Make lora loading api endpoint functional
Browse files- api.py +92 -3
- flux_pipeline.py +8 -5
api.py
CHANGED
|
@@ -1,17 +1,38 @@
|
|
| 1 |
-
from typing import Optional
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
from fastapi import FastAPI
|
| 5 |
-
from fastapi.responses import StreamingResponse
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
from platform import system
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
if system() == "Windows":
|
| 10 |
MAX_RAND = 2**16 - 1
|
| 11 |
else:
|
| 12 |
MAX_RAND = 2**32 - 1
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
class GenerateArgs(BaseModel):
|
|
@@ -27,7 +48,75 @@ class GenerateArgs(BaseModel):
|
|
| 27 |
init_image: Optional[str] = None
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
@app.post("/generate")
|
| 31 |
def generate(args: GenerateArgs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
result = app.state.model.generate(**args.model_dump())
|
| 33 |
return StreamingResponse(result, media_type="image/jpeg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal, Optional, TYPE_CHECKING
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
from fastapi import FastAPI
|
| 5 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
from platform import system
|
| 8 |
|
| 9 |
+
if TYPE_CHECKING:
|
| 10 |
+
from flux_pipeline import FluxPipeline
|
| 11 |
+
|
| 12 |
if system() == "Windows":
|
| 13 |
MAX_RAND = 2**16 - 1
|
| 14 |
else:
|
| 15 |
MAX_RAND = 2**32 - 1
|
| 16 |
|
| 17 |
+
|
| 18 |
+
class AppState:
|
| 19 |
+
model: "FluxPipeline"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class FastAPIApp(FastAPI):
|
| 23 |
+
state: AppState
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class LoraArgs(BaseModel):
|
| 27 |
+
scale: Optional[float] = 1.0
|
| 28 |
+
path: Optional[str] = None
|
| 29 |
+
name: Optional[str] = None
|
| 30 |
+
action: Optional[Literal["load", "unload"]] = "load"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class LoraLoadResponse(BaseModel):
|
| 34 |
+
status: Literal["success", "error"]
|
| 35 |
+
message: Optional[str] = None
|
| 36 |
|
| 37 |
|
| 38 |
class GenerateArgs(BaseModel):
|
|
|
|
| 48 |
init_image: Optional[str] = None
|
| 49 |
|
| 50 |
|
| 51 |
+
app = FastAPIApp()
|
| 52 |
+
|
| 53 |
+
|
| 54 |
@app.post("/generate")
|
| 55 |
def generate(args: GenerateArgs):
|
| 56 |
+
"""
|
| 57 |
+
Generates an image from the Flux flow transformer.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
args (GenerateArgs): Arguments for image generation:
|
| 61 |
+
|
| 62 |
+
- `prompt`: The prompt used for image generation.
|
| 63 |
+
|
| 64 |
+
- `width`: The width of the image.
|
| 65 |
+
|
| 66 |
+
- `height`: The height of the image.
|
| 67 |
+
|
| 68 |
+
- `num_steps`: The number of steps for the image generation.
|
| 69 |
+
|
| 70 |
+
- `guidance`: The guidance for image generation, represents the
|
| 71 |
+
influence of the prompt on the image generation.
|
| 72 |
+
|
| 73 |
+
- `seed`: The seed for the image generation.
|
| 74 |
+
|
| 75 |
+
- `strength`: strength for image generation, 0.0 - 1.0.
|
| 76 |
+
Represents the percent of diffusion steps to run,
|
| 77 |
+
setting the init_image as the noised latent at the
|
| 78 |
+
given number of steps.
|
| 79 |
+
|
| 80 |
+
- `init_image`: Base64 encoded image or path to image to use as the init image.
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
StreamingResponse: The generated image as streaming jpeg bytes.
|
| 84 |
+
"""
|
| 85 |
result = app.state.model.generate(**args.model_dump())
|
| 86 |
return StreamingResponse(result, media_type="image/jpeg")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@app.post("/lora", response_model=LoraLoadResponse)
|
| 90 |
+
def lora_action(args: LoraArgs):
|
| 91 |
+
"""
|
| 92 |
+
Loads or unloads a LoRA checkpoint into / from the Flux flow transformer.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
args (LoraArgs): Arguments for the LoRA action:
|
| 96 |
+
|
| 97 |
+
- `scale`: The scaling factor for the LoRA weights.
|
| 98 |
+
- `path`: The path to the LoRA checkpoint.
|
| 99 |
+
- `name`: The name of the LoRA checkpoint.
|
| 100 |
+
- `action`: The action to perform, either "load" or "unload".
