HaoranWei commited on
Commit
e6322a2
·
verified ·
1 Parent(s): e5f86a3

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/fig1.png filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-text-to-text
3
+ language:
4
+ - multilingual
5
+ tags:
6
+ - deepseek
7
+ - vision-language
8
+ - ocr
9
+ - custom_code
10
+ license: mit
11
+ library_name: transformers
12
+ ---
13
+ <div align="center">
14
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
15
+ </div>
16
+ <hr>
17
+ <div align="center">
18
+ <a href="https://www.deepseek.com/" target="_blank">
19
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
20
+ </a>
21
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2" target="_blank">
22
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
23
+ </a>
24
+
25
+ </div>
26
+
27
+ <div align="center">
28
+
29
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
30
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
31
+ </a>
32
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
33
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
34
+ </a>
35
+
36
+ </div>
37
+
38
+
39
+
40
+ <p align="center">
41
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2"><b>🌟 Github</b></a> |
42
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2"><b>📥 Model Download</b></a> |
43
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Paper Link</b></a> |
44
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Arxiv Paper Link</b></a> |
45
+ </p>
46
+ <h2>
47
+ <p align="center">
48
+ <a href="">DeepSeek-OCR 2: Visual Causal Flow</a>
49
+ </p>
50
+ </h2>
51
+ <p align="center">
52
+ <img src="assets/fig1.png" style="width: 900px" align=center>
53
+ </p>
54
+ <p align="center">
55
+ <a href="">Explore more human-like visual encoding.</a>
56
+ </p>
57
+
58
+ ## Usage
59
+
60
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:
61
+
62
+ ```
63
+ torch==2.6.0
64
+ transformers==4.46.3
65
+ tokenizers==0.20.3
66
+ einops
67
+ addict
68
+ easydict
69
+ pip install flash-attn==2.7.3 --no-build-isolation
70
+ ```
71
+
72
+ ```python
73
+ from transformers import AutoModel, AutoTokenizer
74
+ import torch
75
+ import os
76
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
77
+ model_name = 'deepseek-ai/DeepSeek-OCR-2'
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
80
+ model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
81
+ model = model.eval().cuda().to(torch.bfloat16)
82
+
83
+ # prompt = "<image>\nFree OCR. "
84
+ prompt = "<image>\n<|grounding|>Convert the document to markdown. "
85
+ image_file = 'your_image.jpg'
86
+ output_path = 'your/output/dir'
87
+
88
+
89
+ res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 768, crop_mode=True, save_results = True)
90
+ ```
91
+
92
+ ## vLLM
93
+
94
+
95
+ Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR-2/) for guidance on model inference acceleration and PDF processing, etc.<!-- -->
96
+
97
+ ## Support-Modes
98
+ - Dynamic resolution
99
+ - Default: (0-6)×768×768 + 1×1024×1024 — (0-6)×144 + 256 visual tokens ✅
100
+
101
+ ## Prompts examples
102
+ ```python
103
+ # document: <image>\n<|grounding|>Convert the document to markdown.
104
+ # other image: <image>\n<|grounding|>OCR this image.
105
+ # without layouts: <image>\nFree OCR.
106
+ # figures in document: <image>\nParse the figure.
107
+ # general: <image>\nDescribe this image in detail.
108
+ # rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
109
+ ```
110
+
111
+
112
+ ## Acknowledgement
113
+
114
+ We would like to thank [DeepSeek-OCR](https://github.com/deepseek-ai/DeepSeek-OCR/), [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for their valuable models and ideas.
115
+
116
+ We also appreciate the benchmark [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
117
+
118
+
119
+ ## Citation
120
+
121
+ ```bibtex
122
+ coming soon~
README.md CHANGED
@@ -1,3 +1,122 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-text-to-text
3
+ language:
4
+ - multilingual
5
+ tags:
6
+ - deepseek
7
+ - vision-language
8
+ - ocr
9
+ - custom_code
10
+ license: mit
11
+ library_name: transformers
12
+ ---
13
+ <div align="center">
14
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
15
+ </div>
16
+ <hr>
17
+ <div align="center">
18
+ <a href="https://www.deepseek.com/" target="_blank">
19
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
20
+ </a>
21
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2" target="_blank">
22
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
23
+ </a>
24
+
25
+ </div>
26
+
27
+ <div align="center">
28
+
29
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
30
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
31
+ </a>
32
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
33
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
34
+ </a>
35
+
36
+ </div>
37
+
38
+
39
+
40
+ <p align="center">
41
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2"><b>🌟 Github</b></a> |
42
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2"><b>📥 Model Download</b></a> |
43
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Paper Link</b></a> |
44
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Arxiv Paper Link</b></a> |
45
+ </p>
46
+ <h2>
47
+ <p align="center">
48
+ <a href="">DeepSeek-OCR 2: Visual Causal Flow</a>
49
+ </p>
50
+ </h2>
51
+ <p align="center">
52
+ <img src="assets/fig1.png" style="width: 900px" align=center>
53
+ </p>
54
+ <p align="center">
55
+ <a href="">Explore more human-like visual encoding.</a>
56
+ </p>
57
+
58
+ ## Usage
59
+
60
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:
61
+
62
+ ```
63
+ torch==2.6.0
64
+ transformers==4.46.3
65
+ tokenizers==0.20.3
66
+ einops
67
+ addict
68
+ easydict
69
+ pip install flash-attn==2.7.3 --no-build-isolation
70
+ ```
71
+
72
+ ```python
73
+ from transformers import AutoModel, AutoTokenizer
74
+ import torch
75
+ import os
76
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
77
+ model_name = 'deepseek-ai/DeepSeek-OCR-2'
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
80
+ model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
81
+ model = model.eval().cuda().to(torch.bfloat16)
82
+
83
+ # prompt = "<image>\nFree OCR. "
84
+ prompt = "<image>\n<|grounding|>Convert the document to markdown. "
85
+ image_file = 'your_image.jpg'
86
+ output_path = 'your/output/dir'
87
+
88
+
89
+ res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 768, crop_mode=True, save_results = True)
90
+ ```
91
+
92
+ ## vLLM
93
+
94
+
95
+ Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR-2/) for guidance on model inference acceleration and PDF processing, etc.<!-- -->
96
+
97
+ ## Support-Modes
98
+ - Dynamic resolution
99
+ - Default: (0-6)×768×768 + 1×1024×1024 — (0-6)×144 + 256 visual tokens ✅
100
+
101
+ ## Prompts examples
102
+ ```python
103
+ # document: <image>\n<|grounding|>Convert the document to markdown.
104
+ # other image: <image>\n<|grounding|>OCR this image.
105
+ # without layouts: <image>\nFree OCR.
106
+ # figures in document: <image>\nParse the figure.
107
+ # general: <image>\nDescribe this image in detail.
108
+ # rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
109
+ ```
110
+
111
+
112
+ ## Acknowledgement
113
+
114
+ We would like to thank [DeepSeek-OCR](https://github.com/deepseek-ai/DeepSeek-OCR/), [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for their valuable models and ideas.
