Upload pipeline.py
Browse files- pipeline.py +1783 -0
pipeline.py
ADDED
|
@@ -0,0 +1,1783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Implementation of Stable Diffusion Inpaint Pipeline with Perturbed-Attention Guidance
|
| 2 |
+
|
| 3 |
+
import inspect
|
| 4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import PIL.Image
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from packaging import version
|
| 11 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 12 |
+
|
| 13 |
+
from diffusers.configuration_utils import FrozenDict
|
| 14 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 15 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
| 16 |
+
from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 17 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 18 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 19 |
+
from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
| 20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 21 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 22 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 23 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 24 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 28 |
+
|
| 29 |
+
class PAGIdentitySelfAttnProcessor:
|
| 30 |
+
r"""
|
| 31 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def __init__(self):
|
| 35 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 36 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 37 |
+
|
| 38 |
+
def __call__(
|
| 39 |
+
self,
|
| 40 |
+
attn: Attention,
|
| 41 |
+
hidden_states: torch.FloatTensor,
|
| 42 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 43 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 44 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 45 |
+
*args,
|
| 46 |
+
**kwargs,
|
| 47 |
+
) -> torch.FloatTensor:
|
| 48 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 49 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
| 50 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
| 51 |
+
|
| 52 |
+
residual = hidden_states
|
| 53 |
+
if attn.spatial_norm is not None:
|
| 54 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 55 |
+
|
| 56 |
+
input_ndim = hidden_states.ndim
|
| 57 |
+
if input_ndim == 4:
|
| 58 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 59 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 60 |
+
|
| 61 |
+
# chunk
|
| 62 |
+
hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)
|
| 63 |
+
|
| 64 |
+
# original path
|
| 65 |
+
batch_size, sequence_length, _ = hidden_states_org.shape
|
| 66 |
+
|
| 67 |
+
if attention_mask is not None:
|
| 68 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 69 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 70 |
+
# (batch, heads, source_length, target_length)
|
| 71 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 72 |
+
|
| 73 |
+
if attn.group_norm is not None:
|
| 74 |
+
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
| 75 |
+
|
| 76 |
+
query = attn.to_q(hidden_states_org)
|
| 77 |
+
key = attn.to_k(hidden_states_org)
|
| 78 |
+
value = attn.to_v(hidden_states_org)
|
| 79 |
+
|
| 80 |
+
inner_dim = key.shape[-1]
|
| 81 |
+
head_dim = inner_dim // attn.heads
|
| 82 |
+
|
| 83 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 84 |
+
|
| 85 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 86 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 87 |
+
|
| 88 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 89 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 90 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
| 91 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 95 |
+
hidden_states_org = hidden_states_org.to(query.dtype)
|
| 96 |
+
|
| 97 |
+
# linear proj
|
| 98 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
| 99 |
+
# dropout
|
| 100 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
| 101 |
+
|
| 102 |
+
if input_ndim == 4:
|
| 103 |
+
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 104 |
+
|
| 105 |
+
# perturbed path (identity attention)
|
| 106 |
+
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
| 107 |
+
|
| 108 |
+
if attention_mask is not None:
|
| 109 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 110 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 111 |
+
# (batch, heads, source_length, target_length)
|
| 112 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 113 |
+
|
| 114 |
+
if attn.group_norm is not None:
|
| 115 |
+
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
| 116 |
+
|
| 117 |
+
value = attn.to_v(hidden_states_ptb)
|
| 118 |
+
|
| 119 |
+
hidden_states_ptb = torch.zeros(value.shape).to(value.get_device())
|
| 120 |
+
# hidden_states_ptb = value
|
| 121 |
+
|
| 122 |
+
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
| 123 |
+
|
| 124 |
+
# linear proj
|
| 125 |
+
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
| 126 |
+
# dropout
|
| 127 |
+
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
| 128 |
+
|
| 129 |
+
if input_ndim == 4:
|
| 130 |
+
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 131 |
+
|
| 132 |
+
# cat
|
| 133 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
| 134 |
+
|
| 135 |
+
if attn.residual_connection:
|
| 136 |
+
hidden_states = hidden_states + residual
|
| 137 |
+
|
| 138 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 139 |
+
|
| 140 |
+
return hidden_states
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class PAGCFGIdentitySelfAttnProcessor:
|
| 144 |
+
r"""
|
| 145 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 146 |
+
"""
|
| 147 |
+
|
| 148 |
+
def __init__(self):
|
| 149 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 150 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 151 |
+
|
| 152 |
+
def __call__(
|
| 153 |
+
self,
|
| 154 |
+
attn: Attention,
|
| 155 |
+
hidden_states: torch.FloatTensor,
|
| 156 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 157 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 158 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 159 |
+
*args,
|
| 160 |
+
**kwargs,
|
| 161 |
+
) -> torch.FloatTensor:
|
| 162 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 163 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
| 164 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
| 165 |
+
|
| 166 |
+
residual = hidden_states
|
| 167 |
+
if attn.spatial_norm is not None:
|
| 168 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 169 |
+
|
| 170 |
+
input_ndim = hidden_states.ndim
|
| 171 |
+
if input_ndim == 4:
|
| 172 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 173 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 174 |
+
|
| 175 |
+
# chunk
|
| 176 |
+
hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
|
| 177 |
+
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])
|
| 178 |
+
|
| 179 |
+
# original path
|
| 180 |
+
batch_size, sequence_length, _ = hidden_states_org.shape
|
| 181 |
+
|
| 182 |
+
if attention_mask is not None:
|
| 183 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 184 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 185 |
+
# (batch, heads, source_length, target_length)
|
| 186 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 187 |
+
|
| 188 |
+
if attn.group_norm is not None:
|
| 189 |
+
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
| 190 |
+
|
| 191 |
+
query = attn.to_q(hidden_states_org)
|
| 192 |
+
key = attn.to_k(hidden_states_org)
|
| 193 |
+
value = attn.to_v(hidden_states_org)
|
| 194 |
+
|
| 195 |
+
inner_dim = key.shape[-1]
|
| 196 |
+
head_dim = inner_dim // attn.heads
|
| 197 |
+
|
| 198 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 199 |
+
|
| 200 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 201 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 202 |
+
|
| 203 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 204 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 205 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
| 206 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 210 |
+
hidden_states_org = hidden_states_org.to(query.dtype)
|
| 211 |
+
|
| 212 |
+
# linear proj
|
| 213 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
| 214 |
+
# dropout
|
| 215 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
| 216 |
+
|
| 217 |
+
if input_ndim == 4:
|
| 218 |
+
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 219 |
+
|
| 220 |
+
# perturbed path (identity attention)
|
| 221 |
+
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
| 222 |
+
|
| 223 |
+
if attention_mask is not None:
|
| 224 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 225 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 226 |
+
# (batch, heads, source_length, target_length)
|
| 227 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 228 |
+
|
| 229 |
+
if attn.group_norm is not None:
|
| 230 |
+
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
| 231 |
+
|
| 232 |
+
value = attn.to_v(hidden_states_ptb)
|
| 233 |
+
hidden_states_ptb = value
|
| 234 |
+
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
| 235 |
+
|
| 236 |
+
# linear proj
|
| 237 |
+
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
| 238 |
+
# dropout
|
| 239 |
+
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
| 240 |
+
|
| 241 |
+
if input_ndim == 4:
|
| 242 |
+
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 243 |
+
|
| 244 |
+
# cat
|
| 245 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
| 246 |
+
|
| 247 |
+
if attn.residual_connection:
|
| 248 |
+
hidden_states = hidden_states + residual
|
| 249 |
+
|
| 250 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 251 |
+
|
| 252 |
+
return hidden_states
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
| 256 |
+
"""
|
| 257 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
| 258 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
| 259 |
+
``image`` and ``1`` for the ``mask``.
