dronefreak commited on
Commit
d9793d5
·
1 Parent(s): 6c583c3
Files changed (1) hide show
  1. README.md +8 -16
README.md CHANGED
@@ -48,9 +48,9 @@ model-index:
48
 
49
  # Human Action Classification v2.0
50
 
51
- State-of-the-art human action recognition model trained on Stanford 40 Actions dataset.
52
 
53
- ![Demo](looking_through_a_telescope.jpg)
54
 
55
  ## Model Description
56
 
@@ -59,7 +59,6 @@ This model performs real-time human action classification from images, recognizi
59
  - **Developed by:** Saumya Kumaar Saksena ([@dronefreak](https://github.com/dronefreak))
60
  - **Model type:** Image Classification (Action Recognition)
61
  - **Language(s):** English (action labels)
62
- - **License:** MIT
63
  - **Finetuned from:** ImageNet pretrained ResNet34
64
 
65
  ## Key Features
@@ -249,6 +248,8 @@ Full metrics available in [metrics.json](metrics.json)
249
  - **Classes:** 40 human action categories
250
  - **Image resolution:** 224×224 (resized)
251
 
 
 
252
  ### Training Procedure
253
 
254
  #### Preprocessing
@@ -260,7 +261,7 @@ transforms.Compose([
260
  transforms.RandomHorizontalFlip(),
261
  transforms.ColorJitter(brightness=0.2, contrast=0.2),
262
  transforms.ToTensor(),
263
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
264
  std=[0.229, 0.224, 0.225])
265
  ])
266
  ```
@@ -276,16 +277,12 @@ transforms.Compose([
276
  - **Augmentation:** Mixup (α=0.4)
277
  - **Scheduler:** CosineAnnealingLR
278
 
279
- #### Hardware
280
 
281
- - **GPU:** NVIDIA GTX 1050 Ti (4GB)
282
- - **Training time:** ~4 hours
283
  - **Framework:** PyTorch 2.0+
284
 
285
- ### Two-Stage Training Strategy
286
-
287
- 1. **Stage 1 (20 epochs):** Freeze backbone, train classifier head
288
- 2. **Stage 2 (180 epochs):** Fine-tune entire network with Mixup
289
 
290
  This approach reduced overfitting from 99% train / 62% test → 82% train / 86% test.
291
 
@@ -305,11 +302,6 @@ print(f"Accuracy: {metrics['accuracy']:.2%}")
305
  print(f"F1-Score: {metrics['f1_macro']:.4f}")
306
  ```
307
 
308
- ## Environmental Impact
309
-
310
- - **Hardware:** 1× NVIDIA GTX 1050 Ti
311
- - **Training time:** 4 hours
312
- - **Estimated CO2 emissions:** ~0.5 kg CO2eq
313
 
314
  ## Limitations
315
 
 
48
 
49
  # Human Action Classification v2.0
50
 
51
+ State-of-the-art human action recognition model trained on Stanford 40 Actions dataset. GitHub project link -> ![human-action-classification](https://github.com/dronefreak/human-action-classification)
52
 
53
+ ![Demo](demo_result.jpg)
54
 
55
  ## Model Description
56
 
 
59
  - **Developed by:** Saumya Kumaar Saksena ([@dronefreak](https://github.com/dronefreak))
60
  - **Model type:** Image Classification (Action Recognition)
61
  - **Language(s):** English (action labels)
 
62
  - **Finetuned from:** ImageNet pretrained ResNet34
63
 
64
  ## Key Features
 
248
  - **Classes:** 40 human action categories
249
  - **Image resolution:** 224×224 (resized)
250
 
251
+ Please note that the proposed train-test split is a bit unconventional, which is why I had to create a custom train-test split of 80-20, which is a standard in machine learning practises.
252
+
253
  ### Training Procedure
254
 
255
  #### Preprocessing
 
261
  transforms.RandomHorizontalFlip(),
262
  transforms.ColorJitter(brightness=0.2, contrast=0.2),
263
  transforms.ToTensor(),
264
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
265
  std=[0.229, 0.224, 0.225])
266
  ])
267
  ```
 
277
  - **Augmentation:** Mixup (α=0.4)
278
  - **Scheduler:** CosineAnnealingLR
279
 
280
+ #### Training Hardware
281
 
282
+ - **GPU:** NVIDIA RTX 4070 Super (12GB)
283
+ - **Training time:** ~0.5 hours
284
  - **Framework:** PyTorch 2.0+
285
 
 
 
 
 
286
 
287
  This approach reduced overfitting from 99% train / 62% test → 82% train / 86% test.
288
 
 
302
  print(f"F1-Score: {metrics['f1_macro']:.4f}")
303
  ```
304
 
 
 
 
 
 
305
 
306
  ## Limitations
307