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
LoraLoadResponse: The status of the LoRA action.
|
| 104 |
+
"""
|
| 105 |
+
try:
|
| 106 |
+
if args.action == "load":
|
| 107 |
+
app.state.model.load_lora(args.path, args.scale, args.name)
|
| 108 |
+
elif args.action == "unload":
|
| 109 |
+
app.state.model.unload_lora(args.name if args.name else args.path)
|
| 110 |
+
else:
|
| 111 |
+
return JSONResponse(
|
| 112 |
+
content={
|
| 113 |
+
"status": "error",
|
| 114 |
+
"message": f"Invalid action, expected 'load' or 'unload', got {args.action}",
|
| 115 |
+
},
|
| 116 |
+
status_code=400,
|
| 117 |
+
)
|
| 118 |
+
except Exception as e:
|
| 119 |
+
return JSONResponse(
|
| 120 |
+
status_code=500, content={"status": "error", "message": str(e)}
|
| 121 |
+
)
|
| 122 |
+
return JSONResponse(status_code=200, content={"status": "success"})
|
flux_pipeline.py
CHANGED
|
@@ -2,7 +2,7 @@ import io
|
|
| 2 |
import math
|
| 3 |
import random
|
| 4 |
import warnings
|
| 5 |
-
from typing import TYPE_CHECKING, Callable, List, OrderedDict, Union
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
|
@@ -149,7 +149,10 @@ class FluxPipeline:
|
|
| 149 |
return cuda_generator, seed
|
| 150 |
|
| 151 |
def load_lora(
|
| 152 |
-
self,
|
|
|
|
|
|
|
|
|
|
| 153 |
):
|
| 154 |
"""
|
| 155 |
Loads a LoRA checkpoint into the Flux flow transformer.
|
|
@@ -160,9 +163,9 @@ class FluxPipeline:
|
|
| 160 |
Args:
|
| 161 |
lora_path (str | OrderedDict[str, torch.Tensor]): Path to the LoRA checkpoint or an ordered dictionary containing the LoRA weights.
|
| 162 |
scale (float): Scaling factor for the LoRA weights.
|
| 163 |
-
|
| 164 |
"""
|
| 165 |
-
self.model.load_lora(lora_path, scale)
|
| 166 |
|
| 167 |
def unload_lora(self, path_or_identifier: str):
|
| 168 |
"""
|
|
@@ -171,7 +174,7 @@ class FluxPipeline:
|
|
| 171 |
Args:
|
| 172 |
path_or_identifier (str): Path to the LoRA checkpoint or the name given to the LoRA checkpoint when it was loaded.
|
| 173 |
"""
|
| 174 |
-
self.model.unload_lora(path_or_identifier)
|
| 175 |
|
| 176 |
@torch.inference_mode()
|
| 177 |
def compile(self):
|
|
|
|
| 2 |
import math
|
| 3 |
import random
|
| 4 |
import warnings
|
| 5 |
+
from typing import TYPE_CHECKING, Callable, List, Optional, OrderedDict, Union
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
|
|
|
| 149 |
return cuda_generator, seed
|
| 150 |
|
| 151 |
def load_lora(
|
| 152 |
+
self,
|
| 153 |
+
lora_path: Union[str, OrderedDict[str, torch.Tensor]],
|
| 154 |
+
scale: float,
|
| 155 |
+
name: Optional[str] = None,
|
| 156 |
):
|
| 157 |
"""
|
| 158 |
Loads a LoRA checkpoint into the Flux flow transformer.
|
|
|
|
| 163 |
Args:
|
| 164 |
lora_path (str | OrderedDict[str, torch.Tensor]): Path to the LoRA checkpoint or an ordered dictionary containing the LoRA weights.
|
| 165 |
scale (float): Scaling factor for the LoRA weights.
|
| 166 |
+
name (str): Name of the LoRA checkpoint, optionally can be left as None, since it only acts as an identifier.
|
| 167 |
"""
|
| 168 |
+
self.model.load_lora(path=lora_path, scale=scale, name=name)
|
| 169 |
|
| 170 |
def unload_lora(self, path_or_identifier: str):
|
| 171 |
"""
|
|
|
|
| 174 |
Args:
|
| 175 |
path_or_identifier (str): Path to the LoRA checkpoint or the name given to the LoRA checkpoint when it was loaded.
|
| 176 |
"""
|
| 177 |
+
self.model.unload_lora(path_or_identifier=path_or_identifier)
|
| 178 |
|
| 179 |
@torch.inference_mode()
|
| 180 |
def compile(self):
|