|
| 260 |
+
|
| 261 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
| 262 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
| 263 |
+
|
| 264 |
+
Args:
|
| 265 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
| 266 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
| 267 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
| 268 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
| 269 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
| 270 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
Raises:
|
| 274 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
| 275 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
| 276 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
| 277 |
+
(ot the other way around).
|
| 278 |
+
|
| 279 |
+
Returns:
|
| 280 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
| 281 |
+
dimensions: ``batch x channels x height x width``.
|
| 282 |
+
"""
|
| 283 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
| 284 |
+
deprecate(
|
| 285 |
+
"prepare_mask_and_masked_image",
|
| 286 |
+
"0.30.0",
|
| 287 |
+
deprecation_message,
|
| 288 |
+
)
|
| 289 |
+
if image is None:
|
| 290 |
+
raise ValueError("`image` input cannot be undefined.")
|
| 291 |
+
|
| 292 |
+
if mask is None:
|
| 293 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
| 294 |
+
|
| 295 |
+
if isinstance(image, torch.Tensor):
|
| 296 |
+
if not isinstance(mask, torch.Tensor):
|
| 297 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
| 298 |
+
|
| 299 |
+
# Batch single image
|
| 300 |
+
if image.ndim == 3:
|
| 301 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
| 302 |
+
image = image.unsqueeze(0)
|
| 303 |
+
|
| 304 |
+
# Batch and add channel dim for single mask
|
| 305 |
+
if mask.ndim == 2:
|
| 306 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
| 307 |
+
|
| 308 |
+
# Batch single mask or add channel dim
|
| 309 |
+
if mask.ndim == 3:
|
| 310 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
| 311 |
+
if mask.shape[0] == 1:
|
| 312 |
+
mask = mask.unsqueeze(0)
|
| 313 |
+
|
| 314 |
+
# Batched masks no channel dim
|
| 315 |
+
else:
|
| 316 |
+
mask = mask.unsqueeze(1)
|
| 317 |
+
|
| 318 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
| 319 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
| 320 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
| 321 |
+
|
| 322 |
+
# Check image is in [-1, 1]
|
| 323 |
+
if image.min() < -1 or image.max() > 1:
|
| 324 |
+
raise ValueError("Image should be in [-1, 1] range")
|
| 325 |
+
|
| 326 |
+
# Check mask is in [0, 1]
|
| 327 |
+
if mask.min() < 0 or mask.max() > 1:
|
| 328 |
+
raise ValueError("Mask should be in [0, 1] range")
|
| 329 |
+
|
| 330 |
+
# Binarize mask
|
| 331 |
+
mask[mask < 0.5] = 0
|
| 332 |
+
mask[mask >= 0.5] = 1
|
| 333 |
+
|
| 334 |
+
# Image as float32
|
| 335 |
+
image = image.to(dtype=torch.float32)
|
| 336 |
+
elif isinstance(mask, torch.Tensor):
|
| 337 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
| 338 |
+
else:
|
| 339 |
+
# preprocess image
|
| 340 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
| 341 |
+
image = [image]
|
| 342 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
| 343 |
+
# resize all images w.r.t passed height an width
|
| 344 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
| 345 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
| 346 |
+
image = np.concatenate(image, axis=0)
|
| 347 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
| 348 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
| 349 |
+
|
| 350 |
+
image = image.transpose(0, 3, 1, 2)
|
| 351 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 352 |
+
|
| 353 |
+
# preprocess mask
|
| 354 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
| 355 |
+
mask = [mask]
|
| 356 |
+
|
| 357 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
| 358 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
| 359 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
| 360 |
+
mask = mask.astype(np.float32) / 255.0
|
| 361 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 362 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
| 363 |
+
|
| 364 |
+
mask[mask < 0.5] = 0
|
| 365 |
+
mask[mask >= 0.5] = 1
|
| 366 |
+
mask = torch.from_numpy(mask)
|
| 367 |
+
|
| 368 |
+
masked_image = image * (mask < 0.5)
|
| 369 |
+
|
| 370 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
| 371 |
+
if return_image:
|
| 372 |
+
return mask, masked_image, image
|
| 373 |
+
|
| 374 |
+
return mask, masked_image
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 378 |
+
def retrieve_latents(
|
| 379 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 380 |
+
):
|
| 381 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 382 |
+
return encoder_output.latent_dist.sample(generator)
|
| 383 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 384 |
+
return encoder_output.latent_dist.mode()
|
| 385 |
+
elif hasattr(encoder_output, "latents"):
|
| 386 |
+
return encoder_output.latents
|
| 387 |
+
else:
|
| 388 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 392 |
+
def retrieve_timesteps(
|
| 393 |
+
scheduler,
|
| 394 |
+
num_inference_steps: Optional[int] = None,
|
| 395 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 396 |
+
timesteps: Optional[List[int]] = None,
|
| 397 |
+
**kwargs,
|
| 398 |
+
):
|
| 399 |
+
"""
|
| 400 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 401 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 402 |
+
|
| 403 |
+
Args:
|
| 404 |
+
scheduler (`SchedulerMixin`):
|
| 405 |
+
The scheduler to get timesteps from.
|
| 406 |
+
num_inference_steps (`int`):
|
| 407 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 408 |
+
must be `None`.
|
| 409 |
+
device (`str` or `torch.device`, *optional*):
|
| 410 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 411 |
+
timesteps (`List[int]`, *optional*):
|
| 412 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
| 413 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
| 414 |
+
must be `None`.
|
| 415 |
+
|
| 416 |
+
Returns:
|
| 417 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 418 |
+
second element is the number of inference steps.
|
| 419 |
+
"""
|
| 420 |
+
if timesteps is not None:
|
| 421 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 422 |
+
if not accepts_timesteps:
|
| 423 |
+
raise ValueError(
|
| 424 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 425 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 426 |
+
)
|
| 427 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 428 |
+
timesteps = scheduler.timesteps
|
| 429 |
+
num_inference_steps = len(timesteps)
|
| 430 |
+
else:
|
| 431 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 432 |
+
timesteps = scheduler.timesteps
|
| 433 |
+
return timesteps, num_inference_steps
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class StableDiffusionInpaintPipeline(
|
| 437 |
+
DiffusionPipeline,
|
| 438 |
+
StableDiffusionMixin,
|
| 439 |
+
TextualInversionLoaderMixin,
|
| 440 |
+
IPAdapterMixin,
|
| 441 |
+
LoraLoaderMixin,
|
| 442 |
+
FromSingleFileMixin,
|
| 443 |
+
):
|
| 444 |
+
r"""
|
| 445 |
+
Pipeline for text-guided image inpainting using Stable Diffusion.
|
| 446 |
+
|
| 447 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 448 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 449 |
+
|
| 450 |
+
The pipeline also inherits the following loading methods:
|
| 451 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 452 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 453 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 454 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 455 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 456 |
+
|
| 457 |
+
Args:
|
| 458 |
+
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
|
| 459 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 460 |
+
text_encoder ([`CLIPTextModel`]):
|
| 461 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 462 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
| 463 |
+
A `CLIPTokenizer` to tokenize text.
|
| 464 |
+
unet ([`UNet2DConditionModel`]):
|
| 465 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
| 466 |
+
scheduler ([`SchedulerMixin`]):
|
| 467 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 468 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 469 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 470 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 471 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
| 472 |
+
about a model's potential harms.
