FLUX.1-schnell-fp8-flumina / image_encoder.py
aredden's picture
Add offloading & improved fp8 inference.
28dec30
raw
history blame
1.94 kB
import io
from PIL import Image
import numpy as np
import torch
class ImageEncoder:
@torch.inference_mode()
def encode_torch(self, img: torch.Tensor, quality=90):
if img.ndim == 2:
img = (
img[None]
.contiguous()
.repeat_interleave(3, dim=0)
.contiguous()
.clamp(0, 255)
.type(torch.uint8)
)
print(img.shape)
elif img.ndim == 3:
if img.shape[0] == 3:
img = img.contiguous().clamp(0, 255).type(torch.uint8)
elif img.shape[2] == 3:
img = img.permute(2, 0, 1).contiguous().clamp(0, 255).type(torch.uint8)
else:
raise ValueError(f"Unsupported image shape: {img.shape}")
else:
raise ValueError(f"Unsupported image num dims: {img.ndim}")
img = (
img.permute(1, 2, 0)
.contiguous()
.to(torch.uint8)
.cpu()
.numpy()
.astype(np.uint8)
)
im = Image.fromarray(img)
iob = io.BytesIO()
im.save(iob, format="JPEG", quality=95)
iob.seek(0)
return iob.getvalue()
def test_real_img():
from PIL import Image
import numpy as np
im = "out.jpg"
im = Image.open(im)
im = np.array(im)
img_hwc = torch.from_numpy(im).cuda().type(torch.float32)
img_chw = img_hwc.permute(2, 0, 1).contiguous()
img_gray = img_hwc.mean(dim=2, keepdim=False).contiguous().clamp(0, 255)
tj = TurboImage()
o = tj.encode_torch(img_chw)
o2 = tj.encode_torch(img_hwc)
o3 = tj.encode_torch(img_gray)
with open("out_chw.jpg", "wb") as f:
f.write(o2)
with open("out_hwc.jpg", "wb") as f:
f.write(o)
with open("out_gray.jpg", "wb") as f:
f.write(o3)
# print(o)
if __name__ == "__main__":
test_real_img()