Dynamic swap with cublas linear / optional improved precision with vram drawback
Browse files- float8_quantize.py +75 -8
- flux_pipeline.py +7 -1
- modules/flux_model.py +2 -7
- util.py +9 -0
float8_quantize.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
from torchao.float8.float8_utils import (
|
|
@@ -10,7 +11,8 @@ import math
|
|
| 10 |
from torch.compiler import is_compiling
|
| 11 |
from torch import __version__
|
| 12 |
from torch.version import cuda
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
IS_TORCH_2_4 = __version__ < (2, 4, 9)
|
| 16 |
LT_TORCH_2_4 = __version__ < (2, 4)
|
|
@@ -42,7 +44,7 @@ class F8Linear(nn.Module):
|
|
| 42 |
float8_dtype=torch.float8_e4m3fn,
|
| 43 |
float_weight: torch.Tensor = None,
|
| 44 |
float_bias: torch.Tensor = None,
|
| 45 |
-
num_scale_trials: int =
|
| 46 |
input_float8_dtype=torch.float8_e5m2,
|
| 47 |
) -> None:
|
| 48 |
super().__init__()
|
|
@@ -183,6 +185,11 @@ class F8Linear(nn.Module):
|
|
| 183 |
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
def quantize_input(self, x: torch.Tensor):
|
| 187 |
if self.input_scale_initialized:
|
| 188 |
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
|
|
@@ -279,10 +286,12 @@ class F8Linear(nn.Module):
|
|
| 279 |
return f8_lin
|
| 280 |
|
| 281 |
|
|
|
|
| 282 |
def recursive_swap_linears(
|
| 283 |
model: nn.Module,
|
| 284 |
float8_dtype=torch.float8_e4m3fn,
|
| 285 |
input_float8_dtype=torch.float8_e5m2,
|
|
|
|
| 286 |
) -> None:
|
| 287 |
"""
|
| 288 |
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
|
|
@@ -300,6 +309,8 @@ def recursive_swap_linears(
|
|
| 300 |
all linear layers in the model will be using 8-bit quantization.
|
| 301 |
"""
|
| 302 |
for name, child in model.named_children():
|
|
|
|
|
|
|
| 303 |
if isinstance(child, nn.Linear) and not isinstance(
|
| 304 |
child, (F8Linear, CublasLinear)
|
| 305 |
):
|
|
@@ -315,7 +326,35 @@ def recursive_swap_linears(
|
|
| 315 |
)
|
| 316 |
del child
|
| 317 |
else:
|
| 318 |
-
recursive_swap_linears(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
|
| 321 |
@torch.inference_mode()
|
|
@@ -325,6 +364,10 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
| 325 |
float8_dtype=torch.float8_e4m3fn,
|
| 326 |
input_float8_dtype=torch.float8_e5m2,
|
| 327 |
offload_flow=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
) -> nn.Module:
|
| 329 |
"""
|
| 330 |
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
|
|
@@ -334,19 +377,36 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
| 334 |
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
|
| 335 |
|
| 336 |
After dispatching, if offload_flow is True, offloads the model to cpu.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
"""
|
| 338 |
for module in flow_model.double_blocks:
|
| 339 |
module.to(device)
|
| 340 |
module.eval()
|
| 341 |
recursive_swap_linears(
|
| 342 |
-
module,
|
|
|
|
|
|
|
|
|
|
| 343 |
)
|
| 344 |
torch.cuda.empty_cache()
|
| 345 |
for module in flow_model.single_blocks:
|
| 346 |
module.to(device)
|
| 347 |
module.eval()
|
| 348 |
recursive_swap_linears(
|
| 349 |
-
module,
|
|
|
|
|
|
|
|
|
|
| 350 |
)
|
| 351 |
torch.cuda.empty_cache()
|
| 352 |
to_gpu_extras = [
|
|
@@ -364,8 +424,10 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
| 364 |
continue
|
| 365 |
m_extra.to(device)
|
| 366 |
m_extra.eval()
|
| 367 |
-
if
|
| 368 |
-
m_extra,
|
|
|
|
|
|
|
| 369 |
):
|
| 370 |
setattr(
|
| 371 |
flow_model,
|
|
@@ -377,13 +439,18 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
| 377 |
),
|
| 378 |
)
|
| 379 |
del m_extra
|
| 380 |
-
elif module != "final_layer":
|
| 381 |
recursive_swap_linears(
|
| 382 |
m_extra,
|
| 383 |
float8_dtype=float8_dtype,
|
| 384 |
input_float8_dtype=input_float8_dtype,
|
|
|
|
| 385 |
)
|