|
| 473 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
| 474 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
| 475 |
+
"""
|
| 476 |
+
|
| 477 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
| 478 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
| 479 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
| 480 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"]
|
| 481 |
+
|
| 482 |
+
def __init__(
|
| 483 |
+
self,
|
| 484 |
+
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL],
|
| 485 |
+
text_encoder: CLIPTextModel,
|
| 486 |
+
tokenizer: CLIPTokenizer,
|
| 487 |
+
unet: UNet2DConditionModel,
|
| 488 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 489 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 490 |
+
feature_extractor: CLIPImageProcessor,
|
| 491 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 492 |
+
requires_safety_checker: bool = True,
|
| 493 |
+
):
|
| 494 |
+
super().__init__()
|
| 495 |
+
|
| 496 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
| 497 |
+
deprecation_message = (
|
| 498 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 499 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
| 500 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 501 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 502 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 503 |
+
" file"
|
| 504 |
+
)
|
| 505 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
| 506 |
+
new_config = dict(scheduler.config)
|
| 507 |
+
new_config["steps_offset"] = 1
|
| 508 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 509 |
+
|
| 510 |
+
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
| 511 |
+
deprecation_message = (
|
| 512 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
| 513 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
| 514 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
| 515 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
| 516 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
| 517 |
+
" `scheduler/scheduler_config.json` file"
|
| 518 |
+
)
|
| 519 |
+
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
|
| 520 |
+
new_config = dict(scheduler.config)
|
| 521 |
+
new_config["skip_prk_steps"] = True
|
| 522 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 523 |
+
|
| 524 |
+
if safety_checker is None and requires_safety_checker:
|
| 525 |
+
logger.warning(
|
| 526 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 527 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 528 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 529 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 530 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 531 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
if safety_checker is not None and feature_extractor is None:
|
| 535 |
+
raise ValueError(
|
| 536 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 537 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
| 541 |
+
version.parse(unet.config._diffusers_version).base_version
|
| 542 |
+
) < version.parse("0.9.0.dev0")
|
| 543 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
| 544 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
| 545 |
+
deprecation_message = (
|
| 546 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
| 547 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
| 548 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
| 549 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
| 550 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
| 551 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
| 552 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
| 553 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
| 554 |
+
" the `unet/config.json` file"
|
| 555 |
+
)
|
| 556 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
| 557 |
+
new_config = dict(unet.config)
|
| 558 |
+
new_config["sample_size"] = 64
|
| 559 |
+
unet._internal_dict = FrozenDict(new_config)
|
| 560 |
+
|
| 561 |
+
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
| 562 |
+
if unet.config.in_channels != 9:
|
| 563 |
+
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.")
|
| 564 |
+
|
| 565 |
+
self.register_modules(
|
| 566 |
+
vae=vae,
|
| 567 |
+
text_encoder=text_encoder,
|
| 568 |
+
tokenizer=tokenizer,
|
| 569 |
+
unet=unet,
|
| 570 |
+
scheduler=scheduler,
|
| 571 |
+
safety_checker=safety_checker,
|
| 572 |
+
feature_extractor=feature_extractor,
|
| 573 |
+
image_encoder=image_encoder,
|
| 574 |
+
)
|
| 575 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 576 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 577 |
+
self.mask_processor = VaeImageProcessor(
|
| 578 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
| 579 |
+
)
|
| 580 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 581 |
+
|
| 582 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
| 583 |
+
def _encode_prompt(
|
| 584 |
+
self,
|
| 585 |
+
prompt,
|
| 586 |
+
device,
|
| 587 |
+
num_images_per_prompt,
|
| 588 |
+
do_classifier_free_guidance,
|
| 589 |
+
negative_prompt=None,
|
| 590 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 591 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 592 |
+
lora_scale: Optional[float] = None,
|
| 593 |
+
**kwargs,
|
| 594 |
+
):
|
| 595 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
| 596 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
| 597 |
+
|
| 598 |
+
prompt_embeds_tuple = self.encode_prompt(
|
| 599 |
+
prompt=prompt,
|
| 600 |
+
device=device,
|
| 601 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 602 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 603 |
+
negative_prompt=negative_prompt,
|
| 604 |
+
prompt_embeds=prompt_embeds,
|
| 605 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 606 |
+
lora_scale=lora_scale,
|
| 607 |
+
**kwargs,
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
# concatenate for backwards comp
|
| 611 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
| 612 |
+
|
| 613 |
+
return prompt_embeds
|
| 614 |
+
|
| 615 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
| 616 |
+
def encode_prompt(
|
| 617 |
+
self,
|
| 618 |
+
prompt,
|
| 619 |
+
device,
|
| 620 |
+
num_images_per_prompt,
|
| 621 |
+
do_classifier_free_guidance,
|
| 622 |
+
negative_prompt=None,
|
| 623 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 624 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 625 |
+
lora_scale: Optional[float] = None,
|
| 626 |
+
clip_skip: Optional[int] = None,
|
| 627 |
+
):
|
| 628 |
+
r"""
|
| 629 |
+
Encodes the prompt into text encoder hidden states.
|
| 630 |
+
|
| 631 |
+
Args:
|
| 632 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 633 |
+
prompt to be encoded
|
| 634 |
+
device: (`torch.device`):
|
| 635 |
+
torch device
|
| 636 |
+
num_images_per_prompt (`int`):
|
| 637 |
+
number of images that should be generated per prompt
|
| 638 |
+
do_classifier_free_guidance (`bool`):
|
| 639 |
+
whether to use classifier free guidance or not
|
| 640 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 641 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 642 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 643 |
+
less than `1`).
|
| 644 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 645 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 646 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 647 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 648 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 649 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 650 |
+
argument.
|
| 651 |
+
lora_scale (`float`, *optional*):
|
| 652 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 653 |
+
clip_skip (`int`, *optional*):
|
| 654 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 655 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 656 |
+
"""
|
| 657 |
+
# set lora scale so that monkey patched LoRA
|
| 658 |
+
# function of text encoder can correctly access it
|
| 659 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
| 660 |
+
self._lora_scale = lora_scale
|
| 661 |
+
|
| 662 |
+
# dynamically adjust the LoRA scale
|
| 663 |
+
if not USE_PEFT_BACKEND:
|
| 664 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
| 665 |
+
else:
|
| 666 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 667 |
+
|
| 668 |
+
if prompt is not None and isinstance(prompt, str):
|
| 669 |
+
batch_size = 1
|
| 670 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 671 |
+
batch_size = len(prompt)
|
| 672 |
+
else:
|
| 673 |
+
batch_size = prompt_embeds.shape[0]
|
| 674 |
+
|
| 675 |
+
if prompt_embeds is None:
|
| 676 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 677 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 678 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
| 679 |
+
|
| 680 |
+
text_inputs = self.tokenizer(
|
| 681 |
+
prompt,
|
| 682 |
+
padding="max_length",
|
| 683 |
+
max_length=self.tokenizer.model_max_length,
|
| 684 |
+
truncation=True,
|
| 685 |
+
return_tensors="pt",
|
| 686 |
+
)
|
| 687 |
+
text_input_ids = text_inputs.input_ids
|
| 688 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 689 |
+
|
| 690 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 691 |
+
text_input_ids, untruncated_ids
|
| 692 |
+
):
|
| 693 |
+
removed_text = self.tokenizer.batch_decode(
|
| 694 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 695 |
+
)
|
| 696 |
+
logger.warning(
|
| 697 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 698 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 702 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 703 |
+
else:
|
| 704 |
+
attention_mask = None
|
| 705 |
+
|
| 706 |
+
if clip_skip is None:
|
| 707 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
| 708 |
+
prompt_embeds = prompt_embeds[0]
|
| 709 |
+
else:
|
| 710 |
+
prompt_embeds = self.text_encoder(
|
| 711 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
| 712 |
+
)
