josangho99 commited on
Commit
487c0ab
·
verified ·
1 Parent(s): f7327df

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:574389
9
+ - loss:MultipleNegativesRankingLoss
10
+ - loss:CosineSimilarityLoss
11
+ base_model: intfloat/multilingual-e5-small
12
+ widget:
13
+ - source_sentence: 전 나치 죽음의 수용소 경비원 뎀잔주크 91세 사망
14
+ sentences:
15
+ - 나치 사형수 수용소 경비원으로 유죄 판결을 받은 존 뎀잔죽 은 91세의 나이로 사망한다
16
+ - 2040년까지 은퇴자들은 인구의 3분의 1을 차지할 것이며, 이는 오늘의 5분의 1에서 증가할 것이다.
17
+ - 이집트에서 살해된 스카이 뉴스 카메라맨
18
+ - source_sentence: 이슬 맺음의 제안은 논란이 되고 있는 "로빈 후드" 학교 재정 계획을 갑작스럽게 끝낼 것을 요구한다.
19
+ sentences:
20
+ - 위원회는 "로빈 후드" 학교 재정 시스템을 대체할 것을 제안할 것이다.
21
+ - 자마트 아이슬라미의 청소년 단체의 시위는 이라크에 대한 미국의 공격에 반대했다.
22
+ - 중앙 이스라엘 교통 사고로 2명 사망, 8명 부상
23
+ - source_sentence: 두 남자가 일하고 있다
24
+ sentences:
25
+ - 한 여성이 보도를 걸어가면서 카메라를 더러워 보이고 있다.
26
+ - 두 남자가 스포츠 바에 있다
27
+ - 사다리를 든 두 남자가 울타리를 치고 있다.
28
+ - source_sentence: 아기가 안고 있다
29
+ sentences:
30
+ - 아기가 총을 들고 있다
31
+ - 그 소년은 작다
32
+ - 어린 아기가 형의 머리를 잡고 있다.
33
+ - source_sentence: 여자와 아이가 게임을 하고 있다.
34
+ sentences:
35
+ - 물가는 확실히 올랐지만 품질 기준도 마찬가지다.
36
+ - 한 여성과 그녀의 아이가 영화를 보고 있다.
37
+ - 여자와 어린 아이는 보드게임을 하면서 즐거운 시간을 보낸다.
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - pearson_cosine
42
+ - spearman_cosine
43
+ model-index:
44
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
45
+ results:
46
+ - task:
47
+ type: semantic-similarity
48
+ name: Semantic Similarity
49
+ dataset:
50
+ name: sts dev
51
+ type: sts-dev
52
+ metrics:
53
+ - type: pearson_cosine
54
+ value: 0.8490995164979471
55
+ name: Pearson Cosine
56
+ - type: spearman_cosine
57
+ value: 0.8481154446632085
58
+ name: Spearman Cosine
59
+ ---
60
+
61
+ # SentenceTransformer based on intfloat/multilingual-e5-small
62
+
63
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ - **Model Type:** Sentence Transformer
69
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
70
+ - **Maximum Sequence Length:** 128 tokens
71
+ - **Output Dimensionality:** 384 dimensions
72
+ - **Similarity Function:** Cosine Similarity
73
+ <!-- - **Training Dataset:** Unknown -->
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
80
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
81
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
82
+
83
+ ### Full Model Architecture
84
+
85
+ ```
86
+ SentenceTransformer(
87
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
88
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
89
+ )
90
+ ```
91
+
92
+ ## Usage
93
+
94
+ ### Direct Usage (Sentence Transformers)
95
+
96
+ First install the Sentence Transformers library:
97
+
98
+ ```bash
99
+ pip install -U sentence-transformers
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+ ```python
104
+ from sentence_transformers import SentenceTransformer
105
+
106
+ # Download from the 🤗 Hub
107
+ model = SentenceTransformer("josangho99/ko-multilingual-e5-small-multiTask")
108
+ # Run inference
109
+ sentences = [
110
+ '여자와 아이가 게임을 하고 있다.',
111
+ '여자와 어린 아이는 보드게임을 하면서 즐거운 시간을 보낸다.',
112
+ '한 여성과 그녀의 아이가 영화를 보고 있다.',
113
+ ]
114
+ embeddings = model.encode(sentences)
115
+ print(embeddings.shape)
116
+ # [3, 384]
117
+
118
+ # Get the similarity scores for the embeddings
119
+ similarities = model.similarity(embeddings, embeddings)
120
+ print(similarities)
121
+ # tensor([[1.0000, 0.6531, 0.4611],