115
+
116
+ We also appreciate the benchmark [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
117
+
118
+
119
+ ## Citation
120
+
121
+ ```bibtex
122
+ coming soon~
assets/fig1.png ADDED

Git LFS Details

  • SHA256: bfa3301b397df240c5eba7206c7865cae3d9aaf6674a6c8a68904a9c98bcbc77
  • Pointer size: 131 Bytes
  • Size of remote file: 141 kB
config.json ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-OCR-2",
3
+ "candidate_resolutions": [
4
+ [
5
+ 1024,
6
+ 1024
7
+ ]
8
+ ],
9
+ "global_view_pos": "head",
10
+ "architectures": [
11
+ "DeepseekOCR2ForCausalLM"
12
+ ],
13
+ "auto_map": {
14
+ "AutoConfig": "modeling_deepseekocr2.DeepseekOCR2Config",
15
+ "AutoModel": "modeling_deepseekocr2.DeepseekOCR2ForCausalLM"
16
+ },
17
+ "language_config": {
18
+ "architectures": [
19
+ "DeepseekV2ForCausalLM"
20
+ ],
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_deepseekv2.DeepseekV2Config",
23
+ "AutoModel": "modeling_deepseek.DeepseekV2Model",
24
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
25
+ },
26
+ "bos_token_id": 0,
27
+ "eos_token_id": 1,
28
+ "first_k_dense_replace": 1,
29
+ "hidden_size": 1280,
30
+ "intermediate_size": 6848,
31
+ "kv_lora_rank": null,
32
+ "lm_head": true,
33
+ "max_position_embeddings": 8192,
34
+ "moe_intermediate_size": 896,
35
+ "n_group": 1,
36
+ "n_routed_experts": 64,
37
+ "n_shared_experts": 2,
38
+ "num_attention_heads": 10,
39
+ "num_experts_per_tok": 6,
40
+ "num_hidden_layers": 12,
41
+ "num_key_value_heads": 10,
42
+ "q_lora_rank": null,
43
+ "qk_nope_head_dim": 0,
44
+ "qk_rope_head_dim": 0,
45
+ "rm_head": false,
46
+ "topk_group": 1,
47
+ "topk_method": "greedy",
48
+ "torch_dtype": "bfloat16",
49
+ "use_mla": false,
50
+ "v_head_dim": 0,
51
+ "vocab_size": 129280
52
+ },
53
+ "model_type": "deepseek_vl_v2",
54
+ "projector_config": {
55
+ "input_dim": 896,
56
+ "model_type": "mlp_projector",
57
+ "n_embed": 1280,
58
+ "projector_type": "linear"
59
+ },
60
+ "tile_tag": "2D",
61
+ "torch_dtype": "bfloat16",
62
+ "transformers_version": "4.46.3",
63
+ "vision_config": {
64
+ "image_size": 1024,
65
+ "mlp_ratio": 3.7362,
66
+ "model_name": "deepencoderv2",
67
+ "model_type": "vision",
68
+ "width": {
69
+ "qwen2-0-5b": {
70
+ "dim": 896
71
+ },
72
+ "sam_vit_b": {
73
+ "downsample_channels": [
74
+ 512,
75
+ 1024
76
+ ],
77
+ "global_attn_indexes": [
78
+ 2,
79
+ 5,
80
+ 8,
81
+ 11
82
+ ],
83
+ "heads": 12,
84
+ "layers": 12,
85
+ "width": 768
86
+ }
87
+ }
88
+ },
89
+ "bos_token_id": 0,
90
+ "eos_token_id": 1,
91
+ "first_k_dense_replace": 1,
92
+ "hidden_size": 1280,
93
+ "intermediate_size": 6848,
94
+ "kv_lora_rank": null,
95
+ "lm_head": true,
96
+ "max_position_embeddings": 8192,
97
+ "moe_intermediate_size": 896,
98
+ "n_group": 1,
99
+ "n_routed_experts": 64,
100
+ "n_shared_experts": 2,
101
+ "num_attention_heads": 10,
102
+ "num_experts_per_tok": 6,
103
+ "num_hidden_layers": 12,
104
+ "num_key_value_heads": 10,
105
+ "q_lora_rank": null,
106
+ "qk_nope_head_dim": 0,
107
+ "qk_rope_head_dim": 0,
108
+ "rm_head": false,
109
+ "topk_group": 1,
110
+ "topk_method": "greedy",
111
+ "use_mla": false,
112
+ "v_head_dim": 0,
113
+ "vocab_size": 129280
114
+ }
configuration_deepseek_v2.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+ use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
102
+ the model will use multi-latent attention, otherwise, it will use multi-head attention.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
106
+
107
+ >>> # Initializing a Deepseek-V2 style configuration
108
+ >>> configuration = DeepseekV2Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v2"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=102400,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ moe_intermediate_size = 1407,
123
+ num_hidden_layers=30,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=32,
126
+ n_shared_experts = None,
127
+ n_routed_experts = None,
128
+ ep_size = 1,
129
+ routed_scaling_factor = 1.0,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'gready',
136
+ n_group = None,
137
+ topk_group = None,
138
+ num_experts_per_tok = None,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 0,
141
+ norm_topk_prob = False,
142
+ scoring_func = 'softmax',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=2048,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=100000,
152
+ eos_token_id=100001,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ use_mla=True,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = float(rms_norm_eps)
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.use_mla = use_mla
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
conversation.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
3
+ """
4
+
5
+ import dataclasses
6
+ from enum import IntEnum, auto
7
+ from typing import Any, Dict, List
8
+
9
+
10
+ class SeparatorStyle(IntEnum):
11
+ """Separator styles."""
12
+
13
+ DeepSeek = auto()
14
+ DeepSeekV2 = auto()
15
+ PLAIN = auto()
16
+ ALIGNMENT = auto()
17
+
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that manages prompt templates and keeps all conversation history."""
22
+
23
+ # The name of this template
24
+ name: str
25
+ # The template of the system prompt
26
+ system_template: str = "{system_message}"
27
+ # The system message
28
+ system_message: str = ""
29
+ # The names of two roles
30
+ roles: List[str] = (("USER", "ASSISTANT"),)
31
+ # All messages. Each item is (role, message).
32
+ messages: List[List[str]] = ()
33
+ # The number of few shot examples
34
+ offset: int = 0
35
+ # The separator style and configurations
36
+ sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
37
+ sep: str = "\n"
38
+ sep2: str = None
39
+ # Stop criteria (the default one is EOS token)
40
+ stop_str: str = None
41
+ # Stops generation if meeting any token in this list
42
+ stop_token_ids: List[int] = None
43
+
44
+ def get_prompt(self) -> str:
45
+ """Get the prompt for generation."""