|
| 713 |
+
# Access the `hidden_states` first, that contains a tuple of
|
| 714 |
+
# all the hidden states from the encoder layers. Then index into
|
| 715 |
+
# the tuple to access the hidden states from the desired layer.
|
| 716 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
| 717 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
| 718 |
+
# representations. The `last_hidden_states` that we typically use for
|
| 719 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
| 720 |
+
# layer.
|
| 721 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
| 722 |
+
|
| 723 |
+
if self.text_encoder is not None:
|
| 724 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
| 725 |
+
elif self.unet is not None:
|
| 726 |
+
prompt_embeds_dtype = self.unet.dtype
|
| 727 |
+
else:
|
| 728 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
| 729 |
+
|
| 730 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
| 731 |
+
|
| 732 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 733 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 734 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 735 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 736 |
+
|
| 737 |
+
# get unconditional embeddings for classifier free guidance
|
| 738 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 739 |
+
uncond_tokens: List[str]
|
| 740 |
+
if negative_prompt is None:
|
| 741 |
+
uncond_tokens = [""] * batch_size
|
| 742 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
| 743 |
+
raise TypeError(
|
| 744 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 745 |
+
f" {type(prompt)}."
|
| 746 |
+
)
|
| 747 |
+
elif isinstance(negative_prompt, str):
|
| 748 |
+
uncond_tokens = [negative_prompt]
|
| 749 |
+
elif batch_size != len(negative_prompt):
|
| 750 |
+
raise ValueError(
|
| 751 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 752 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 753 |
+
" the batch size of `prompt`."
|
| 754 |
+
)
|
| 755 |
+
else:
|
| 756 |
+
uncond_tokens = negative_prompt
|
| 757 |
+
|
| 758 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 759 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 760 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
| 761 |
+
|
| 762 |
+
max_length = prompt_embeds.shape[1]
|
| 763 |
+
uncond_input = self.tokenizer(
|
| 764 |
+
uncond_tokens,
|
| 765 |
+
padding="max_length",
|
| 766 |
+
max_length=max_length,
|
| 767 |
+
truncation=True,
|
| 768 |
+
return_tensors="pt",
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 772 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 773 |
+
else:
|
| 774 |
+
attention_mask = None
|
| 775 |
+
|
| 776 |
+
negative_prompt_embeds = self.text_encoder(
|
| 777 |
+
uncond_input.input_ids.to(device),
|
| 778 |
+
attention_mask=attention_mask,
|
| 779 |
+
)
|
| 780 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 781 |
+
|
| 782 |
+
if do_classifier_free_guidance:
|
| 783 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 784 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 785 |
+
|
| 786 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
| 787 |
+
|
| 788 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 789 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 790 |
+
|
| 791 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 792 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 793 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 794 |
+
|
| 795 |
+
return prompt_embeds, negative_prompt_embeds
|
| 796 |
+
|
| 797 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
| 798 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
| 799 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 800 |
+
|
| 801 |
+
if not isinstance(image, torch.Tensor):
|
| 802 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 803 |
+
|
| 804 |
+
image = image.to(device=device, dtype=dtype)
|
| 805 |
+
if output_hidden_states:
|
| 806 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 807 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
| 808 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
| 809 |
+
torch.zeros_like(image), output_hidden_states=True
|
| 810 |
+
).hidden_states[-2]
|
| 811 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
| 812 |
+
num_images_per_prompt, dim=0
|
| 813 |
+
)
|
| 814 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
| 815 |
+
else:
|
| 816 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 817 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 818 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
| 819 |
+
|
| 820 |
+
return image_embeds, uncond_image_embeds
|
| 821 |
+
|
| 822 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 823 |
+
def prepare_ip_adapter_image_embeds(
|
| 824 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
| 825 |
+
):
|
| 826 |
+
if ip_adapter_image_embeds is None:
|
| 827 |
+
if not isinstance(ip_adapter_image, list):
|
| 828 |
+
ip_adapter_image = [ip_adapter_image]
|
| 829 |
+
|
| 830 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
| 831 |
+
raise ValueError(
|
| 832 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
image_embeds = []
|
| 836 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
| 837 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
| 838 |
+
):
|
| 839 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
| 840 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
| 841 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
| 842 |
+
)
|
| 843 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 844 |
+
single_negative_image_embeds = torch.stack(
|
| 845 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
if do_classifier_free_guidance:
|
| 849 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
| 850 |
+
single_image_embeds = single_image_embeds.to(device)
|
| 851 |
+
|
| 852 |
+
image_embeds.append(single_image_embeds)
|
| 853 |
+
else:
|
| 854 |
+
repeat_dims = [1]
|
| 855 |
+
image_embeds = []
|
| 856 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 857 |
+
if do_classifier_free_guidance:
|
| 858 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
| 859 |
+
single_image_embeds = single_image_embeds.repeat(
|
| 860 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
| 861 |
+
)
|
| 862 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
| 863 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
| 864 |
+
)
|
| 865 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
| 866 |
+
else:
|
| 867 |
+
single_image_embeds = single_image_embeds.repeat(
|
| 868 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
| 869 |
+
)
|
| 870 |
+
image_embeds.append(single_image_embeds)
|
| 871 |
+
|
| 872 |
+
return image_embeds
|
| 873 |
+
|
| 874 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
| 875 |
+
def run_safety_checker(self, image, device, dtype):
|
| 876 |
+
if self.safety_checker is None:
|
| 877 |
+
has_nsfw_concept = None
|
| 878 |
+
else:
|
| 879 |
+
if torch.is_tensor(image):
|
| 880 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
| 881 |
+
else:
|
| 882 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 883 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
| 884 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 885 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 886 |
+
)
|
| 887 |
+
return image, has_nsfw_concept
|
| 888 |
+
|
| 889 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 890 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 891 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 892 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 893 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 894 |
+
# and should be between [0, 1]
|
| 895 |
+
|
| 896 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 897 |
+
extra_step_kwargs = {}
|
| 898 |
+
if accepts_eta:
|
| 899 |
+
extra_step_kwargs["eta"] = eta
|
| 900 |
+
|
| 901 |
+
# check if the scheduler accepts generator
|
| 902 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 903 |
+
if accepts_generator:
|
| 904 |
+
extra_step_kwargs["generator"] = generator
|
| 905 |
+
return extra_step_kwargs
|
| 906 |
+
|
| 907 |
+
def check_inputs(
|
| 908 |
+
self,
|
| 909 |
+
prompt,
|
| 910 |
+
image,
|
| 911 |
+
mask_image,
|
| 912 |
+
height,
|
| 913 |
+
width,
|
| 914 |
+
strength,
|
| 915 |
+
callback_steps,
|
| 916 |
+
output_type,
|
| 917 |
+
negative_prompt=None,
|
| 918 |
+
prompt_embeds=None,
|
| 919 |
+
negative_prompt_embeds=None,
|
| 920 |
+
ip_adapter_image=None,
|
| 921 |
+
ip_adapter_image_embeds=None,
|
| 922 |
+
callback_on_step_end_tensor_inputs=None,
|
| 923 |
+
padding_mask_crop=None,
|
| 924 |
+
):
|
| 925 |
+
if strength < 0 or strength > 1:
|
| 926 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 927 |
+
|
| 928 |
+
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
|
| 929 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 930 |
+
|
| 931 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
| 932 |
+
raise ValueError(
|
| 933 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 934 |
+
f" {type(callback_steps)}."
|
| 935 |
+
)
|
| 936 |
+
|
| 937 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 938 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 939 |
+
):
|
| 940 |
+
raise ValueError(
|
| 941 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 942 |
+
)
|
| 943 |
+
|
| 944 |
+
if prompt is not None and prompt_embeds is not None:
|
| 945 |
+
raise ValueError(
|
| 946 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 947 |
+
" only forward one of the two."