| 386 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
if offload_flow:
|
| 388 |
flow_model.to("cpu")
|
| 389 |
torch.cuda.empty_cache()
|
|
|
|
| 1 |
+
from loguru import logger
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
from torchao.float8.float8_utils import (
|
|
|
|
| 11 |
from torch.compiler import is_compiling
|
| 12 |
from torch import __version__
|
| 13 |
from torch.version import cuda
|
| 14 |
+
|
| 15 |
+
from modules.flux_model import Modulation
|
| 16 |
|
| 17 |
IS_TORCH_2_4 = __version__ < (2, 4, 9)
|
| 18 |
LT_TORCH_2_4 = __version__ < (2, 4)
|
|
|
|
| 44 |
float8_dtype=torch.float8_e4m3fn,
|
| 45 |
float_weight: torch.Tensor = None,
|
| 46 |
float_bias: torch.Tensor = None,
|
| 47 |
+
num_scale_trials: int = 12,
|
| 48 |
input_float8_dtype=torch.float8_e5m2,
|
| 49 |
) -> None:
|
| 50 |
super().__init__()
|
|
|
|
| 185 |
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
|
| 186 |
)
|
| 187 |
|
| 188 |
+
def set_weight_tensor(self, tensor: torch.Tensor):
|
| 189 |
+
self.weight.data = tensor
|
| 190 |
+
self.weight_initialized = False
|
| 191 |
+
self.quantize_weight()
|
| 192 |
+
|
| 193 |
def quantize_input(self, x: torch.Tensor):
|
| 194 |
if self.input_scale_initialized:
|
| 195 |
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
|
|
|
|
| 286 |
return f8_lin
|
| 287 |
|
| 288 |
|
| 289 |
+
@torch.inference_mode()
|
| 290 |
def recursive_swap_linears(
|
| 291 |
model: nn.Module,
|
| 292 |
float8_dtype=torch.float8_e4m3fn,
|
| 293 |
input_float8_dtype=torch.float8_e5m2,
|
| 294 |
+
quantize_modulation: bool = True,
|
| 295 |
) -> None:
|
| 296 |
"""
|
| 297 |
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
|
|
|
|
| 309 |
all linear layers in the model will be using 8-bit quantization.
|
| 310 |
"""
|
| 311 |
for name, child in model.named_children():
|
| 312 |
+
if isinstance(child, Modulation) and not quantize_modulation:
|
| 313 |
+
continue
|
| 314 |
if isinstance(child, nn.Linear) and not isinstance(
|
| 315 |
child, (F8Linear, CublasLinear)
|
| 316 |
):
|
|
|
|
| 326 |
)
|
| 327 |
del child
|
| 328 |
else:
|
| 329 |
+
recursive_swap_linears(
|
| 330 |
+
child,
|
| 331 |
+
float8_dtype=float8_dtype,
|
| 332 |
+
input_float8_dtype=input_float8_dtype,
|
| 333 |
+
quantize_modulation=quantize_modulation,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
@torch.inference_mode()
|
| 338 |
+
def swap_to_cublaslinear(model: nn.Module):
|
| 339 |
+
if not isinstance(CublasLinear, torch.nn.Module):
|
| 340 |
+
return
|
| 341 |
+
for name, child in model.named_children():
|
| 342 |
+
if isinstance(child, nn.Linear) and not isinstance(
|
| 343 |
+
child, (F8Linear, CublasLinear)
|
| 344 |
+
):
|
| 345 |
+
cublas_lin = CublasLinear(
|
| 346 |
+
child.in_features,
|
| 347 |
+
child.out_features,
|
| 348 |
+
bias=child.bias is not None,
|
| 349 |
+
dtype=child.weight.dtype,
|
| 350 |
+
device=child.weight.device,
|
| 351 |
+
)
|
| 352 |
+
cublas_lin.weight.data = child.weight.clone().detach()
|
| 353 |
+
cublas_lin.bias.data = child.bias.clone().detach()
|
| 354 |
+
setattr(model, name, cublas_lin)
|
| 355 |
+
del child
|
| 356 |
+
else:
|
| 357 |
+
swap_to_cublaslinear(child)
|
| 358 |
|
| 359 |
|
| 360 |
@torch.inference_mode()
|
|
|
|
| 364 |
float8_dtype=torch.float8_e4m3fn,
|
| 365 |
input_float8_dtype=torch.float8_e5m2,
|
| 366 |
offload_flow=False,
|
| 367 |
+
swap_linears_with_cublaslinear=True,
|
| 368 |
+
flow_dtype=torch.float16,
|
| 369 |
+
quantize_modulation: bool = True,
|
| 370 |
+
quantize_flow_embedder_layers: bool = True,
|
| 371 |
) -> nn.Module:
|
| 372 |
"""
|
| 373 |
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
|
|
|
|
| 377 |
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
|
| 378 |
|
| 379 |
After dispatching, if offload_flow is True, offloads the model to cpu.