46
+ system_prompt = self.system_template.format(system_message=self.system_message)
47
+ if self.sep_style == SeparatorStyle.DeepSeek:
48
+ seps = [self.sep, self.sep2]
49
+ if system_prompt == "" or system_prompt is None:
50
+ ret = ""
51
+ else:
52
+ ret = system_prompt + seps[0]
53
+ for i, (role, message) in enumerate(self.messages):
54
+ if message:
55
+ ret += role + ": " + message + seps[i % 2]
56
+ else:
57
+ ret += role + ":"
58
+ return ret
59
+ elif self.sep_style == SeparatorStyle.DeepSeekV2:
60
+ seps = [self.sep, self.sep2]
61
+ if system_prompt == "" or system_prompt is None:
62
+ ret = ""
63
+ else:
64
+ ret = system_prompt + seps[0]
65
+ for i, (role, message) in enumerate(self.messages):
66
+ if message:
67
+ if role == "User":
68
+ ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
69
+ else:
70
+ ret += message + self.sep2
71
+ else:
72
+ ret = ret
73
+ return ret
74
+
75
+ elif self.sep_style == SeparatorStyle.PLAIN:
76
+ seps = [self.sep, self.sep2]
77
+ ret = ""
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i % 2 == 0:
83
+ ret += message + seps[i % 2]
84
+ else:
85
+ ret += message + seps[i % 2]
86
+ else:
87
+ ret += ""
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
90
+ seps = [self.sep, self.sep2]
91
+ ret = ""
92
+ for i, (role, message) in enumerate(self.messages):
93
+ if message:
94
+ if type(message) is tuple:
95
+ message, _, _ = message
96
+ if i % 2 == 0:
97
+ ret += '<image>\n' + seps[i % 2]
98
+ else:
99
+ ret += message + seps[i % 2]
100
+ else:
101
+ ret += ""
102
+ return ret
103
+ else:
104
+ raise ValueError(f"Invalid style: {self.sep_style}")
105
+
106
+ def set_system_message(self, system_message: str):
107
+ """Set the system message."""
108
+ self.system_message = system_message
109
+
110
+ def append_message(self, role: str, message: str):
111
+ """Append a new message."""
112
+ self.messages.append([role, message])
113
+
114
+ def update_last_message(self, message: str):
115
+ """Update the last output.
116
+
117
+ The last message is typically set to be None when constructing the prompt,
118
+ so we need to update it in-place after getting the response from a model.
119
+ """
120
+ self.messages[-1][1] = message
121
+
122
+ def reset_message(self):
123
+ """Reset a new message."""
124
+ self.messages = []
125
+
126
+ def to_gradio_chatbot(self):
127
+ """Convert the conversation to gradio chatbot format."""
128
+ ret = []
129
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
130
+ if i % 2 == 0:
131
+ ret.append([msg, None])
132
+ else:
133
+ ret[-1][-1] = msg
134
+ return ret
135
+
136
+ def to_openai_api_messages(self):
137
+ """Convert the conversation to OpenAI chat completion format."""
138
+ system_prompt = self.system_template.format(system_message=self.system_message)
139
+ ret = [{"role": "system", "content": system_prompt}]
140
+
141
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
142
+ if i % 2 == 0:
143
+ ret.append({"role": "user", "content": msg})
144
+ else:
145
+ if msg is not None:
146
+ ret.append({"role": "assistant", "content": msg})
147
+ return ret
148
+
149
+ def copy(self):
150
+ return Conversation(
151
+ name=self.name,
152
+ system_template=self.system_template,
153
+ system_message=self.system_message,
154
+ roles=self.roles,
155
+ messages=[[x, y] for x, y in self.messages],
156
+ offset=self.offset,
157
+ sep_style=self.sep_style,
158
+ sep=self.sep,
159
+ sep2=self.sep2,
160
+ stop_str=self.stop_str,
161
+ stop_token_ids=self.stop_token_ids,
162
+ )
163
+
164
+ def dict(self):
165
+ return {
166
+ "template_name": self.name,
167
+ "system_message": self.system_message,
168
+ "roles": self.roles,
169
+ "messages": self.messages,
170
+ "offset": self.offset,
171
+ }
172
+
173
+
174
+ # A global registry for all conversation templates
175
+ conv_templates: Dict[str, Conversation] = {}
176
+
177
+
178
+ def register_conv_template(template: Conversation, override: bool = False):
179
+ """Register a new conversation template."""
180
+ if not override:
181
+ assert template.name not in conv_templates, f"{template.name} has been registered."
182
+
183
+ conv_templates[template.name] = template
184
+
185
+
186
+ def get_conv_template(name: str) -> Conversation:
187
+ """Get a conversation template."""
188
+ return conv_templates[name].copy()
189
+
190
+
191
+ register_conv_template(
192
+ Conversation(
193
+ name="deepseek",
194
+ system_template="{system_message}",
195
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
196
+ # "thinking step by step to be sure you get the right answer.",
197
+ system_message="",
198
+ roles=("<|User|>", "<|Assistant|>"),
199
+ messages=(),
200
+ offset=0,
201
+ sep_style=SeparatorStyle.DeepSeek,
202
+ sep="\n\n",
203
+ sep2="<|end▁of▁sentence|>",
204
+ stop_token_ids=[100001],
205
+ stop_str=["User:", "<|end▁of▁sentence|>"]
206
+ )
207
+ )
208
+ register_conv_template(
209
+ Conversation(
210
+ name="deepseekv2",
211
+ system_template="{system_message}",
212
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
213
+ # "thinking step by step to be sure you get the right answer.",
214
+ system_message="",
215
+ roles=("<|User|>", "<|Assistant|>"),
216
+ messages=(),
217
+ offset=0,
218
+ sep_style=SeparatorStyle.DeepSeek,
219
+ sep="",
220
+ sep2="<|end▁of▁sentence|>",
221
+ stop_token_ids=[100001],
222
+ stop_str=["User:", "<|end▁of▁sentence|>"]
223
+ )
224
+ )
225
+
226
+
227
+ register_conv_template(
228
+ Conversation(
229
+ name="plain",
230
+ system_template="",
231
+ system_message="",
232
+ roles=("", ""),
233
+ messages=(),
234
+ offset=0,
235
+ sep_style=SeparatorStyle.PLAIN,
236
+ sep="",
237
+ sep2="",
238
+ stop_token_ids=[100001],
239
+ stop_str=['</s>'],
240
+ )
241
+ )
242
+
243
+
244
+ register_conv_template(
245
+ Conversation(
246
+ name="alignment",
247
+ system_template="",
248
+ system_message="",
249
+ roles=("", ""),
250
+ messages=(),
251
+ offset=0,
252
+ sep_style=SeparatorStyle.ALIGNMENT,
253
+ sep="",
254
+ sep2="",
255
+ stop_token_ids=[100001],
256
+ stop_str=['</s>'],
257
+ )
258
+ )
259
+
260
+
261
+ if __name__ == "__main__":
262
+ print("deepseek template:")
263
+ conv = get_conv_template("deepseek")
264
+ conv.append_message(conv.roles[0], "Hello!")
265
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
266
+ conv.append_message(conv.roles[0], "Who are you?")
267
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
268
+ conv.append_message(conv.roles[0], "How are you?")
269
+ conv.append_message(conv.roles[1], None)
270
+ print(conv.get_prompt())
271
+
272
+ print("deepseekv2 template:")
273
+ conv = get_conv_template("deepseekv2")
274
+ conv.append_message(conv.roles[0], "Hello!")
275
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
276
+ conv.append_message(conv.roles[0], "Who are you?")