|
| 948 |
+
)
|
| 949 |
+
elif prompt is None and prompt_embeds is None:
|
| 950 |
+
raise ValueError(
|
| 951 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 952 |
+
)
|
| 953 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 954 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 955 |
+
|
| 956 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 957 |
+
raise ValueError(
|
| 958 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 959 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 963 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 964 |
+
raise ValueError(
|
| 965 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 966 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 967 |
+
f" {negative_prompt_embeds.shape}."
|
| 968 |
+
)
|
| 969 |
+
if padding_mask_crop is not None:
|
| 970 |
+
if not isinstance(image, PIL.Image.Image):
|
| 971 |
+
raise ValueError(
|
| 972 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
| 973 |
+
)
|
| 974 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
| 975 |
+
raise ValueError(
|
| 976 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
| 977 |
+
f" {type(mask_image)}."
|
| 978 |
+
)
|
| 979 |
+
if output_type != "pil":
|
| 980 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
| 981 |
+
|
| 982 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 983 |
+
raise ValueError(
|
| 984 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if ip_adapter_image_embeds is not None:
|
| 988 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 989 |
+
raise ValueError(
|
| 990 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 991 |
+
)
|
| 992 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 993 |
+
raise ValueError(
|
| 994 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
def prepare_latents(
|
| 998 |
+
self,
|
| 999 |
+
batch_size,
|
| 1000 |
+
num_channels_latents,
|
| 1001 |
+
height,
|
| 1002 |
+
width,
|
| 1003 |
+
dtype,
|
| 1004 |
+
device,
|
| 1005 |
+
generator,
|
| 1006 |
+
latents=None,
|
| 1007 |
+
image=None,
|
| 1008 |
+
timestep=None,
|
| 1009 |
+
is_strength_max=True,
|
| 1010 |
+
return_noise=False,
|
| 1011 |
+
return_image_latents=False,
|
| 1012 |
+
):
|
| 1013 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 1014 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 1015 |
+
raise ValueError(
|
| 1016 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 1017 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 1018 |
+
)
|
| 1019 |
+
|
| 1020 |
+
if (image is None or timestep is None) and not is_strength_max:
|
| 1021 |
+
raise ValueError(
|
| 1022 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
| 1023 |
+
"However, either the image or the noise timestep has not been provided."
|
| 1024 |
+
)
|
| 1025 |
+
|
| 1026 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
| 1027 |
+
image = image.to(device=device, dtype=dtype)
|
| 1028 |
+
|
| 1029 |
+
if image.shape[1] == 4:
|
| 1030 |
+
image_latents = image
|
| 1031 |
+
else:
|
| 1032 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
| 1033 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
| 1034 |
+
|
| 1035 |
+
if latents is None:
|
| 1036 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 1037 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
| 1038 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
| 1039 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
| 1040 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
| 1041 |
+
else:
|
| 1042 |
+
noise = latents.to(device)
|
| 1043 |
+
latents = noise * self.scheduler.init_noise_sigma
|
| 1044 |
+
|
| 1045 |
+
outputs = (latents,)
|
| 1046 |
+
|
| 1047 |
+
if return_noise:
|
| 1048 |
+
outputs += (noise,)
|
| 1049 |
+
|
| 1050 |
+
if return_image_latents:
|
| 1051 |
+
outputs += (image_latents,)
|
| 1052 |
+
|
| 1053 |
+
return outputs
|
| 1054 |
+
|
| 1055 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
| 1056 |
+
if isinstance(generator, list):
|
| 1057 |
+
image_latents = [
|
| 1058 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
| 1059 |
+
for i in range(image.shape[0])
|
| 1060 |
+
]
|
| 1061 |
+
image_latents = torch.cat(image_latents, dim=0)
|
| 1062 |
+
else:
|
| 1063 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 1064 |
+
|
| 1065 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
| 1066 |
+
|
| 1067 |
+
return image_latents
|
| 1068 |
+
|
| 1069 |
+
def prepare_mask_latents(
|
| 1070 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator
|
| 1071 |
+
):
|
| 1072 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 1073 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 1074 |
+
# and half precision
|
| 1075 |
+
mask = torch.nn.functional.interpolate(
|
| 1076 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 1077 |
+
)
|
| 1078 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 1079 |
+
|
| 1080 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 1081 |
+
|
| 1082 |
+
if masked_image.shape[1] == 4:
|
| 1083 |
+
masked_image_latents = masked_image
|
| 1084 |
+
else:
|
| 1085 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
| 1086 |
+
|
| 1087 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 1088 |
+
if mask.shape[0] < batch_size:
|
| 1089 |
+
if not batch_size % mask.shape[0] == 0:
|
| 1090 |
+
raise ValueError(
|
| 1091 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 1092 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 1093 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 1094 |
+
)
|
| 1095 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 1096 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 1097 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 1098 |
+
raise ValueError(
|
| 1099 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 1100 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 1101 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 1102 |
+
)
|
| 1103 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
| 1104 |
+
|
| 1105 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 1106 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 1107 |
+
return mask, masked_image_latents
|
| 1108 |
+
|
| 1109 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
| 1110 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
| 1111 |
+
# get the original timestep using init_timestep
|
| 1112 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 1113 |
+
|
| 1114 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 1115 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 1116 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
| 1117 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
| 1118 |
+
|
| 1119 |
+
return timesteps, num_inference_steps - t_start
|
| 1120 |
+
|
| 1121 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1122 |
+
def get_guidance_scale_embedding(
|
| 1123 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
| 1124 |
+
) -> torch.FloatTensor:
|
| 1125 |
+
"""
|
| 1126 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 1127 |
+
|
| 1128 |
+
Args:
|
| 1129 |
+
w (`torch.Tensor`):
|
| 1130 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
| 1131 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
| 1132 |
+
Dimension of the embeddings to generate.
|
| 1133 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
| 1134 |
+
Data type of the generated embeddings.
|
| 1135 |
+
|
| 1136 |
+
Returns:
|
| 1137 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
| 1138 |
+
"""
|
| 1139 |
+
assert len(w.shape) == 1
|
| 1140 |
+
w = w * 1000.0
|
| 1141 |
+
|
| 1142 |
+
half_dim = embedding_dim // 2
|
| 1143 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 1144 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 1145 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 1146 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 1147 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 1148 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 1149 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
| 1150 |
+
return emb
|
| 1151 |
+
|
| 1152 |
+
@property
|
| 1153 |
+
def guidance_scale(self):
|
| 1154 |
+
return self._guidance_scale
|
| 1155 |
+
|
| 1156 |
+
@property
|
| 1157 |
+
def clip_skip(self):
|
| 1158 |
+
return self._clip_skip
|
| 1159 |
+
|
| 1160 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1161 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1162 |
