Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,102 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
|
| 3 |
+
abliterated_from: huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated
|
| 4 |
+
quantization: nf4
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
tags:
|
| 7 |
+
- code
|
| 8 |
+
- programming
|
| 9 |
+
- uncensored
|
| 10 |
+
- 4bit
|
| 11 |
+
- nf4
|
| 12 |
+
- qwen
|
| 13 |
+
- abliteration
|
| 14 |
+
- instruct
|
| 15 |
+
library: transformers
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Qwen2.5-Coder-14B-Instruct-Abliterated-NF4
|
| 19 |
+
|
| 20 |
+
**A 4-bit (NF4) quantized, abliteration-uncensored version of Qwen2.5-Coder-14B-Instruct**
|
| 21 |
+
|
| 22 |
+
This model is a **pre-quantized 4-bit NormalFloat4 (NF4)** version of the uncensored [huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated), optimized for **low VRAM** and **fast local inference**.
|
| 23 |
+
|
| 24 |
+
Ideal for **local deployment**, **edge devices**, or **low-VRAM environments** while maintaining strong coding and reasoning capabilities.
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## π Features
|
| 29 |
+
|
| 30 |
+
- **Base Model**: `Qwen/Qwen2.5-Coder-14B-Instruct`
|
| 31 |
+
- **Abliteration**: [huihui-ai](https://huggingface.co/huihui-ai) (uncensored)
|
| 32 |
+
- **Quantization**: **NF4 (4-bit)** β **pre-quantized**
|
| 33 |
+
- **Efficient**: ~8β9 GB VRAM required for inference
|
| 34 |
+
- **Safetensors**: Secure, modern format
|
| 35 |
+
- **Framework**: Compatible with `transformers`, `vLLM`, `Oobabooga`, etc.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## π₯ Installation & Usage
|
| 40 |
+
|
| 41 |
+
### 1. Install Dependencies
|
| 42 |
+
|
| 43 |
+
```bash
|
| 44 |
+
pip install transformers torch accelerate
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
### Load the Model
|
| 49 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 50 |
+
import torch
|
| 51 |
+
|
| 52 |
+
model_id = "ikarius/Qwen2.5-Coder-14B-Instruct-Abliterated-NF4"
|
| 53 |
+
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
model_id,
|
| 57 |
+
device_map="auto",
|
| 58 |
+
torch_dtype=torch.bfloat16, # eller torch.float16
|
| 59 |
+
trust_remote_code=True
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
# Eksempel
|
| 66 |
+
prompt = "Write a Python function to calculate Fibonacci numbers using memoization."
|
| 67 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 68 |
+
|
| 69 |
+
outputs = model.generate(
|
| 70 |
+
**inputs,
|
| 71 |
+
max_new_tokens=512,
|
| 72 |
+
temperature=0.7,
|
| 73 |
+
do_sample=True,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
---
|
| 80 |
+
### Using with text-generation-webui (Oobabooga)
|
| 81 |
+
|
| 82 |
+
python server.py \
|
| 83 |
+
--model ikarius/Qwen2.5-Coder-14B-Instruct-Abliterated-NF4 \
|
| 84 |
+
--bf16 \
|
| 85 |
+
--trust-remote-code
|
| 86 |
+
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
π€ Credits
|
| 90 |
+
|
| 91 |
+
Original Model: Qwen Team
|
| 92 |
+
Abliteration: huihui-ai
|
| 93 |
+
Quantization: ikarius (NF4 via auto-gptq / transformers)
|
| 94 |
+
Hosting: Hugging Face Hub
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
π License
|
| 98 |
+
Apache 2.0 (same as base model)
|
| 99 |
+
|
| 100 |
+
π Support
|
| 101 |
+
β Star this repo if you find it useful!
|
| 102 |
+
π Report issues on the Discussions tab.
|