diff-storyboard / examples /flux /model_inference_low_vram /FLUX.1-dev-Controlnet-Upscaler.py
jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput
pipe = FluxImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
ModelConfig(model_id="jasperai/Flux.1-dev-Controlnet-Upscaler", origin_file_pattern="diffusion_pytorch_model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
],
)
pipe.enable_vram_management()
image_1 = pipe(
prompt="a photo of a cat, highly detailed",
height=768, width=768,
seed=0, rand_device="cuda",
)
image_1.save("image_1.jpg")
image_1 = image_1.resize((2048, 2048))
image_2 = pipe(
prompt="a photo of a cat, highly detailed",
controlnet_inputs=[ControlNetInput(image=image_1, scale=0.7)],
input_image=image_1,
denoising_strength=0.99,
height=2048, width=2048, tiled=True,
seed=1, rand_device="cuda",
)
image_2.save("image_2.jpg")