+
# corresponds to doing no classifier free guidance.
|
| 1163 |
+
@property
|
| 1164 |
+
def do_classifier_free_guidance(self):
|
| 1165 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
| 1166 |
+
|
| 1167 |
+
@property
|
| 1168 |
+
def cross_attention_kwargs(self):
|
| 1169 |
+
return self._cross_attention_kwargs
|
| 1170 |
+
|
| 1171 |
+
@property
|
| 1172 |
+
def num_timesteps(self):
|
| 1173 |
+
return self._num_timesteps
|
| 1174 |
+
|
| 1175 |
+
@property
|
| 1176 |
+
def interrupt(self):
|
| 1177 |
+
return self._interrupt
|
| 1178 |
+
|
| 1179 |
+
@property
|
| 1180 |
+
def pag_scale(self):
|
| 1181 |
+
return self._pag_scale
|
| 1182 |
+
|
| 1183 |
+
@property
|
| 1184 |
+
def do_perturbed_attention_guidance(self):
|
| 1185 |
+
return self._pag_scale > 0
|
| 1186 |
+
|
| 1187 |
+
@property
|
| 1188 |
+
def pag_adaptive_scaling(self):
|
| 1189 |
+
return self._pag_adaptive_scaling
|
| 1190 |
+
|
| 1191 |
+
@property
|
| 1192 |
+
def do_pag_adaptive_scaling(self):
|
| 1193 |
+
return self._pag_adaptive_scaling > 0
|
| 1194 |
+
|
| 1195 |
+
@property
|
| 1196 |
+
def pag_applied_layers_index(self):
|
| 1197 |
+
return self._pag_applied_layers_index
|
| 1198 |
+
|
| 1199 |
+
@torch.no_grad()
|
| 1200 |
+
def __call__(
|
| 1201 |
+
self,
|
| 1202 |
+
prompt: Union[str, List[str]] = None,
|
| 1203 |
+
image: PipelineImageInput = None,
|
| 1204 |
+
mask_image: PipelineImageInput = None,
|
| 1205 |
+
masked_image_latents: torch.FloatTensor = None,
|
| 1206 |
+
height: Optional[int] = None,
|
| 1207 |
+
width: Optional[int] = None,
|
| 1208 |
+
padding_mask_crop: Optional[int] = None,
|
| 1209 |
+
strength: float = 1.0,
|
| 1210 |
+
num_inference_steps: int = 50,
|
| 1211 |
+
timesteps: List[int] = None,
|
| 1212 |
+
guidance_scale: float = 7.5,
|
| 1213 |
+
pag_scale: float = 0.0,
|
| 1214 |
+
pag_adaptive_scaling: float = 0.0,
|
| 1215 |
+
pag_applied_layers_index: List[str] = ["d4"],
|
| 1216 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1217 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1218 |
+
eta: float = 0.0,
|
| 1219 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1220 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 1221 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1222 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1223 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 1224 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
| 1225 |
+
output_type: Optional[str] = "pil",
|
| 1226 |
+
return_dict: bool = True,
|
| 1227 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1228 |
+
clip_skip: int = None,
|
| 1229 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 1230 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1231 |
+
**kwargs,
|
| 1232 |
+
):
|
| 1233 |
+
r"""
|
| 1234 |
+
The call function to the pipeline for generation.
|
| 1235 |
+
|
| 1236 |
+
Args:
|
| 1237 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 1238 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 1239 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
| 1240 |
+
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
|
| 1241 |
+
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
|
| 1242 |
+
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
|
| 1243 |
+
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
|
| 1244 |
+
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
|
| 1245 |
+
if passing latents directly it is not encoded again.
|
| 1246 |
+
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
| 1247 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
| 1248 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
| 1249 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
| 1250 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
| 1251 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
| 1252 |
+
1)`, or `(H, W)`.
|
| 1253 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1254 |
+
The height in pixels of the generated image.
|
| 1255 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1256 |
+
The width in pixels of the generated image.
|
| 1257 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
| 1258 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
| 1259 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
| 1260 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
| 1261 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
| 1262 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
| 1263 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
| 1264 |
+
strength (`float`, *optional*, defaults to 1.0):
|
| 1265 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
| 1266 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
| 1267 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
| 1268 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
| 1269 |
+
essentially ignores `image`.
|
| 1270 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1271 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1272 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 1273 |
+
timesteps (`List[int]`, *optional*):
|
| 1274 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 1275 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 1276 |
+
passed will be used. Must be in descending order.
|
| 1277 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 1278 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 1279 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 1280 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1281 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 1282 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 1283 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1284 |
+
The number of images to generate per prompt.
|
| 1285 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1286 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 1287 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 1288 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1289 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 1290 |
+
generation deterministic.
|
| 1291 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 1292 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 1293 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1294 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 1295 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1296 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 1297 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 1298 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1299 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1300 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 1301 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 1302 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
| 1303 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 1304 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 1305 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 1306 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 1307 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1308 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 1309 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1310 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1311 |
+
plain tuple.
|
| 1312 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1313 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 1314 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1315 |
+
clip_skip (`int`, *optional*):
|
| 1316 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1317 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1318 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 1319 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 1320 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 1321 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 1322 |
+
`callback_on_step_end_tensor_inputs`.
|
| 1323 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1324 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1325 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1326 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1327 |
+
Examples:
|
| 1328 |
+
|
| 1329 |
+
```py
|
| 1330 |
+
>>> import PIL
|
| 1331 |
+
>>> import requests
|
| 1332 |
+
>>> import torch
|
| 1333 |
+
>>> from io import BytesIO
|
| 1334 |
+
|
| 1335 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
| 1336 |
+
|
| 1337 |
+
|
| 1338 |
+
>>> def download_image(url):
|
| 1339 |
+
... response = requests.get(url)
|
| 1340 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
| 1341 |
+
|
| 1342 |
+
|
| 1343 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
| 1344 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
| 1345 |
+
|
| 1346 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
| 1347 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
| 1348 |
+
|
| 1349 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 1350 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
| 1351 |
+
... )
|
| 1352 |
+
>>> pipe = pipe.to("cuda")
|
| 1353 |
+
|
| 1354 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
| 1355 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
| 1356 |
+
```
|
| 1357 |
+
|
| 1358 |
+
Returns:
|
| 1359 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1360 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 1361 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
| 1362 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
| 1363 |
+
"not-safe-for-work" (nsfw) content.