|
| 380 |
+
|
| 381 |
+
if swap_linears_with_cublaslinear is true, and flow_dtype == torch.float16, then swap all linears with cublaslinears for 2x performance boost on consumer GPUs.
|
| 382 |
+
Otherwise will skip the cublaslinear swap.
|
| 383 |
+
|
| 384 |
+
For added extra precision, you can set quantize_flow_embedder_layers to False,
|
| 385 |
+
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
|
| 386 |
+
at the expense of ~512MB more VRAM usage.
|
| 387 |
+
|
| 388 |
+
For added extra precision, you can set quantize_modulation to False,
|
| 389 |
+
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
|
| 390 |
+
at the expense of ~2GB more VRAM usage, but- has a much higher impact on image quality than the embedder layers.
|
| 391 |
"""
|
| 392 |
for module in flow_model.double_blocks:
|
| 393 |
module.to(device)
|
| 394 |
module.eval()
|
| 395 |
recursive_swap_linears(
|
| 396 |
+
module,
|
| 397 |
+
float8_dtype=float8_dtype,
|
| 398 |
+
input_float8_dtype=input_float8_dtype,
|
| 399 |
+
quantize_modulation=quantize_modulation,
|
| 400 |
)
|
| 401 |
torch.cuda.empty_cache()
|
| 402 |
for module in flow_model.single_blocks:
|
| 403 |
module.to(device)
|
| 404 |
module.eval()
|
| 405 |
recursive_swap_linears(
|
| 406 |
+
module,
|
| 407 |
+
float8_dtype=float8_dtype,
|
| 408 |
+
input_float8_dtype=input_float8_dtype,
|
| 409 |
+
quantize_modulation=quantize_modulation,
|
| 410 |
)
|
| 411 |
torch.cuda.empty_cache()
|
| 412 |
to_gpu_extras = [
|
|
|
|
| 424 |
continue
|
| 425 |
m_extra.to(device)
|
| 426 |
m_extra.eval()
|
| 427 |
+
if (
|
| 428 |
+
isinstance(m_extra, nn.Linear)
|
| 429 |
+
and not isinstance(m_extra, (F8Linear, CublasLinear))
|
| 430 |
+
and quantize_flow_embedder_layers
|
| 431 |
):
|
| 432 |
setattr(
|
| 433 |
flow_model,
|
|
|
|
| 439 |
),
|
| 440 |
)
|
| 441 |
del m_extra
|
| 442 |
+
elif module != "final_layer" and not quantize_flow_embedder_layers:
|
| 443 |
recursive_swap_linears(
|
| 444 |
m_extra,
|
| 445 |
float8_dtype=float8_dtype,
|
| 446 |
input_float8_dtype=input_float8_dtype,
|
| 447 |
+
quantize_modulation=quantize_modulation,
|
| 448 |
)
|
| 449 |
torch.cuda.empty_cache()
|
| 450 |
+
if swap_linears_with_cublaslinear and flow_dtype == torch.float16:
|
| 451 |
+
swap_to_cublaslinear(flow_model)
|
| 452 |
+
elif swap_linears_with_cublaslinear and flow_dtype != torch.float16:
|
| 453 |
+
logger.warning("Skipping cublas linear swap because flow_dtype is not float16")
|
| 454 |
if offload_flow:
|
| 455 |
flow_model.to("cpu")
|
| 456 |
torch.cuda.empty_cache()
|
flux_pipeline.py
CHANGED
|
@@ -645,7 +645,13 @@ class FluxPipeline:
|
|
| 645 |
|
| 646 |
if not config.prequantized_flow:
|
| 647 |
flow_model = quantize_flow_transformer_and_dispatch_float8(
|
| 648 |
-
flow_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
)
|
| 650 |
else:
|
| 651 |
flow_model.eval().requires_grad_(False)
|
|
|
|
| 645 |
|
| 646 |
if not config.prequantized_flow:
|
| 647 |
flow_model = quantize_flow_transformer_and_dispatch_float8(
|
| 648 |
+
flow_model,
|
| 649 |
+
flux_device,
|
| 650 |
+
offload_flow=config.offload_flow,
|
| 651 |
+
swap_linears_with_cublaslinear=flux_dtype == torch.float16,
|
| 652 |
+
flow_dtype=flux_dtype,
|
| 653 |
+
quantize_modulation=config.quantize_modulation,
|
| 654 |
+
quantize_flow_embedder_layers=config.quantize_flow_embedder_layers,
|
| 655 |
