FeYuan commited on
Commit
cc265db
·
verified ·
1 Parent(s): cc0a4ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ ---
6
+
7
+ # JanusCoder-8B
8
+
9
+ [💻Github Repo](https://github.com/InternLM/JanusCoder) • [🤗Model Collections](https://huggingface.co/collections/internlm/januscoder) • [📜Technical Report](https://www.arxiv.org/abs/2510.23538)
10
+
11
+ ## Introduction
12
+
13
+ We introduce JanusCoder and JanusCoderV, a suite of open-source foundational models designed to establish a unified visual-programmatic interface for code intelligence.
14
+ This model suite is built upon open-source language models (such as Qwen3-8B and 14B) and multimodal models (such as Qwen2.5-VL and InternVL3.5-8B). The JanusCoder series is trained on JANUSCODE-800K—the largest multimodal code corpus to date, generated by an innovative synthesis toolkit, covering everything from standard charts to complex interactive Web UIs and code-driven animations.
15
+ This enables the models to uniformly handle diverse visual-programmatic tasks, such as generating code from textual instructions, visual inputs, or a combination of both, rather than building specialized models for isolated tasks. JanusCoder excels at flexible content generation (like data visualizations and interactive front-ends) as well as precise, program-driven editing of visual effects and complex animation construction.
16
+
17
+ ## Model Downloads
18
+
19
+ | Model Name | Description | Download |
20
+ | --- | --- | --- |
21
+ | 👉 **JanusCoder-8B** | 8B text model based on Qwen3-8B. | 🤗 [Model](https://huggingface.co/internlm//JanusCoder-8B) |
22
+ | JanusCoder-14B | 14B text model based on Qwen3-14B. | 🤗 [Model](https://huggingface.co/internlm//JanusCoder-14B) |
23
+ | JanusCoderV-7B | 7B multimodal model based on Qwen2.5-VL-7B. | 🤗 [Model](https://huggingface.co/internlm//JanusCoderV-7B) |
24
+ | JanusCoderV-8B | 8B multimodal model based on InternVL3.5-8B. | 🤗 [Model](https://huggingface.co/internlm//JanusCoderV-8B) |
25
+
26
+ ## Performance
27
+
28
+ We evaluate the JanusCoder model on various benchmarks that span code interlligence tasks on multiple PLs:
29
+
30
+ | Model | JanusCoder-8B | Qwen3-8B | Qwen2.5-Coder-7B-Instruct | LLaMA3-8B-Instruct | GPT-4o |
31
+ | --- | --- | --- | --- | --- | --- |
32
+ | PandasPlotBench (Task) | 80 | 74 | 76 | 69 | 85 |
33
+ | ArtifactsBench | 39.6 | 36.5 | 26.0 | 36.5 | 37.9 |
34
+ | DTVBench (Manim) | 9.70 | 6.20 | 8.56 | 4.92 | 10.60 |
35
+ | DTVBench (Wolfram) | 6.07 | 5.18 | 4.04 | 3.15 | 5.97 |
36
+
37
+
38
+ ## Quick Start
39
+
40
+ **Transformers**
41
+
42
+ The following provides demo code illustrating how to generate text using JanusCoder-8B.
43
+
44
+ > Please use transformers >= 4.55.0 to ensure the model works normally.
45
+
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModelForCausalLM
48
+ import torch
49
+
50
+ model_name = "internlm/JanusCoder-8B"
51
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
52
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")
53
+
54
+ messages = [
55
+ {
56
+ "role": "user",
57
+ "content": [
58
+ {"type": "text", "text": "Create a line plot that illustrates function y=x."},
59
+ ],
60
+ }
61
+ ]
62
+
63
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
64
+
65
+ generate_ids = model.generate(**inputs, max_new_tokens=32768)
66
+ decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
67
+ print(decoded_output)
68
+ ```
69
+
70
+ ## Citation
71
+ 🫶 If you are interested in our work or find the repository / checkpoints / benchmark / data helpful, please consider using the following citation format when referencing our papers:
72
+
73
+ ```bibtex
74
+ @article{sun2025januscoder,
75
+ title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
76
+ author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
77
+ journal={arXiv preprint arXiv:2510.23538},
78
+ year={2025}
79
+ }
80
+
81
+ @article{sun2024survey,
82
+ title={A survey of neural code intelligence: Paradigms, advances and beyond},
83
+ author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
84
+ journal={arXiv preprint arXiv:2403.14734},
85
+ year={2024}
86
+ }
87
+
88
+ @article{chen2025interactscience,
89
+ title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
90
+ author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
91
+ journal={arXiv preprint arXiv:2510.09724},
92
+ year={2025}
93
+ }
94
+
95
+ @article{sun2025codeevo,
96
+ title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
97
+ author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
98
+ journal={arXiv preprint arXiv:2507.22080},
99
+ year={2025}
100
+ }
101
+ ```