|
| 1364 |
+
"""
|
| 1365 |
+
|
| 1366 |
+
callback = kwargs.pop("callback", None)
|
| 1367 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 1368 |
+
|
| 1369 |
+
if callback is not None:
|
| 1370 |
+
deprecate(
|
| 1371 |
+
"callback",
|
| 1372 |
+
"1.0.0",
|
| 1373 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1374 |
+
)
|
| 1375 |
+
if callback_steps is not None:
|
| 1376 |
+
deprecate(
|
| 1377 |
+
"callback_steps",
|
| 1378 |
+
"1.0.0",
|
| 1379 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1380 |
+
)
|
| 1381 |
+
|
| 1382 |
+
# 0. Default height and width to unet
|
| 1383 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 1384 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 1385 |
+
|
| 1386 |
+
# 1. Check inputs
|
| 1387 |
+
self.check_inputs(
|
| 1388 |
+
prompt,
|
| 1389 |
+
image,
|
| 1390 |
+
mask_image,
|
| 1391 |
+
height,
|
| 1392 |
+
width,
|
| 1393 |
+
strength,
|
| 1394 |
+
callback_steps,
|
| 1395 |
+
output_type,
|
| 1396 |
+
negative_prompt,
|
| 1397 |
+
prompt_embeds,
|
| 1398 |
+
negative_prompt_embeds,
|
| 1399 |
+
ip_adapter_image,
|
| 1400 |
+
ip_adapter_image_embeds,
|
| 1401 |
+
callback_on_step_end_tensor_inputs,
|
| 1402 |
+
padding_mask_crop,
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
self._guidance_scale = guidance_scale
|
| 1406 |
+
self._clip_skip = clip_skip
|
| 1407 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1408 |
+
self._interrupt = False
|
| 1409 |
+
|
| 1410 |
+
self._pag_scale = pag_scale
|
| 1411 |
+
self._pag_adaptive_scaling = pag_adaptive_scaling
|
| 1412 |
+
self._pag_applied_layers_index = pag_applied_layers_index
|
| 1413 |
+
|
| 1414 |
+
# 2. Define call parameters
|
| 1415 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1416 |
+
batch_size = 1
|
| 1417 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1418 |
+
batch_size = len(prompt)
|
| 1419 |
+
else:
|
| 1420 |
+
batch_size = prompt_embeds.shape[0]
|
| 1421 |
+
|
| 1422 |
+
device = self._execution_device
|
| 1423 |
+
|
| 1424 |
+
# 3. Encode input prompt
|
| 1425 |
+
text_encoder_lora_scale = (
|
| 1426 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 1427 |
+
)
|
| 1428 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 1429 |
+
prompt,
|
| 1430 |
+
device,
|
| 1431 |
+
num_images_per_prompt,
|
| 1432 |
+
self.do_classifier_free_guidance,
|
| 1433 |
+
negative_prompt,
|
| 1434 |
+
prompt_embeds=prompt_embeds,
|
| 1435 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1436 |
+
lora_scale=text_encoder_lora_scale,
|
| 1437 |
+
clip_skip=self.clip_skip,
|
| 1438 |
+
)
|
| 1439 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 1440 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 1441 |
+
# to avoid doing two forward passes
|
| 1442 |
+
|
| 1443 |
+
# cfg
|
| 1444 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
| 1445 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 1446 |
+
# pag
|
| 1447 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1448 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds])
|
| 1449 |
+
# both
|
| 1450 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1451 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds])
|
| 1452 |
+
|
| 1453 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1454 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1455 |
+
ip_adapter_image,
|
| 1456 |
+
ip_adapter_image_embeds,
|
| 1457 |
+
device,
|
| 1458 |
+
batch_size * num_images_per_prompt
|
| 1459 |
+
)
|
| 1460 |
+
|
| 1461 |
+
# 4. set timesteps
|
| 1462 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
| 1463 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
| 1464 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
| 1465 |
+
)
|
| 1466 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
| 1467 |
+
if num_inference_steps < 1:
|
| 1468 |
+
raise ValueError(
|
| 1469 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
| 1470 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
| 1471 |
+
)
|
| 1472 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
| 1473 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 1474 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
| 1475 |
+
is_strength_max = strength == 1.0
|
| 1476 |
+
|
| 1477 |
+
# 5. Preprocess mask and image
|
| 1478 |
+
|
| 1479 |
+
if padding_mask_crop is not None:
|
| 1480 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
| 1481 |
+
resize_mode = "fill"
|
| 1482 |
+
else:
|
| 1483 |
+
crops_coords = None
|
| 1484 |
+
resize_mode = "default"
|
| 1485 |
+
|
| 1486 |
+
original_image = image
|
| 1487 |
+
init_image = self.image_processor.preprocess(
|
| 1488 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
| 1489 |
+
)
|
| 1490 |
+
init_image = init_image.to(dtype=torch.float32)
|
| 1491 |
+
|
| 1492 |
+
# 6. Prepare latent variables
|
| 1493 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 1494 |
+
num_channels_unet = self.unet.config.in_channels
|
| 1495 |
+
return_image_latents = num_channels_unet == 4
|
| 1496 |
+
|
| 1497 |
+
latents_outputs = self.prepare_latents(
|
| 1498 |
+
batch_size * num_images_per_prompt,
|
| 1499 |
+
num_channels_latents,
|
| 1500 |
+
height,
|
| 1501 |
+
width,
|
| 1502 |
+
prompt_embeds.dtype,
|
| 1503 |
+
device,
|
| 1504 |
+
generator,
|
| 1505 |
+
latents,
|
| 1506 |
+
image=init_image,
|
| 1507 |
+
timestep=latent_timestep,
|
| 1508 |
+
is_strength_max=is_strength_max,
|
| 1509 |
+
return_noise=True,
|
| 1510 |
+
return_image_latents=return_image_latents,
|
| 1511 |
+
)
|
| 1512 |
+
|
| 1513 |
+
if return_image_latents:
|
| 1514 |
+
latents, noise, image_latents = latents_outputs
|
| 1515 |
+
else:
|
| 1516 |
+
latents, noise = latents_outputs
|
| 1517 |
+
|
| 1518 |
+
# 7. Prepare mask latent variables
|
| 1519 |
+
mask_condition = self.mask_processor.preprocess(
|
| 1520 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
| 1521 |
+
)
|
| 1522 |
+
|
| 1523 |
+
if masked_image_latents is None:
|
| 1524 |
+
masked_image = init_image * (mask_condition < 0.5)
|
| 1525 |
+
else:
|
| 1526 |
+
masked_image = masked_image_latents
|
| 1527 |
+
|
| 1528 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
| 1529 |
+
mask_condition,
|
| 1530 |
+
masked_image,
|
| 1531 |
+
batch_size * num_images_per_prompt,
|
| 1532 |
+
height,
|
| 1533 |
+
width,
|
| 1534 |
+
prompt_embeds.dtype,
|
| 1535 |
+
device,
|
| 1536 |
+
generator
|
| 1537 |
+
)
|
| 1538 |
+
|
| 1539 |
+
# 8. Check that sizes of mask, masked image and latents match
|
| 1540 |
+
if num_channels_unet == 9:
|
| 1541 |
+
# default case for runwayml/stable-diffusion-inpainting
|
| 1542 |
+
num_channels_mask = mask.shape[1]
|
| 1543 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
| 1544 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
| 1545 |
+
raise ValueError(
|
| 1546 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
| 1547 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
| 1548 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
| 1549 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
| 1550 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
| 1551 |
+
)
|
| 1552 |
+
elif num_channels_unet != 4:
|
| 1553 |
+
raise ValueError(
|
| 1554 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
| 1555 |
+
)
|
| 1556 |
+
|
| 1557 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1558 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1559 |
+
|
| 1560 |
+
# 9.1 Add image embeds for IP-Adapter
|
| 1561 |
+
added_cond_kwargs = (
|
| 1562 |
+
{"image_embeds": image_embeds}
|
| 1563 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
| 1564 |
+
else None
|
| 1565 |
+
)
|
| 1566 |
+
|
| 1567 |
+
# 9.2 Optionally get Guidance Scale Embedding
|
| 1568 |
+
timestep_cond = None
|
| 1569 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 1570 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 1571 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 1572 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 1573 |
+
).to(device=device, dtype=latents.dtype)
|
| 1574 |
+
|
| 1575 |
+
# 10. Denoising loop
|
| 1576 |
+
if self.do_perturbed_attention_guidance:
|
| 1577 |
+
down_layers = []
|
| 1578 |
+
mid_layers = []
|
| 1579 |
+
up_layers = []
|
| 1580 |
+
for name, module in self.unet.named_modules():
|
| 1581 |
+
if "attn1" in name and "to" not in name:
|