277
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
278
+ conv.append_message(conv.roles[0], "How are you?")
279
+ conv.append_message(conv.roles[1], None)
280
+ print(conv.get_prompt())
deepencoderv2.py ADDED
@@ -0,0 +1,1015 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import copy
5
+
6
+
7
+ from typing import Optional, Tuple
8
+
9
+ # from megatron.model import LayerNorm
10
+
11
+ import transformers
12
+
13
+
14
+ from typing import Optional, Tuple, Type
15
+ from functools import partial
16
+
17
+
18
+
19
+ class MlpProjector(nn.Module):
20
+
21
+ def __init__(self, cfg):
22
+
23
+ super().__init__()
24
+
25
+ self.cfg = cfg
26
+
27
+ if cfg.projector_type == "identity":
28
+ modules = nn.Identity()
29
+
30
+ elif cfg.projector_type == "linear":
31
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
32
+
33
+ elif cfg.projector_type == "mlp_gelu":
34
+ mlp_depth = cfg.get("depth", 1)
35
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
36
+ for _ in range(1, mlp_depth):
37
+ modules.append(nn.GELU())
38
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
39
+ modules = nn.Sequential(*modules)
40
+
41
+ elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
42
+ mlp_depth = cfg.get("depth", 1)
43
+ mlp_ratio = cfg.get("mlp_ratio", 1)
44
+ modules = [
45
+ nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
46
+ nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
47
+ ]
48
+ for _ in range(1, mlp_depth - 1):
49
+ modules.append(nn.GELU())
50
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
51
+ modules.append(nn.GELU())
52
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
53
+ modules = nn.Sequential(*modules)
54
+
55
+ elif cfg.projector_type == "downsample_mlp_gelu":
56
+ mlp_depth = cfg.get("depth", 1)
57
+ mlp_ratio = cfg.get("mlp_ratio", 1)
58
+ modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
59
+ for _ in range(1, mlp_depth - 1):
60
+ modules.append(nn.GELU())
61
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
62
+ modules.append(nn.GELU())
63
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
64
+ modules = nn.Sequential(*modules)
65
+
66
+ elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
67
+ mlp_depth = cfg.get("depth", 1)
68
+ self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
69
+ self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
70
+
71
+ modules = []
72
+ for _ in range(1, mlp_depth):
73
+ modules.append(nn.GELU())
74
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
75
+ modules = nn.Sequential(*modules)
76
+
77
+ elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
78
+ mlp_depth = cfg.get("depth", 1)
79
+ channel_div = cfg.get("channel_div", 0.5)
80
+ self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
81
+ self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
82
+
83
+ modules = []
84
+ for _ in range(1, mlp_depth):
85
+ modules.append(nn.GELU())
86
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
87
+ modules = nn.Sequential(*modules)
88
+
89
+ elif cfg.projector_type == "low_high_split_mlp_gelu":
90
+ mlp_depth = cfg.get("depth", 1)
91
+ modules = []
92
+ for _ in range(1, mlp_depth):
93
+ modules.append(nn.GELU())
94
+ modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
95
+ modules = nn.Sequential(*modules)
96
+ self.high_layers = nn.Sequential(*modules)
97
+ self.low_layers = copy.deepcopy(modules)
98
+
99
+ else:
100
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
101
+
102
+ if cfg.get("token_pooling", False):
103
+ self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
104
+
105
+ if cfg.get("conv_fusion_high_low_features", False):
106
+ self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
107
+ self.layers = modules
108
+
109
+ def forward(self, x):
110
+ if self.cfg.get("token_pooling", False):
111
+ batch_size, wxh, channels = x.shape
112
+ w = h = int(wxh**0.5)
113
+ x = x.view(batch_size, w, h, channels)
114
+ x = x.permute(0, 3, 1, 2)
115
+ # import ipdb; ipdb.set_trace()
116
+ patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
117
+ batch_size, channels, h_patches, w_patches, _, _ = patches.size()
118
+ # 在通道维度上拼接
119
+ patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
120
+
121
+ # 通过线性层
122
+ patches = patches.permute(0, 2, 1, 3).contiguous()
123
+ patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
124
+
125
+ x = self.token_pooling_layer(patches)
126
+
127
+ if self.cfg.get("conv_fusion_high_low_features", False):
128
+ x = self.fusion_layer(x[:, 0]) + x[:, 1]
129
+
130
+ if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
131
+ high_x, low_x = x[0], x[1]
132
+ high_x = self.high_up_proj(high_x)
133
+ low_x = self.low_up_proj(low_x)
134
+ x = torch.concat([high_x, low_x], dim=-1)
135
+
136
+ if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
137
+ high_x = x[...,:self.cfg.input_dim[0]]
138
+ low_x = x[...,self.cfg.input_dim[0]:]
139
+ high_x = self.high_up_proj(high_x)
140
+ low_x = self.low_up_proj(low_x)
141
+ x = torch.concat([high_x, low_x], dim=-1)
142
+
143
+ if self.cfg.projector_type == 'low_high_split_mlp_gelu':
144
+ high_x, low_x = x[0], x[1]
145
+ high_x = self.high_layers(high_x)
146
+ low_x = self.low_layers(low_x)
147
+ x = torch.concat([high_x, low_x], dim=-1)
148
+ return x
149
+
150
+ if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
151
+ bs, hw, input_dim = x.shape
152
+ h = w = int((hw) ** 0.5)
153
+
154
+ """compute padding"""
155
+ if h % self.cfg.downsample_ratio:
156
+ pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
157
+ else:
158
+ pad = 0
159
+ x = x.reshape(bs, h, w, input_dim)
160
+ if pad > 0:
161
+ x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
162
+
163
+ """4 to 1 concat"""
164
+ x = x.permute(0, 3, 1, 2) # B, C, H, W
165
+ x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
166
+ x = x.permute(0, 2, 1)
167
+
168
+ return self.layers(x)
169
+
170
+ @staticmethod
171
+ def get_flops_per_sample(cfg):
172
+ if cfg.projector_type == "linear":
173
+ fwd = 2 * cfg.input_dim * cfg.n_embed
174
+
175
+ elif "mlp_gelu" in cfg.projector_type :
176
+ mlp_depth = cfg.get("depth", 1)
177
+ downsample_ratio = cfg.get("downsample_ratio", 1)
178
+ input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
179