122
+ # [0.6531, 1.0000, 0.3023],
123
+ # [0.4611, 0.3023, 1.0000]])
124
+ ```
125
+
126
+ <!--
127
+ ### Direct Usage (Transformers)
128
+
129
+ <details><summary>Click to see the direct usage in Transformers</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Downstream Usage (Sentence Transformers)
136
+
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ ## Evaluation
151
+
152
+ ### Metrics
153
+
154
+ #### Semantic Similarity
155
+
156
+ * Dataset: `sts-dev`
157
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | pearson_cosine | 0.8491 |
162
+ | **spearman_cosine** | **0.8481** |
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Datasets
179
+
180
+ #### Unnamed Dataset
181
+
182
+ * Size: 568,640 training samples
183
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | sentence_0 | sentence_1 | sentence_2 |
186
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
187
+ | type | string | string | string |
188
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.75 tokens</li><li>max: 99 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.82 tokens</li><li>max: 47 tokens</li></ul> |
189
+ * Samples:
190
+ | sentence_0 | sentence_1 | sentence_2 |
191
+ |:-----------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
192
+ | <code>실버민 베이에는 섬의 다른 지역으로 가는 노선이 있는 버스 터미널이 있다.</code> | <code>페리는 오전 6시 10분에서 오후 10시 30분 사이에 2시간마다 센트럴에서 실버 마인 베이 (Mui Wo)로 출발하며 버스 터미널에는 섬의 모든 지역으로 버스가 있습니다.</code> | <code>실버민 만의 버스는 섬의 한 부분으로만 간다.</code> |
193
+ | <code>사람이 사형선고를 받으면 국가가 형을 집행하고 그 사람을 사형에 처해야 하는데 항소절차가 없어야 한다.</code> | <code>어쨌든 내가 4 년 동안 주 교도소 시스템과 함께 일한 후, 당신이 그 사람에게 사형 선고를 계속하고 문장을 이해할 수있게 해주겠다고 결론을 내렸다는 결론은 누군가에게 사형 선고를 내리면 30 일 이내에 항소에 실패하면 한 번의 항소를 받게됩니다. 그것에 대해</code> | <code>사형수라면 형량이 감형될 때까지 원하는 만큼 항소할 수 있도록 해야 한다.</code> |
194
+ | <code>웹 사이트 기능은 불편한 자원 봉사자를 지원합니다.</code> | <code>두 번째 웹 사이트 기능은 새로운 법률 분야에서 불편하고 지침과 방향이 필요한 자원 봉사자를 지원합니다.</code> | <code>두 번째 웹사이트 기능은 자원봉사자들에게 무료 아이스캔디를 제공한다.</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim",
200
+ "gather_across_devices": false
201
+ }
202
+ ```
203
+
204
+ #### Unnamed Dataset
205
+
206
+ * Size: 5,749 training samples
207
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
208
+ * Approximate statistics based on the first 1000 samples:
209
+ | | sentence_0 | sentence_1 | label |
210
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
211
+ | type | string | string | float |
212
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.17 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.06 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
213
+ * Samples:
214
+ | sentence_0 | sentence_1 | label |
215
+ |:-----------------------------------------------------|:-----------------------------------------|:------------------|
216
+ | <code>케냐 경찰 체포 키 알샤바브 신병 모집인 금융가</code> | <code>케냐 : 대테러 경찰에 의해 체포된 쌍</code> | <code>0.64</code> |
217
+ | <code>"요정은 존재하지 않는다" - 좋아.</code> | <code>"레프리콘은 존재하지 않는다" - 좋아.</code> | <code>0.2</code> |
218
+ | <code>당신이 필요로 하는 모든 것에 대한 가격은 인플레이션 때문에 상승했다.</code> | <code>당신이 소유한 모든 IE 자산의 가격이 하락했다.</code> | <code>0.4</code> |
219
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
220
+ ```json
221
+ {
222
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
223
+ }
224
+ ```
225
+
226
+ ### Training Hyperparameters
227
