Commit
·
d9793d5
1
Parent(s):
6c583c3
Update
Browse files
README.md
CHANGED
|
@@ -48,9 +48,9 @@ model-index:
|
|
| 48 |
|
| 49 |
# Human Action Classification v2.0
|
| 50 |
|
| 51 |
-
State-of-the-art human action recognition model trained on Stanford 40 Actions dataset.
|
| 52 |
|
| 53 |
-
)
|
| 60 |
- **Model type:** Image Classification (Action Recognition)
|
| 61 |
- **Language(s):** English (action labels)
|
| 62 |
-
- **License:** MIT
|
| 63 |
- **Finetuned from:** ImageNet pretrained ResNet34
|
| 64 |
|
| 65 |
## Key Features
|
|
@@ -249,6 +248,8 @@ Full metrics available in [metrics.json](metrics.json)
|
|
| 249 |
- **Classes:** 40 human action categories
|
| 250 |
- **Image resolution:** 224×224 (resized)
|
| 251 |
|
|
|
|
|
|
|
| 252 |
### Training Procedure
|
| 253 |
|
| 254 |
#### Preprocessing
|
|
@@ -260,7 +261,7 @@ transforms.Compose([
|
|
| 260 |
transforms.RandomHorizontalFlip(),
|
| 261 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
| 262 |
transforms.ToTensor(),
|
| 263 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 264 |
std=[0.229, 0.224, 0.225])
|
| 265 |
])
|
| 266 |
```
|
|
@@ -276,16 +277,12 @@ transforms.Compose([
|
|
| 276 |
- **Augmentation:** Mixup (α=0.4)
|
| 277 |
- **Scheduler:** CosineAnnealingLR
|
| 278 |
|
| 279 |
-
#### Hardware
|
| 280 |
|
| 281 |
-
- **GPU:** NVIDIA
|
| 282 |
-
- **Training time:** ~
|
| 283 |
- **Framework:** PyTorch 2.0+
|
| 284 |
|
| 285 |
-
### Two-Stage Training Strategy
|
| 286 |
-
|
| 287 |
-
1. **Stage 1 (20 epochs):** Freeze backbone, train classifier head
|
| 288 |
-
2. **Stage 2 (180 epochs):** Fine-tune entire network with Mixup
|
| 289 |
|
| 290 |
This approach reduced overfitting from 99% train / 62% test → 82% train / 86% test.
|
| 291 |
|
|
@@ -305,11 +302,6 @@ print(f"Accuracy: {metrics['accuracy']:.2%}")
|
|
| 305 |
print(f"F1-Score: {metrics['f1_macro']:.4f}")
|
| 306 |
```
|
| 307 |
|
| 308 |
-
## Environmental Impact
|
| 309 |
-
|
| 310 |
-
- **Hardware:** 1× NVIDIA GTX 1050 Ti
|
| 311 |
-
- **Training time:** 4 hours
|
| 312 |
-
- **Estimated CO2 emissions:** ~0.5 kg CO2eq
|
| 313 |
|
| 314 |
## Limitations
|
| 315 |
|
|
|
|
| 48 |
|
| 49 |
# Human Action Classification v2.0
|
| 50 |
|
| 51 |
+
State-of-the-art human action recognition model trained on Stanford 40 Actions dataset. GitHub project link -> 
|
| 52 |
|
| 53 |
+

|
| 54 |
|
| 55 |
## Model Description
|
| 56 |
|
|
|
|
| 59 |
- **Developed by:** Saumya Kumaar Saksena ([@dronefreak](https://github.com/dronefreak))
|
| 60 |
- **Model type:** Image Classification (Action Recognition)
|
| 61 |
- **Language(s):** English (action labels)
|
|
|
|
| 62 |
- **Finetuned from:** ImageNet pretrained ResNet34
|
| 63 |
|
| 64 |
## Key Features
|
|
|
|
| 248 |
- **Classes:** 40 human action categories
|
| 249 |
- **Image resolution:** 224×224 (resized)
|
| 250 |
|
| 251 |
+
Please note that the proposed train-test split is a bit unconventional, which is why I had to create a custom train-test split of 80-20, which is a standard in machine learning practises.
|
| 252 |
+
|
| 253 |
### Training Procedure
|
| 254 |
|
| 255 |
#### Preprocessing
|
|
|
|
| 261 |
transforms.RandomHorizontalFlip(),
|
| 262 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
| 263 |
transforms.ToTensor(),
|
| 264 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 265 |
std=[0.229, 0.224, 0.225])
|
| 266 |
])
|
| 267 |
```
|
|
|
|
| 277 |
- **Augmentation:** Mixup (α=0.4)
|
| 278 |
- **Scheduler:** CosineAnnealingLR
|
| 279 |
|
| 280 |
+
#### Training Hardware
|
| 281 |
|
| 282 |
+
- **GPU:** NVIDIA RTX 4070 Super (12GB)
|
| 283 |
+
- **Training time:** ~0.5 hours
|
| 284 |
- **Framework:** PyTorch 2.0+
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
This approach reduced overfitting from 99% train / 62% test → 82% train / 86% test.
|
| 288 |
|
|
|
|
| 302 |
print(f"F1-Score: {metrics['f1_macro']:.4f}")
|
| 303 |
```
|
| 304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
## Limitations
|
| 307 |
|