+ input_dim = input_dim * downsample_ratio * downsample_ratio
180
+ fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
181
+ else:
182
+ fwd = 0
183
+
184
+ return fwd * 3
185
+
186
+
187
+ #===================qwen2================================
188
+
189
+ class CustomQwen2Decoder(nn.Module):
190
+ """
191
+ Qwen2 visual encoder
192
+ non-causal attention + causal attention
193
+ token_type_ids :0=non-causal, 1=causal
194
+ """
195
+
196
+ def __init__(
197
+ self,
198
+ decoder_layer: int = 24,
199
+ max_position_embeddings: int = 131072,
200
+ hidden_dimension: int = 896,
201
+ num_attention_heads: int = 14,
202
+ num_key_value_heads: int = 2,
203
+ intermediate_size: int = 4864,
204
+ vocab_size: int = 151936,
205
+ attn_implementation: str = "sdpa", # ⭐
206
+ rms_norm_eps: float = 1e-06,
207
+ rope_theta: float = 1000000.0,
208
+ attention_dropout: float = 0.0,
209
+ hidden_act: str = "silu",
210
+ initializer_range: float = 0.02,
211
+ ):
212
+ super().__init__()
213
+
214
+ # attn_implementation check
215
+ if attn_implementation == "flash_attention_2":
216
+ raise ValueError(
217
+ "CustomQwen2Decoder do not support flash_attention_2,"
218
+ "new attention mask needs 'sdpa' or 'eager'"
219
+ )
220
+
221
+ # load
222
+ Qwen2Model = getattr(transformers.models.qwen2.modeling_qwen2, 'Qwen2Model')
223
+ Qwen2Config = getattr(transformers, 'Qwen2Config')
224
+
225
+ # config
226
+ config = Qwen2Config(
227
+ hidden_size=hidden_dimension,
228
+ num_hidden_layers=decoder_layer,
229
+ num_attention_heads=num_attention_heads,
230
+ num_key_value_heads=num_key_value_heads,
231
+ intermediate_size=intermediate_size,
232
+ max_position_embeddings=max_position_embeddings,
233
+ vocab_size=vocab_size,
234
+ rms_norm_eps=rms_norm_eps,
235
+ rope_theta=rope_theta,
236
+ attention_dropout=attention_dropout,
237
+ hidden_act=hidden_act,
238
+ initializer_range=initializer_range,
239
+ _attn_implementation=attn_implementation, # ⭐
240
+ )
241
+
242
+ #
243
+ self.model = self._create_custom_model(Qwen2Model, config)
244
+
245
+ del self.model.embed_tokens
246
+
247
+ def _create_custom_model(self, Qwen2Model, config):
248
+ """ Qwen2Model """
249
+
250
+ class CustomQwen2ModelInner(Qwen2Model):
251
+
252
+
253
+ def forward(
254
+ self,
255
+ input_ids=None,
256
+ attention_mask=None,
257
+ position_ids=None,
258
+ past_key_values=None,
259
+ inputs_embeds=None,
260
+ token_type_ids=None, # ⭐
261
+ use_cache=None,
262
+ output_attentions=None,
263
+ output_hidden_states=None,
264
+ return_dict=None,
265
+ cache_position=None,
266
+ ):
267
+ # token_type_ids
268
+ self._current_token_type_ids = token_type_ids
269
+
270
+ outputs = super().forward(
271
+ input_ids=input_ids,
272
+ attention_mask=attention_mask,
273
+ position_ids=position_ids,
274
+ past_key_values=past_key_values,
275
+ inputs_embeds=inputs_embeds,
276
+ use_cache=use_cache,
277
+ output_attentions=output_attentions,
278
+ output_hidden_states=output_hidden_states,
279
+ return_dict=return_dict,
280
+ cache_position=cache_position,
281
+ )
282
+
283
+ return outputs
284
+
285
+ def _update_causal_mask(
286
+ self,
287
+ attention_mask,
288
+ input_tensor,
289
+ cache_position,
290
+ past_key_values,
291
+ output_attentions,
292
+ ):
293
+ dtype, device = input_tensor.dtype, input_tensor.device
294
+ min_dtype = torch.finfo(dtype).min
295
+ batch_size, sequence_length = input_tensor.shape[0], input_tensor.shape[1]
296
+
297
+ token_type_ids = self._current_token_type_ids
298
+
299
+ # attention mask
300
+ causal_mask = self._create_custom_4d_mask(
301
+ sequence_length=sequence_length,
302
+ dtype=dtype,
303
+ device=device,
304
+ batch_size=batch_size,
305
+ token_type_ids=token_type_ids,
306
+ )
307
+
308
+ # padding mask
309
+ if attention_mask is not None and attention_mask.dim() == 2:
310
+ padding_mask = attention_mask[:, None, None, :].to(dtype=dtype)
311
+ padding_mask = (1.0 - padding_mask) * min_dtype
312
+ causal_mask = causal_mask + padding_mask
313
+
314
+ return causal_mask
315
+
316
+ def _create_custom_4d_mask(
317
+ self,
318
+ sequence_length,
319
+ dtype,
320
+ device,
321
+ batch_size,
322
+ token_type_ids,
323
+ ):
324
+ min_dtype = torch.finfo(dtype).min
325
+
326
+ masks = []
327
+ for b in range(batch_size):
328
+ mask = torch.full(
329
+ (sequence_length, sequence_length),
330
+ fill_value=min_dtype,
331
+ dtype=dtype,
332
+ device=device
333
+ )
334
+
335
+ type_ids = token_type_ids[b]
336
+
337
+ image_positions = (type_ids == 0).nonzero(as_tuple=True)[0]
338
+ text_positions = (type_ids == 1).nonzero(as_tuple=True)[0]
339
+
340
+ # non-casual
341
+ if len(image_positions) > 0:
342
+ mask[image_positions[:, None], image_positions] = 0.0
343
+
344
+ # causal
345
+ for i, text_pos in enumerate(text_positions):
346
+ if len(image_positions) > 0:
347
+ mask[text_pos, image_positions] = 0.0
348
+ mask[text_pos, text_positions[:i+1]] = 0.0
349
+
350
+ masks.append(mask)
351
+
352
+ mask = torch.stack(masks, dim=0).unsqueeze(1)
353
+ return mask
354
+
355
+ return CustomQwen2ModelInner(config)
356
+
357
+ def forward(
358
+ self,
359
+ inputs_embeds,
360
+ token_type_ids,
361
+ attention_mask=None,
362
+ **kwargs
363
+ ):
364
+ """
365
+ Args:
366
+ inputs_embeds: [batch_size, seq_len, hidden_dim]
367
+ token_type_ids: [batch_size, seq_len], 0=non-causal, 1=causal
368
+ attention_mask: [batch_size, seq_len], optional
369
+ """
370
+ return self.model(
371
+ inputs_embeds=inputs_embeds,
372
+ token_type_ids=token_type_ids,
373
+ attention_mask=attention_mask,
374
+ **kwargs
375
+ )
376
+
377
+
378
+
379
+
380
+
381
+ # batch_size = 2
382
+ # inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
383
+
384
+ # inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
385
+ # token_type_ids = torch.cat([
386
+ # torch.zeros(batch_size, 256, dtype=torch.long),
387
+ # torch.ones(batch_size, 256, dtype=torch.long),
388
+ # ], dim=1).cuda()
389
+
390
+ # # start = time.time()
391
+ # with torch.no_grad():
392
+ # outputs_sdpa = decoder_sdpa(inputs_embeds, token_type_ids)
393
+ # print(outputs_sdpa[0].shape)
394
+ # print(f"SDPA time: {time.time() - start:.4f}s")
395
+
396
+
397
+
398
+ class Qwen2Decoder2Encoder(nn.Module):
399
+ """
400
+ Decoder based on Multilingual BART
401