+ #### Non-Default Hyperparameters
228
+
229
+ - `eval_strategy`: steps
230
+ - `num_train_epochs`: 5
231
+ - `batch_sampler`: no_duplicates
232
+ - `multi_dataset_batch_sampler`: round_robin
233
+
234
+ #### All Hyperparameters
235
+ <details><summary>Click to expand</summary>
236
+
237
+ - `overwrite_output_dir`: False
238
+ - `do_predict`: False
239
+ - `eval_strategy`: steps
240
+ - `prediction_loss_only`: True
241
+ - `per_device_train_batch_size`: 8
242
+ - `per_device_eval_batch_size`: 8
243
+ - `per_gpu_train_batch_size`: None
244
+ - `per_gpu_eval_batch_size`: None
245
+ - `gradient_accumulation_steps`: 1
246
+ - `eval_accumulation_steps`: None
247
+ - `torch_empty_cache_steps`: None
248
+ - `learning_rate`: 5e-05
249
+ - `weight_decay`: 0.0
250
+ - `adam_beta1`: 0.9
251
+ - `adam_beta2`: 0.999
252
+ - `adam_epsilon`: 1e-08
253
+ - `max_grad_norm`: 1
254
+ - `num_train_epochs`: 5
255
+ - `max_steps`: -1
256
+ - `lr_scheduler_type`: linear
257
+ - `lr_scheduler_kwargs`: {}
258
+ - `warmup_ratio`: 0.0
259
+ - `warmup_steps`: 0
260
+ - `log_level`: passive
261
+ - `log_level_replica`: warning
262
+ - `log_on_each_node`: True
263
+ - `logging_nan_inf_filter`: True
264
+ - `save_safetensors`: True
265
+ - `save_on_each_node`: False
266
+ - `save_only_model`: False
267
+ - `restore_callback_states_from_checkpoint`: False
268
+ - `no_cuda`: False
269
+ - `use_cpu`: False
270
+ - `use_mps_device`: False
271
+ - `seed`: 42
272
+ - `data_seed`: None
273
+ - `jit_mode_eval`: False
274
+ - `use_ipex`: False
275
+ - `bf16`: False
276
+ - `fp16`: False
277
+ - `fp16_opt_level`: O1
278
+ - `half_precision_backend`: auto
279
+ - `bf16_full_eval`: False
280
+ - `fp16_full_eval`: False
281
+ - `tf32`: None
282
+ - `local_rank`: 0
283
+ - `ddp_backend`: None
284
+ - `tpu_num_cores`: None
285
+ - `tpu_metrics_debug`: False
286
+ - `debug`: []
287
+ - `dataloader_drop_last`: False
288
+ - `dataloader_num_workers`: 0
289
+ - `dataloader_prefetch_factor`: None
290
+ - `past_index`: -1
291
+ - `disable_tqdm`: False
292
+ - `remove_unused_columns`: True
293
+ - `label_names`: None
294
+ - `load_best_model_at_end`: False
295
+ - `ignore_data_skip`: False
296
+ - `fsdp`: []
297
+ - `fsdp_min_num_params`: 0
298
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
299
+ - `fsdp_transformer_layer_cls_to_wrap`: None
300
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
301
+ - `parallelism_config`: None
302
+ - `deepspeed`: None
303
+ - `label_smoothing_factor`: 0.0
304
+ - `optim`: adamw_torch_fused
305
+ - `optim_args`: None
306
+ - `adafactor`: False
307
+ - `group_by_length`: False
308
+ - `length_column_name`: length
309
+ - `ddp_find_unused_parameters`: None
310
+ - `ddp_bucket_cap_mb`: None
311
+ - `ddp_broadcast_buffers`: False
312
+ - `dataloader_pin_memory`: True
313
+ - `dataloader_persistent_workers`: False
314
+ - `skip_memory_metrics`: True
315
+ - `use_legacy_prediction_loop`: False
316
+ - `push_to_hub`: False
317
+ - `resume_from_checkpoint`: None
318
+ - `hub_model_id`: None
319
+ - `hub_strategy`: every_save
320
+ - `hub_private_repo`: None
321
+ - `hub_always_push`: False
322
+ - `hub_revision`: None
323
+ - `gradient_checkpointing`: False
324
+ - `gradient_checkpointing_kwargs`: None
325
+ - `include_inputs_for_metrics`: False
326
+ - `include_for_metrics`: []