)
|
| 656 |
else:
|
| 657 |
flow_model.eval().requires_grad_(False)
|
modules/flux_model.py
CHANGED
|
@@ -14,11 +14,6 @@ from torch import Tensor, nn
|
|
| 14 |
from pydantic import BaseModel
|
| 15 |
from torch.nn import functional as F
|
| 16 |
|
| 17 |
-
try:
|
| 18 |
-
from cublas_ops import CublasLinear
|
| 19 |
-
except ImportError:
|
| 20 |
-
CublasLinear = nn.Linear
|
| 21 |
-
|
| 22 |
|
| 23 |
class FluxParams(BaseModel):
|
| 24 |
in_channels: int
|
|
@@ -350,11 +345,11 @@ class LastLayer(nn.Module):
|
|
| 350 |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
| 351 |
super().__init__()
|
| 352 |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 353 |
-
self.linear =
|
| 354 |
hidden_size, patch_size * patch_size * out_channels, bias=True
|
| 355 |
)
|
| 356 |
self.adaLN_modulation = nn.Sequential(
|
| 357 |
-
nn.SiLU(),
|
| 358 |
)
|
| 359 |
|
| 360 |
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
|
|
|
| 14 |
from pydantic import BaseModel
|
| 15 |
from torch.nn import functional as F
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
class FluxParams(BaseModel):
|
| 19 |
in_channels: int
|
|
|
|
| 345 |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
| 346 |
super().__init__()
|
| 347 |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 348 |
+
self.linear = nn.Linear(
|
| 349 |
hidden_size, patch_size * patch_size * out_channels, bias=True
|
| 350 |
)
|
| 351 |
self.adaLN_modulation = nn.Sequential(
|
| 352 |
+
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
| 353 |
)
|
| 354 |
|
| 355 |
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
util.py
CHANGED
|
@@ -8,12 +8,16 @@ from modules.conditioner import HFEmbedder
|
|
| 8 |
from modules.flux_model import Flux, FluxParams
|
| 9 |
from modules.flux_model_f8 import Flux as FluxF8
|
| 10 |
from safetensors.torch import load_file as load_sft
|
|
|
|
| 11 |
try:
|
| 12 |
from enum import StrEnum
|
| 13 |
except:
|
| 14 |
from enum import Enum
|
|
|
|
| 15 |
class StrEnum(str, Enum):
|
| 16 |
pass
|
|
|
|
|
|
|
| 17 |
from pydantic import BaseModel, ConfigDict
|
| 18 |
from loguru import logger
|
| 19 |
|
|
@@ -61,6 +65,11 @@ class ModelSpec(BaseModel):
|
|
| 61 |
offload_flow: bool = False
|
| 62 |
prequantized_flow: bool = False
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
model_config: ConfigDict = {
|
| 65 |
"arbitrary_types_allowed": True,
|
| 66 |
"use_enum_values": True,
|
|
|
|
| 8 |
from modules.flux_model import Flux, FluxParams
|
| 9 |
from modules.flux_model_f8 import Flux as FluxF8
|
| 10 |
from safetensors.torch import load_file as load_sft
|
| 11 |
+
|
| 12 |
try:
|
| 13 |
from enum import StrEnum
|
| 14 |
except:
|
| 15 |
from enum import Enum
|
| 16 |
+
|
| 17 |
class StrEnum(str, Enum):
|
| 18 |
pass
|
| 19 |
+
|
| 20 |
+
|
| 21 |
from pydantic import BaseModel, ConfigDict
|
| 22 |
from loguru import logger
|
| 23 |
|
|
|
|
| 65 |
offload_flow: bool = False
|
| 66 |
prequantized_flow: bool = False
|
| 67 |
|
| 68 |
+
# Improved precision via not quanitzing the modulation linear layers
|
| 69 |
+
quantize_modulation: bool = True
|
| 70 |
+
# Improved precision via not quanitzing the flow embedder layers
|
| 71 |
+
quantize_flow_embedder_layers: bool = True
|
| 72 |
+
|
| 73 |
model_config: ConfigDict = {
|
| 74 |
"arbitrary_types_allowed": True,
|
| 75 |
"use_enum_values": True,
|