+ Set the initial weights and configuration with a pretrained multilingual BART model,
402
+ and modify the detailed configurations as a Nougat decoder
403
+ """
404
+
405
+ def __init__(
406
+ self,
407
+ decoder_layer: int,
408
+ hidden_dimension: int,
409
+ num_attention_heads: int,
410
+ num_key_value_heads: int,
411
+ intermediate_size: int,
412
+ max_query: int,
413
+ ):
414
+ super().__init__()
415
+
416
+ self.model = CustomQwen2Decoder(
417
+ decoder_layer=decoder_layer,
418
+ hidden_dimension=hidden_dimension,
419
+ num_attention_heads=num_attention_heads,
420
+ num_key_value_heads=num_key_value_heads,
421
+ intermediate_size=intermediate_size,
422
+ attn_implementation="sdpa",
423
+ )
424
+
425
+
426
+
427
+
428
+ self.query_768 = nn.Embedding(144, hidden_dimension)
429
+ self.query_1024 = nn.Embedding(256, hidden_dimension)
430
+
431
+
432
+ # self.query_refixation = nn.Embedding(int(math.sqrt(max_query)), hidden_dimension)
433
+
434
+
435
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
436
+ x = x.flatten(2).transpose(1, 2)
437
+
438
+ bs, n_query, _ = x.shape
439
+
440
+ if n_query == 144:
441
+ param_img = self.query_768.weight
442
+ elif n_query == 256:
443
+ param_img = self.query_1024.weight
444
+
445
+ batch_query_imgs = param_img.unsqueeze(0).expand(
446
+ bs, -1, -1
447
+ ) # (batch_size, num_queries, hidden_size)
448
+
449
+
450
+
451
+ x_combined = torch.cat([x, batch_query_imgs], dim=1)
452
+
453
+ token_type_ids = torch.cat([
454
+ torch.zeros(bs, n_query, dtype=torch.long),
455
+ torch.ones(bs, n_query, dtype=torch.long),
456
+ ], dim=1)
457
+
458
+
459
+ y = self.model(x_combined, token_type_ids)[0]
460
+
461
+
462
+ y = y[:, n_query:, :] # causal flow query
463
+
464
+
465
+ return y
466
+
467
+
468
+ def build_qwen2_decoder_as_encoder(
469
+ decoder_layer=24,
470
+ hidden_dimension=896,
471
+ num_attention_heads=14,
472
+ num_key_value_heads=2,
473
+ intermediate_size=4864,
474
+ max_query = 400,
475
+ checkpoint=None,
476
+ ):
477
+
478
+ decoder_as_encoder = Qwen2Decoder2Encoder(
479
+ decoder_layer=decoder_layer,
480
+ hidden_dimension = hidden_dimension,
481
+ num_attention_heads = num_attention_heads,
482
+ num_key_value_heads = num_key_value_heads,
483
+ intermediate_size = intermediate_size,
484
+ max_query = max_query
485
+ )
486
+
487
+
488
+
489
+
490
+ if checkpoint is not None:
491
+ # with open(checkpoint, "rb") as f:
492
+ state_dict = torch.load(checkpoint)
493
+
494
+ decoder_as_encoder.load_state_dict(state_dict, strict=True)
495
+ # tob
496
+ print(checkpoint)
497
+ return decoder_as_encoder
498
+
499
+
500
+
501
+
502
+ #=========================Sam-Vary=================================
503
+
504
+
505
+ def get_abs_pos_sam(abs_pos, tgt_size):
506
+
507
+ dtype = abs_pos.dtype
508
+
509
+ src_size = abs_pos.size(1)
510
+
511
+ if src_size != tgt_size:
512
+ old_pos_embed = abs_pos.permute(0, 3, 1, 2)
513
+ old_pos_embed = old_pos_embed.to(torch.float32)
514
+ new_pos_embed = F.interpolate(
515
+ old_pos_embed,
516
+ size=(tgt_size, tgt_size),
517
+ mode='bicubic',
518
+ antialias=True,
519
+ align_corners=False,
520
+ ).to(dtype)
521
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
522
+ return new_pos_embed
523
+ else:
524
+ return abs_pos
525
+
526
+
527
+
528
+
529
+ class MLPBlock(nn.Module):
530
+ def __init__(
531
+ self,
532
+ embedding_dim: int,
533
+ mlp_dim: int,
534
+ act: Type[nn.Module] = nn.GELU,
535
+ ) -> None:
536
+ super().__init__()
537
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
538
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
539
+ self.act = act()
540
+
541
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
542
+ return self.lin2(self.act(self.lin1(x)))
543
+
544
+
545
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
546
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
547
+ class LayerNorm2d(nn.Module):
548
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
549
+ super().__init__()
550
+ self.weight = nn.Parameter(torch.ones(num_channels))
551
+ self.bias = nn.Parameter(torch.zeros(num_channels))
552
+ self.eps = eps
553
+
554
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
555
+ u = x.mean(1, keepdim=True)
556
+ s = (x - u).pow(2).mean(1, keepdim=True)
557
+ x = (x - u) / torch.sqrt(s + self.eps)
558
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
559
+ return x
560
+
561
+
562
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
563
+ class ImageEncoderViT(nn.Module):
564
+ def __init__(
565
+ self,
566
+ img_size: int = 1024,
567
+ patch_size: int = 16,
568
+ in_chans: int = 3,
569
+ embed_dim: int = 768,
570
+ depth: int = 12,
571
+ num_heads: int = 12,
572
+ mlp_ratio: float = 4.0,
573
+ out_chans: int = 256,
574
+ qkv_bias: bool = True,
575
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
576
+ act_layer: Type[nn.Module] = nn.GELU,
577
+ use_abs_pos: bool = True,
578
+ use_rel_pos: bool = False,
579
+ rel_pos_zero_init: bool = True,
580
+ window_size: int = 0,
581
+ global_attn_indexes: Tuple[int, ...] = (),
582
+ ) -> None:
583
+ """
584
+ Args:
585
+ img_size (int): Input image size.
586
+ patch_size (int): Patch size.
587
+ in_chans (int): Number of input image channels.
588
+ embed_dim (int): Patch embedding dimension.
589
+ depth (int): Depth of ViT.
590
+ num_heads (int): Number of attention heads in each ViT block.
591
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
592
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
593
+ norm_layer (nn.Module): Normalization layer.
594
+ act_layer (nn.Module): Activation layer.
595
+ use_abs_pos (bool): If True, use absolute positional embeddings.
596
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
597
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
598
+ window_size (int): Window size for window attention blocks.
599
+ global_attn_indexes (list): Indexes for blocks using global attention.
600
+ """
601
+ super().__init__()
602
+ self.img_size = img_size
603
+
604
+ self.patch_embed = PatchEmbed(
605
+ kernel_size=(patch_size, patch_size),
606
+ stride=(patch_size, patch_size),
607
+ in_chans=in_chans,
608
+ embed_dim=embed_dim,
609
+ )
610
+
611
+ self.pos_embed: Optional[nn.Parameter] = None
612
+ if use_abs_pos:
613
+ # Initialize absolute positional embedding with pretrain image size.
