diff-storyboard
/
examples
/qwen_image
/model_inference_low_vram
/Qwen-Image-In-Context-Control-Union.py
| from PIL import Image | |
| import torch | |
| from modelscope import dataset_snapshot_download, snapshot_download | |
| from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig | |
| from diffsynth.controlnets.processors import Annotator | |
| allow_file_pattern = ["sk_model.pth", "sk_model2.pth", "dpt_hybrid-midas-501f0c75.pt", "ControlNetHED.pth", "body_pose_model.pth", "hand_pose_model.pth", "facenet.pth", "scannet.pt"] | |
| snapshot_download("lllyasviel/Annotators", local_dir="models/Annotators", allow_file_pattern=allow_file_pattern) | |
| pipe = QwenImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors", offload_dtype=torch.float8_e4m3fn), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors", offload_dtype=torch.float8_e4m3fn), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors", offload_dtype=torch.float8_e4m3fn), | |
| ], | |
| tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), | |
| ) | |
| pipe.enable_vram_management() | |
| snapshot_download("DiffSynth-Studio/Qwen-Image-In-Context-Control-Union", local_dir="models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union", allow_file_pattern="model.safetensors") | |
| pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union/model.safetensors") | |
| dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/qwen-image-context-control/image.jpg") | |
| origin_image = Image.open("data/examples/qwen-image-context-control/image.jpg").resize((1024, 1024)) | |
| annotator_ids = ['openpose', 'canny', 'depth', 'lineart', 'softedge', 'normal'] | |
| for annotator_id in annotator_ids: | |
| annotator = Annotator(processor_id=annotator_id, device="cuda") | |
| control_image = annotator(origin_image) | |
| control_image.save(f"{annotator.processor_id}.png") | |
| control_prompt = "Context_Control. " | |
| prompt = f"{control_prompt}一个穿着淡蓝色的漂亮女孩正在翩翩起舞,背景是梦幻的星空,光影交错,细节精致。" | |
| negative_prompt = "网格化,规则的网格,模糊, 低分辨率, 低质量, 变形, 畸形, 错误的解剖学, 变形的手, 变形的身体, 变形的脸, 变形的头发, 变形的眼睛, 变形的嘴巴" | |
| image = pipe(prompt, seed=1, negative_prompt=negative_prompt, context_image=control_image, height=1024, width=1024) | |
| image.save(f"image_{annotator.processor_id}.png") | |