,
|
| 480 |
+
rank=self._lora_rank,
|
| 481 |
+
alpha=self._lora_alpha,
|
| 482 |
+
)
|
| 483 |
+
checkpoint_dict.update({utils.MODEL_KEY: merged_state_dict})
|
| 484 |
+
|
| 485 |
+
# if training is in-progress, checkpoint the optimizer state and recipe state
|
| 486 |
+
# as well.
|
| 487 |
+
if intermediate_checkpoint:
|
| 488 |
+
checkpoint_dict.update(
|
| 489 |
+
{
|
| 490 |
+
utils.OPT_KEY: opt_state_dict,
|
| 491 |
+
utils.SEED_KEY: self.seed,
|
| 492 |
+
utils.EPOCHS_KEY: self.epochs_run,
|
| 493 |
+
utils.TOTAL_EPOCHS_KEY: self.total_epochs,
|
| 494 |
+
utils.MAX_STEPS_KEY: self.max_steps_per_epoch,
|
| 495 |
+
}
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
self._checkpointer.save_checkpoint(
|
| 499 |
+
checkpoint_dict,
|
| 500 |
+
epoch=epoch,
|
| 501 |
+
intermediate_checkpoint=intermediate_checkpoint,
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
def train(self) -> None:
|
| 505 |
+
"""
|
| 506 |
+
The core training loop.
|
| 507 |
+
"""
|
| 508 |
+
# clean up before training begins
|
| 509 |
+
utils.cleanup_before_training()
|
| 510 |
+
|
| 511 |
+
_, rank = utils.get_world_size_and_rank()
|
| 512 |
+
|
| 513 |
+
# zero out the gradients before starting training
|
| 514 |
+
self._optimizer.zero_grad()
|
| 515 |
+
|
| 516 |
+
# self.epochs_run should be non-zero when we're resuming from a checkpoint
|
| 517 |
+
for curr_epoch in range(self.epochs_run, self.total_epochs):
|
| 518 |
+
|
| 519 |
+
# Update the sampler to ensure data is correctly shuffled across epochs
|
| 520 |
+
# in case shuffle is True
|
| 521 |
+
self._sampler.set_epoch(curr_epoch)
|
| 522 |
+
|
| 523 |
+
for idx, batch in enumerate(
|
| 524 |
+
pbar := tqdm(self._dataloader, disable=not (rank == 0))
|
| 525 |
+
):
|
| 526 |
+
if (
|
| 527 |
+
self.max_steps_per_epoch is not None
|
| 528 |
+
and (idx // self._gradient_accumulation_steps)
|
| 529 |
+
== self.max_steps_per_epoch
|
| 530 |
+
):
|
| 531 |
+
break
|
| 532 |
+
|
| 533 |
+
input_ids, labels = batch
|
| 534 |
+
input_ids = input_ids.to(self._device)
|
| 535 |
+
labels = labels.to(self._device)
|
| 536 |
+
|
| 537 |
+
logits = self._model(input_ids)
|
| 538 |
+
# Shift so that tokens < n predict n
|
| 539 |
+
logits = logits[..., :-1, :].contiguous()
|
| 540 |
+
labels = labels[..., 1:].contiguous()
|
| 541 |
+
logits = logits.transpose(1, 2)
|
| 542 |
+
# Compute loss
|
| 543 |
+
loss = self._loss_fn(logits, labels)
|
| 544 |
+
|
| 545 |
+
if (
|
| 546 |
+
self.total_training_steps % self._log_every_n_steps == 0
|
| 547 |
+
and self._is_rank_zero
|
| 548 |
+
):
|
| 549 |
+
pbar.set_description(f"{curr_epoch+1}|{idx+1}|Loss: {loss.item()}")
|
| 550 |
+
self._metric_logger.log_dict(
|
| 551 |
+
{
|
| 552 |
+
"loss": loss.item(),
|
| 553 |
+
"lr": self._optimizer.param_groups[0]["lr"],
|
| 554 |
+
"gpu_resources": torch.cuda.memory_allocated(),
|
| 555 |
+
},
|
| 556 |
+
step=self.total_training_steps, # Each step is unique, not limited to each epoch
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
loss = loss / self._gradient_accumulation_steps
|
| 560 |
+
loss.backward()
|
| 561 |
+
|
| 562 |
+
if (idx + 1) % self._gradient_accumulation_steps == 0:
|
| 563 |
+
self._optimizer.step()
|
| 564 |
+
self._optimizer.zero_grad(set_to_none=True)
|
| 565 |
+
self._lr_scheduler.step()
|
| 566 |
+
|
| 567 |
+
# Update the number of steps when the weights are updated
|
| 568 |
+
self.total_training_steps += 1
|
| 569 |
+
|
| 570 |
+
if (
|
| 571 |
+
self.total_training_steps % self._log_peak_memory_every_n_steps == 0
|
| 572 |
+
and self._is_rank_zero
|
| 573 |
+
):
|
| 574 |
+
# Log peak memory for iteration
|
| 575 |
+
memory_stats = utils.memory_stats_log(device=self._device)
|
| 576 |
+
self._metric_logger.log_dict(
|
| 577 |
+
memory_stats, step=self.total_training_steps
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
self.epochs_run += 1
|
| 581 |
+
self.save_checkpoint(epoch=curr_epoch)
|
| 582 |
+
|
| 583 |
+
def cleanup(self) -> None:
|
| 584 |
+
if self._is_rank_zero:
|
| 585 |
+
self._metric_logger.close()
|
| 586 |
+
destroy_process_group()
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
@config.parse
|
| 590 |
+
def recipe_main(cfg: DictConfig) -> None:
|
| 591 |
+
"""
|
| 592 |
+
Entry point for the recipe.
|
| 593 |
+
|
| 594 |
+
Configurable parameters are read in the following order:
|
| 595 |
+
- Parameters specified in config (see available configs through ``tune ls``)
|
| 596 |
+
- Overwritten by arguments from the command-line
|
| 597 |
+
"""
|
| 598 |
+
if not utils.is_distributed():
|
| 599 |
+
raise RuntimeError(
|
| 600 |
+
"Distributed finetune recipe should be run via a distributed launcher."
|
| 601 |
+
"If using tune CLI, please specify --nnodes 1 and --nproc_per_node [num_gpus]"
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
init_process_group(backend="gloo" if cfg.device == "cpu" else "nccl")
|
| 605 |
+
|
| 606 |
+
config.log_config(recipe_name="LoRAFinetuneRecipeDistributed", cfg=cfg)
|
| 607 |
+
|
| 608 |
+
recipe = LoRAFinetuneRecipeDistributed(cfg=cfg)
|
| 609 |
+
recipe.setup(cfg=cfg)
|
| 610 |
+
recipe.train()
|
| 611 |
+
recipe.cleanup()
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
if __name__ == "__main__":
|
| 615 |
+
sys.exit(recipe_main())
|