614
+ self.pos_embed = nn.Parameter(
615
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
616
+ )
617
+
618
+ self.blocks = nn.ModuleList()
619
+ for i in range(depth):
620
+ block = Block(
621
+ dim=embed_dim,
622
+ num_heads=num_heads,
623
+ mlp_ratio=mlp_ratio,
624
+ qkv_bias=qkv_bias,
625
+ norm_layer=norm_layer,
626
+ act_layer=act_layer,
627
+ use_rel_pos=use_rel_pos,
628
+ rel_pos_zero_init=rel_pos_zero_init,
629
+ window_size=window_size if i not in global_attn_indexes else 0,
630
+ input_size=(img_size // patch_size, img_size // patch_size),
631
+ )
632
+ self.blocks.append(block)
633
+
634
+ self.neck = nn.Sequential(
635
+ nn.Conv2d(
636
+ embed_dim,
637
+ out_chans,
638
+ kernel_size=1,
639
+ bias=False,
640
+ ),
641
+ LayerNorm2d(out_chans),
642
+ nn.Conv2d(
643
+ out_chans,
644
+ out_chans,
645
+ kernel_size=3,
646
+ padding=1,
647
+ bias=False,
648
+ ),
649
+ LayerNorm2d(out_chans),
650
+ )
651
+
652
+ self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
653
+ self.net_3 = nn.Conv2d(512, 896, kernel_size=3, stride=2, padding=1, bias=False)
654
+
655
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
656
+ x = self.patch_embed(x)
657
+ if self.pos_embed is not None:
658
+ # x = x + self.pos_embed
659
+ x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
660
+
661
+ for blk in self.blocks:
662
+ x = blk(x)
663
+
664
+ x = self.neck(x.permute(0, 3, 1, 2))
665
+ x2 = self.net_2(x)
666
+ x3 = self.net_3(x2.clone())
667
+
668
+ return x3
669
+
670
+
671
+ class Block(nn.Module):
672
+ """Transformer blocks with support of window attention and residual propagation blocks"""
673
+
674
+ def __init__(
675
+ self,
676
+ dim: int,
677
+ num_heads: int,
678
+ mlp_ratio: float = 4.0,
679
+ qkv_bias: bool = True,
680
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
681
+ act_layer: Type[nn.Module] = nn.GELU,
682
+ use_rel_pos: bool = False,
683
+ rel_pos_zero_init: bool = True,
684
+ window_size: int = 0,
685
+ input_size: Optional[Tuple[int, int]] = None,
686
+ ) -> None:
687
+ """
688
+ Args:
689
+ dim (int): Number of input channels.
690
+ num_heads (int): Number of attention heads in each ViT block.
691
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
692
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
693
+ norm_layer (nn.Module): Normalization layer.
694
+ act_layer (nn.Module): Activation layer.
695
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
696
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
697
+ window_size (int): Window size for window attention blocks. If it equals 0, then
698
+ use global attention.
699
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
700
+ positional parameter size.
701
+ """
702
+ super().__init__()
703
+ self.norm1 = norm_layer(dim)
704
+ self.attn = Attention(
705
+ dim,
706
+ num_heads=num_heads,
707
+ qkv_bias=qkv_bias,
708
+ use_rel_pos=use_rel_pos,
709
+ rel_pos_zero_init=rel_pos_zero_init,
710
+ input_size=input_size if window_size == 0 else (window_size, window_size),
711
+ )
712
+
713
+ self.norm2 = norm_layer(dim)
714
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
715
+
716
+ self.window_size = window_size
717
+
718
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
719
+ shortcut = x
720
+ x = self.norm1(x)
721
+ # Window partition
722
+ if self.window_size > 0:
723
+ H, W = x.shape[1], x.shape[2]
724
+ x, pad_hw = window_partition(x, self.window_size)
725
+
726
+ x = self.attn(x)
727
+ # Reverse window partition
728
+ if self.window_size > 0:
729
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
730
+
731
+ x = shortcut + x
732
+ x = x + self.mlp(self.norm2(x))
733
+
734
+ return x
735
+
736
+
737
+ class Attention(nn.Module):
738
+ """Multi-head Attention block with relative position embeddings."""
739
+
740
+ def __init__(
741
+ self,
742
+ dim: int,
743
+ num_heads: int = 8,
744
+ qkv_bias: bool = True,
745
+ use_rel_pos: bool = False,
746
+ rel_pos_zero_init: bool = True,
747
+ input_size: Optional[Tuple[int, int]] = None,
748
+ ) -> None:
749
+ """
750
+ Args:
751
+ dim (int): Number of input channels.
752
+ num_heads (int): Number of attention heads.
753
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
754
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
755
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
756
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
757
+ positional parameter size.
758
+ """
759
+ super().__init__()
760
+ self.num_heads = num_heads
761
+ head_dim = dim // num_heads
762
+ self.scale = head_dim**-0.5
763
+
764
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
765
+ self.proj = nn.Linear(dim, dim)
766
+
767
+ self.use_rel_pos = use_rel_pos
768
+ if self.use_rel_pos:
769
+ assert (
770
+ input_size is not None
771
+ ), "Input size must be provided if using relative positional encoding."
772
+ # initialize relative positional embeddings
773
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
774
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
775
+
776
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
777
+ B, H, W, _ = x.shape
778
+ # qkv with shape (3, B, nHead, H * W, C)
779
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
780
+ # q, k, v with shape (B * nHead, H * W, C)
781
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
782
+
783
+ rel_h, rel_w = None, None
784
+ if self.use_rel_pos:
785
+ rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
786
+
787
+ q = q.view(B, self.num_heads, H * W, -1)
788
+ k = k.view(B, self.num_heads, H * W, -1)
789
+ v = v.view(B, self.num_heads, H * W, -1)
790
+
791
+ if self.use_rel_pos:
792
+ rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
793
+ rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
794
+ attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
795
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
796
+ # x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
797
+ else:
798
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
799
+
800
+ x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
801
+
802
+ x = self.proj(x)
803
+
804
+ return x
805
+
806
+
807
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
808
+ """
809
+ Partition into non-overlapping windows with padding if needed.
810
+ Args:
811
+ x (tensor): input tokens with [B, H, W, C].
812
+ window_size (int): window size.
813
+
814
+ Returns:
815
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
816
+ (Hp, Wp): padded height and width before partition
817
+ """
818
+ B, H, W, C = x.shape
819
+
820
+ pad_h = (window_size - H % window_size) % window_size
821
+ pad_w = (window_size - W % window_size) % window_size
822
+ if pad_h > 0 or pad_w > 0:
823
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
824
+ Hp, Wp = H + pad_h, W + pad_w
825
+
826
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
827
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
828
+ return windows, (Hp, Wp)
829
+
830
+
831
+ def window_unpartition(
832
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
833
+ ) -> torch.Tensor:
834
+ """
835
+ Window unpartition into original sequences and removing padding.
836
+ Args:
837
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
838
+ window_size (int): window size.
839
+ pad_hw (Tuple): padded height and width (Hp, Wp).
840
+ hw (Tuple): original height and width (H, W) before padding.
841
+
842
+ Returns:
843
+ x: unpartitioned sequences with [B, H, W, C].
