ihoflaz commited on
Commit
bee5b0f
·
verified ·
1 Parent(s): 2aa7121

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +143 -0
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - image-classification
5
+ - bacteria
6
+ - medical-imaging
7
+ - efficientnet
8
+ - pytorch
9
+ - dibas
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ - accuracy
14
+ - f1
15
+ library_name: timm
16
+ pipeline_tag: image-classification
17
+ ---
18
+
19
+ # EfficientNet-B0 for Bacterial Colony Classification
20
+
21
+ This model is a fine-tuned version of **EfficientNet-B0** on the [DIBaS (Digital Image of Bacterial Species)](http://misztal.edu.pl/software/databases/dibas/) dataset for classifying bacterial colony images into 33 species.
22
+
23
+ ## Model Description
24
+
25
+ - **Model Architecture:** EfficientNet-B0 (pretrained on ImageNet)
26
+ - **Task:** Multi-class image classification (33 bacterial species)
27
+ - **Dataset:** DIBaS - 660+ microscopy images of bacterial colonies
28
+ - **Framework:** PyTorch + timm
29
+
30
+ ## Performance
31
+
32
+ | Metric | Value |
33
+ |--------|-------|
34
+ | **Validation Accuracy** | 91.67% |
35
+ | **Macro F1-Score** | 0.917 |
36
+ | **Parameters** | 4.05M |
37
+ | **Model Size** | 15.7 MB |
38
+ | **GPU Latency** | 5.81 ms (RTX 4070 SUPER) |
39
+ | **CPU Latency** | 25.76 ms |
40
+
41
+ ### Comparison with Other Models
42
+
43
+ | Model | Params (M) | Val Accuracy |
44
+ |-------|------------|--------------|
45
+ | MobileNetV3-Large | 4.24 | **95.45%** |
46
+ | ResNet50 | 23.58 | 93.94% |
47
+ | **EfficientNet-B0** | 4.05 | 91.67% |
48
+
49
+ ## Why Choose EfficientNet-B0?
50
+
51
+ - ✅ **Smallest parameter count** (4.05M) among top performers
52
+ - ✅ **Excellent accuracy-to-size ratio**
53
+ - ✅ **Good balance** between speed and accuracy
54
+ - ✅ **Mobile-friendly** for edge deployment
55
+
56
+ ## Training Details
57
+
58
+ - **Optimizer:** AdamW (lr=1e-3, weight_decay=1e-4)
59
+ - **Epochs:** 10 (early convergence)
60
+ - **Batch Size:** 32
61
+ - **Image Size:** 224×224
62
+ - **Augmentation:** RandomResizedCrop, HorizontalFlip
63
+ - **Hardware:** NVIDIA RTX 4070 SUPER
64
+ - **Mixed Precision:** Enabled (AMP)
65
+ - **Train/Val/Test Split:** 70/20/10 (stratified, seed=42)
66
+
67
+ ## How to Use
68
+
69
+ ```python
70
+ import timm
71
+ import torch
72
+ from PIL import Image
73
+ from torchvision import transforms
74
+
75
+ # Load model
76
+ model = timm.create_model('efficientnet_b0', pretrained=False, num_classes=33)
77
+ state_dict = torch.load('pytorch_model.bin', map_location='cpu')
78
+ model.load_state_dict(state_dict)
79
+ model.eval()
80
+
81
+ # Preprocessing
82
+ transform = transforms.Compose([
83
+ transforms.Resize(256),
84
+ transforms.CenterCrop(224),
85
+ transforms.ToTensor(),
86
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
87
+ ])
88
+
89
+ # Inference
90
+ image = Image.open('bacteria_image.jpg').convert('RGB')
91
+ input_tensor = transform(image).unsqueeze(0)
92
+
93
+ with torch.no_grad():
94
+ outputs = model(input_tensor)
95
+ predicted_class = outputs.argmax(dim=1).item()
96
+
97
+ print(f"Predicted class: {CLASS_NAMES[predicted_class]}")
98
+ ```
99
+
100
+ ### Class Labels
101
+
102
+ ```python
103
+ CLASS_NAMES = [
104
+ "Acinetobacter_baumannii", "Actinomyces_israelii", "Bacteroides_fragilis",
105
+ "Bifidobacterium_spp", "Candida_albicans", "Clostridium_perfringens",
106
+ "Enterococcus_faecalis", "Enterococcus_faecium", "Escherichia_coli",
107
+ "Fusobacterium", "Lactobacillus_casei", "Lactobacillus_crispatus",
108
+ "Lactobacillus_delbrueckii", "Lactobacillus_gasseri", "Lactobacillus_jensenii",
109
+ "Lactobacillus_johnsonii", "Lactobacillus_paracasei", "Lactobacillus_plantarum",
110
+ "Lactobacillus_reuteri", "Lactobacillus_rhamnosus", "Lactobacillus_salivarius",
111
+ "Listeria_monocytogenes", "Micrococcus_spp", "Neisseria_gonorrhoeae",
112
+ "Porphyromonas_gingivalis", "Propionibacterium_acnes", "Proteus",
113
+ "Pseudomonas_aeruginosa", "Staphylococcus_aureus", "Staphylococcus_epidermidis",
114
+ "Staphylococcus_saprophyticus", "Streptococcus_agalactiae", "Veillonella"
115
+ ]
116
+ ```
117
+
118
+ ## Limitations
119
+
120
+ - Trained on single laboratory/microscope setup (DIBaS dataset)
121
+ - May not generalize to different imaging conditions
122
+ - Not validated for clinical diagnostic use
123
+
124
+ ## Related Models
125
+
126
+ - [MobileNetV3-Large](https://huggingface.co/ihoflaz/dibas-mobilenet-v3-large) - Best accuracy (95.45%)
127
+ - [ResNet50](https://huggingface.co/ihoflaz/dibas-resnet50) - Classic architecture (93.94%)
128
+
129
+ ## Citation
130
+
131
+ ```bibtex
132
+ @inproceedings{hoflaz2025bacterial,
133
+ title={Lightweight CNNs Outperform Vision Transformers for Bacterial Colony Classification},
134
+ author={Hoflaz, Ibrahim},
135
+ booktitle={IEEE Conference},
136
+ year={2025}
137
+ }
138
+ ```
139
+
140
+ ## Resources
141
+
142
+ - **GitHub:** [ihoflaz/bacterial-colony-classification](https://github.com/ihoflaz/bacterial-colony-classification)
143
+ - **DIBaS Dataset:** [http://misztal.edu.pl/software/databases/dibas/](http://misztal.edu.pl/software/databases/dibas/)