| 1582 |
+
layer_type = name.split(".")[0].split("_")[0]
|
| 1583 |
+
if layer_type == "down":
|
| 1584 |
+
down_layers.append(module)
|
| 1585 |
+
elif layer_type == "mid":
|
| 1586 |
+
mid_layers.append(module)
|
| 1587 |
+
elif layer_type == "up":
|
| 1588 |
+
up_layers.append(module)
|
| 1589 |
+
else:
|
| 1590 |
+
raise ValueError(f"Invalid layer type: {layer_type}")
|
| 1591 |
+
|
| 1592 |
+
# change attention layer in UNet if use PAG
|
| 1593 |
+
if self.do_perturbed_attention_guidance:
|
| 1594 |
+
if self.do_classifier_free_guidance:
|
| 1595 |
+
replace_processor = PAGCFGIdentitySelfAttnProcessor()
|
| 1596 |
+
else:
|
| 1597 |
+
replace_processor = PAGIdentitySelfAttnProcessor()
|
| 1598 |
+
|
| 1599 |
+
drop_layers = self.pag_applied_layers_index
|
| 1600 |
+
for drop_layer in drop_layers:
|
| 1601 |
+
try:
|
| 1602 |
+
if drop_layer[0] == "d":
|
| 1603 |
+
down_layers[int(drop_layer[1])].processor = replace_processor
|
| 1604 |
+
elif drop_layer[0] == "m":
|
| 1605 |
+
mid_layers[int(drop_layer[1])].processor = replace_processor
|
| 1606 |
+
elif drop_layer[0] == "u":
|
| 1607 |
+
up_layers[int(drop_layer[1])].processor = replace_processor
|
| 1608 |
+
else:
|
| 1609 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
| 1610 |
+
except IndexError:
|
| 1611 |
+
raise ValueError(
|
| 1612 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1616 |
+
self._num_timesteps = len(timesteps)
|
| 1617 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1618 |
+
for i, t in enumerate(timesteps):
|
| 1619 |
+
if self.interrupt:
|
| 1620 |
+
continue
|
| 1621 |
+
|
| 1622 |
+
# cfg
|
| 1623 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
| 1624 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 1625 |
+
mask_input = torch.cat([mask] * 2)
|
| 1626 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 2)
|
| 1627 |
+
# pag
|
| 1628 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1629 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 1630 |
+
mask_input = torch.cat([mask] * 2)
|
| 1631 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 2)
|
| 1632 |
+
# both
|
| 1633 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1634 |
+
latent_model_input = torch.cat([latents] * 3)
|
| 1635 |
+
mask_input = torch.cat([mask] * 3)
|
| 1636 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 3)
|
| 1637 |
+
# no
|
| 1638 |
+
else:
|
| 1639 |
+
latent_model_input = latents
|
| 1640 |
+
mask_input = mask
|
| 1641 |
+
masked_image_latents_input = masked_image_latents
|
| 1642 |
+
|
| 1643 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1644 |
+
|
| 1645 |
+
if num_channels_unet == 9:
|
| 1646 |
+
|
| 1647 |
+
latent_model_input = torch.cat([latent_model_input, mask_input, masked_image_latents_input], dim=1)
|
| 1648 |
+
|
| 1649 |
+
# predict the noise residual
|
| 1650 |
+
noise_pred = self.unet(
|
| 1651 |
+
latent_model_input,
|
| 1652 |
+
t,
|
| 1653 |
+
encoder_hidden_states=prompt_embeds,
|
| 1654 |
+
timestep_cond=timestep_cond,
|
| 1655 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1656 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1657 |
+
return_dict=False,
|
| 1658 |
+
)[0]
|
| 1659 |
+
|
| 1660 |
+
# perform guidance
|
| 1661 |
+
|
| 1662 |
+
# cfg
|
| 1663 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
| 1664 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1665 |
+
|
| 1666 |
+
delta = noise_pred_text - noise_pred_uncond
|
| 1667 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * delta
|
| 1668 |
+
|
| 1669 |
+
# pag
|
| 1670 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1671 |
+
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2)
|
| 1672 |
+
|
| 1673 |
+
signal_scale = self.pag_scale
|
| 1674 |
+
if self.do_pag_adaptive_scaling:
|
| 1675 |
+
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t)
|
| 1676 |
+
if signal_scale < 0:
|
| 1677 |
+
signal_scale = 0
|
| 1678 |
+
|
| 1679 |
+
noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb)
|
| 1680 |
+
|
| 1681 |
+
# both
|
| 1682 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
| 1683 |
+
noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3)
|
| 1684 |
+
|
| 1685 |
+
signal_scale = self.pag_scale
|
| 1686 |
+
if self.do_pag_adaptive_scaling:
|
| 1687 |
+
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t)
|
| 1688 |
+
if signal_scale < 0:
|
| 1689 |
+
signal_scale = 0
|
| 1690 |
+
|
| 1691 |
+
noise_pred = (
|
| 1692 |
+
noise_pred_text
|
| 1693 |
+
+ (self.guidance_scale - 1.0) * (noise_pred_text - noise_pred_uncond)
|
| 1694 |
+
+ signal_scale * (noise_pred_text - noise_pred_text_perturb)
|
| 1695 |
+
)
|
| 1696 |
+
|
| 1697 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1698 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1699 |
+
if num_channels_unet == 4:
|
| 1700 |
+
init_latents_proper = image_latents
|
| 1701 |
+
if self.do_classifier_free_guidance:
|
| 1702 |
+
init_mask, _ = mask.chunk(2)
|
| 1703 |
+
else:
|
| 1704 |
+
init_mask = mask
|
| 1705 |
+
|
| 1706 |
+
if i < len(timesteps) - 1:
|
| 1707 |
+
noise_timestep = timesteps[i + 1]
|
| 1708 |
+
init_latents_proper = self.scheduler.add_noise(
|
| 1709 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
| 1710 |
+
)
|
| 1711 |
+
|
| 1712 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
| 1713 |
+
|
| 1714 |
+
if callback_on_step_end is not None:
|
| 1715 |
+
callback_kwargs = {}
|
| 1716 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1717 |
+
callback_kwargs[k] = locals()[k]
|
| 1718 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1719 |
+
|
| 1720 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1721 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1722 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1723 |
+
mask = callback_outputs.pop("mask", mask)
|
| 1724 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
| 1725 |
+
|
| 1726 |
+
# call the callback, if provided
|
| 1727 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1728 |
+
progress_bar.update()
|
| 1729 |
+
if callback is not None and i % callback_steps == 0:
|
| 1730 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1731 |
+
callback(step_idx, t, latents)
|
| 1732 |
+
|
| 1733 |
+
if not output_type == "latent":
|
| 1734 |
+
condition_kwargs = {}
|
| 1735 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
| 1736 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
| 1737 |
+
init_image_condition = init_image.clone()
|
| 1738 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
| 1739 |
+
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
| 1740 |
+
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
| 1741 |
+
image = self.vae.decode(
|
| 1742 |
+
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
|
| 1743 |
+
)[0]
|
| 1744 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1745 |
+
else:
|
| 1746 |
+
image = latents
|
| 1747 |
+
has_nsfw_concept = None
|
| 1748 |
+
|
| 1749 |
+
if has_nsfw_concept is None:
|
| 1750 |
+
do_denormalize = [True] * image.shape[0]
|
| 1751 |
+
else:
|
| 1752 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 1753 |
+
|
| 1754 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 1755 |
+
|
| 1756 |
+
if padding_mask_crop is not None:
|
| 1757 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
| 1758 |
+
|
| 1759 |
+
# Offload all models
|
| 1760 |
+
self.maybe_free_model_hooks()
|
| 1761 |
+
|
| 1762 |
+
# change attention layer in UNet if use PAG
|
| 1763 |
+
if self.do_perturbed_attention_guidance:
|
| 1764 |
+
drop_layers = self.pag_applied_layers_index
|
| 1765 |
+
for drop_layer in drop_layers:
|
| 1766 |
+
try:
|
| 1767 |
+
if drop_layer[0] == "d":
|
| 1768 |
+
down_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
| 1769 |
+
elif drop_layer[0] == "m":
|
| 1770 |
+
mid_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
| 1771 |
+
elif drop_layer[0] == "u":
|
| 1772 |
+
up_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
| 1773 |
+
else:
|
| 1774 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
| 1775 |
+
except IndexError:
|
| 1776 |
+
raise ValueError(
|
| 1777 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
| 1778 |
+
)
|
| 1779 |
+
|
| 1780 |
+
if not return_dict:
|
| 1781 |
+
return (image, has_nsfw_concept)
|
| 1782 |
+
|
| 1783 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|