327
+ - `eval_do_concat_batches`: True
328
+ - `fp16_backend`: auto
329
+ - `push_to_hub_model_id`: None
330
+ - `push_to_hub_organization`: None
331
+ - `mp_parameters`:
332
+ - `auto_find_batch_size`: False
333
+ - `full_determinism`: False
334
+ - `torchdynamo`: None
335
+ - `ray_scope`: last
336
+ - `ddp_timeout`: 1800
337
+ - `torch_compile`: False
338
+ - `torch_compile_backend`: None
339
+ - `torch_compile_mode`: None
340
+ - `include_tokens_per_second`: False
341
+ - `include_num_input_tokens_seen`: False
342
+ - `neftune_noise_alpha`: None
343
+ - `optim_target_modules`: None
344
+ - `batch_eval_metrics`: False
345
+ - `eval_on_start`: False
346
+ - `use_liger_kernel`: False
347
+ - `liger_kernel_config`: None
348
+ - `eval_use_gather_object`: False
349
+ - `average_tokens_across_devices`: False
350
+ - `prompts`: None
351
+ - `batch_sampler`: no_duplicates
352
+ - `multi_dataset_batch_sampler`: round_robin
353
+ - `router_mapping`: {}
354
+ - `learning_rate_mapping`: {}
355
+
356
+ </details>
357
+
358
+ ### Training Logs
359
+ | Epoch | Step | Training Loss | sts-dev_spearman_cosine |
360
+ |:------:|:----:|:-------------:|:-----------------------:|
361
+ | 0.3477 | 500 | 0.3954 | - |
362
+ | 0.6954 | 1000 | 0.3058 | 0.8398 |
363
+ | 1.0 | 1438 | - | 0.8456 |
364
+ | 1.0431 | 1500 | 0.2945 | - |
365
+ | 1.3908 | 2000 | 0.2003 | 0.8440 |
366
+ | 1.7385 | 2500 | 0.1785 | - |
367
+ | 2.0 | 2876 | - | 0.8459 |
368
+ | 2.0862 | 3000 | 0.1774 | 0.8471 |
369
+ | 2.4339 | 3500 | 0.1271 | - |
370
+ | 2.7816 | 4000 | 0.1278 | 0.8481 |
371
+
372
+
373
+ ### Framework Versions
374
+ - Python: 3.12.11
375
+ - Sentence Transformers: 5.1.0
376
+ - Transformers: 4.56.1
377
+ - PyTorch: 2.8.0+cu126
378
+ - Accelerate: 1.10.1
379
+ - Datasets: 4.0.0
380
+ - Tokenizers: 0.22.0
381
+
382
+ ## Citation
383
+
384
+ ### BibTeX
385
+
386
+ #### Sentence Transformers
387
+ ```bibtex
388
+ @inproceedings{reimers-2019-sentence-bert,
389
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
390
+ author = "Reimers, Nils and Gurevych, Iryna",
391
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
392
+ month = "11",
393
+ year = "2019",
394
+ publisher = "Association for Computational Linguistics",
395
+ url = "https://arxiv.org/abs/1908.10084",
396
+ }
397
+ ```
398
+
399
+ #### MultipleNegativesRankingLoss
400
+ ```bibtex
401
+ @misc{henderson2017efficient,
402
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
403
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
404
+ year={2017},
405
+ eprint={1705.00652},
406
+ archivePrefix={arXiv},
407
+ primaryClass={cs.CL}
408
+ }
409
+ ```
410
+
411
+ <!--
412
+ ## Glossary
413
+
414
+ *Clearly define terms in order to be accessible across audiences.*
415
+ -->
416
+
417
+ <!--
418
+ ## Model Card Authors
419
+
420
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
421
+ -->
422
+
423
+ <!--
424
+ ## Model Card Contact
425
+
426
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
427
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "transformers_version": "4.56.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87845bc0766fe52dd8f2c0af1f99070f23f392cf26eab6e29823c51add7881d2
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "sp_model_kwargs": {},
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }