import torch from PIL import Image from diffsynth import save_video, VideoData, load_state_dict from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig from modelscope import dataset_snapshot_download pipe = WanVideoPipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="PAI/Wan2.1-Fun-V1.1-14B-Control", origin_file_pattern="diffusion_pytorch_model*.safetensors", offload_device="cpu"), ModelConfig(model_id="PAI/Wan2.1-Fun-V1.1-14B-Control", origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth", offload_device="cpu"), ModelConfig(model_id="PAI/Wan2.1-Fun-V1.1-14B-Control", origin_file_pattern="Wan2.1_VAE.pth", offload_device="cpu"), ModelConfig(model_id="PAI/Wan2.1-Fun-V1.1-14B-Control", origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth", offload_device="cpu"), ], ) state_dict = load_state_dict("models/train/Wan2.1-Fun-V1.1-14B-Control_full/epoch-1.safetensors") pipe.dit.load_state_dict(state_dict) pipe.enable_vram_management() video = VideoData("data/example_video_dataset/video1_softedge.mp4", height=480, width=832) video = [video[i] for i in range(81)] reference_image = VideoData("data/example_video_dataset/video1.mp4", height=480, width=832)[0] # Control video video = pipe( prompt="from sunset to night, a small town, light, house, river", negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", control_video=video, reference_image=reference_image, seed=1, tiled=True ) save_video(video, "video_Wan2.1-Fun-V1.1-14B-Control.mp4", fps=15, quality=5)