844
+ """
845
+ Hp, Wp = pad_hw
846
+ H, W = hw
847
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
848
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
849
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
850
+
851
+ if Hp > H or Wp > W:
852
+ x = x[:, :H, :W, :].contiguous()
853
+ return x
854
+
855
+
856
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
857
+ """
858
+ Get relative positional embeddings according to the relative positions of
859
+ query and key sizes.
860
+ Args:
861
+ q_size (int): size of query q.
862
+ k_size (int): size of key k.
863
+ rel_pos (Tensor): relative position embeddings (L, C).
864
+
865
+ Returns:
866
+ Extracted positional embeddings according to relative positions.
867
+ """
868
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
869
+ # Interpolate rel pos if needed.
870
+ if rel_pos.shape[0] != max_rel_dist:
871
+ # Interpolate rel pos.
872
+ dtype = rel_pos.dtype
873
+ rel_pos = rel_pos.to(torch.float32)
874
+ rel_pos_resized = F.interpolate(
875
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
876
+ size=max_rel_dist,
877
+ mode="linear",
878
+ ).to(dtype)
879
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
880
+ else:
881
+ rel_pos_resized = rel_pos
882
+
883
+ # Scale the coords with short length if shapes for q and k are different.
884
+ q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
885
+ k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
886
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
887
+
888
+ return rel_pos_resized[relative_coords.long()]
889
+
890
+
891
+ def add_decomposed_rel_pos(
892
+ q: torch.Tensor,
893
+ rel_pos_h: torch.Tensor,
894
+ rel_pos_w: torch.Tensor,
895
+ q_size: Tuple[int, int],
896
+ k_size: Tuple[int, int],
897
+ ) -> torch.Tensor:
898
+ """
899
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
900
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
901
+ Args:
902
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
903
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
904
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
905
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
906
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
907
+
908
+ Returns:
909
+ attn (Tensor): attention map with added relative positional embeddings.
910
+ """
911
+ q_h, q_w = q_size
912
+ k_h, k_w = k_size
913
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
914
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
915
+
916
+ B, _, dim = q.shape
917
+ r_q = q.reshape(B, q_h, q_w, dim)
918
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
919
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
920
+ rel_h = rel_h.unsqueeze(-1)
921
+ rel_w = rel_w.unsqueeze(-2)
922
+ rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
923
+ rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
924
+
925
+ return rel_h, rel_w
926
+
927
+
928
+ class PatchEmbed(nn.Module):
929
+ """
930
+ Image to Patch Embedding.
931
+ """
932
+
933
+ def __init__(
934
+ self,
935
+ kernel_size: Tuple[int, int] = (16, 16),
936
+ stride: Tuple[int, int] = (16, 16),
937
+ padding: Tuple[int, int] = (0, 0),
938
+ in_chans: int = 3,
939
+ embed_dim: int = 768,
940
+ ) -> None:
941
+ """
942
+ Args:
943
+ kernel_size (Tuple): kernel size of the projection layer.
944
+ stride (Tuple): stride of the projection layer.
945
+ padding (Tuple): padding size of the projection layer.
946
+ in_chans (int): Number of input image channels.
947
+ embed_dim (int): Patch embedding dimension.
948
+ """
949
+ super().__init__()
950
+
951
+ self.proj = nn.Conv2d(
952
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
953
+ )
954
+
955
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
956
+ x = self.proj(x)
957
+ # B C H W -> B H W C
958
+ x = x.permute(0, 2, 3, 1)
959
+ return x
960
+
961
+
962
+ def build_sam_vit_b(checkpoint=None):
963
+ return _build_sam(
964
+ encoder_embed_dim=768,
965
+ encoder_depth=12,
966
+ encoder_num_heads=12,
967
+ encoder_global_attn_indexes=[2, 5, 8, 11],
968
+ checkpoint=checkpoint,
969
+ )
970
+
971
+ def build_sam_fast_vit_b(checkpoint=None, compile_mode='max-autotune', dtype=torch.bfloat16):
972
+ image_encoder = build_sam_vit_b(checkpoint).eval().to(dtype)
973
+ # sam = _apply_eval_dtype_sam(sam, dtype)
974
+ image_encoder = torch.compile(image_encoder, mode=compile_mode)
975
+ return image_encoder
976
+
977
+
978
+ def _build_sam(
979
+ encoder_embed_dim,
980
+ encoder_depth,
981
+ encoder_num_heads,
982
+ encoder_global_attn_indexes,
983
+ checkpoint=None,
984
+ ):
985
+ prompt_embed_dim = 256
986
+ image_size = 1024
987
+ vit_patch_size = 16
988
+ image_embedding_size = image_size // vit_patch_size
989
+ image_encoder=ImageEncoderViT(
990
+ depth=encoder_depth,
991
+ embed_dim=encoder_embed_dim,
992
+ img_size=image_size,
993
+ mlp_ratio=4,
994
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
995
+ num_heads=encoder_num_heads,
996
+ patch_size=vit_patch_size,
997
+ qkv_bias=True,
998
+ use_rel_pos=True,
999
+ global_attn_indexes=encoder_global_attn_indexes,
1000
+ window_size=14,
1001
+ out_chans=prompt_embed_dim,
1002
+ )
1003
+ image_encoder.eval()
1004
+ if checkpoint is not None:
1005
+ # with open(checkpoint, "rb") as f:
1006
+ state_dict = torch.load(checkpoint)
1007
+ # print(state_dict.keys())
1008
+ # for key in state_dict:
1009
+ # image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
1010
+ # ocr-anyting
1011
+ # image_encoder.load_state_dict(state_dict, strict=True)
1012
+ # tob
1013
+ image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
1014
+ print(checkpoint)
1015
+ return image_encoder
model-00001-of-000001.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8ff67a424ba6f4dd077885eb9d6a05d2537e76fe5491f0e2a9b712f8c8870fa
3
+ size 6778573880
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_deepseekocr2.py ADDED
@@ -0,0 +1,1029 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .modeling_deepseekv2 import DeepseekV2Model, DeepseekV2ForCausalLM
2
+ from .configuration_deepseek_v2 import DeepseekV2Config
3
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
4
+ from typing import List, Optional, Tuple, Union
5
+ from transformers.cache_utils import Cache
6
+ import requests
7
+ from PIL import Image, ImageOps, ImageDraw, ImageFont
8
+ from io import BytesIO
9
+ import torch
10
+ import torch.nn as nn
11
+ from torch.nn import CrossEntropyLoss
12
+ from torchvision import transforms
13
+ # from torchvision.transforms.functional import InterpolationMode
14
+ import os
15
+ from .deepencoderv2 import build_sam_vit_b, build_qwen2_decoder_as_encoder, MlpProjector
16
+ from addict import Dict
17
+ from transformers import TextStreamer
18
+ from .conversation import get_conv_template
19
+ from abc import ABC
20
+ import math
21
+ import re
22
+ from tqdm import tqdm
23
+ import numpy as np
24
+ # import time
25
+
26
+
27
+
28
+ def load_image(image_path):
29
+
30
+ try:
31
+ image = Image.open(image_path)
32
+
33
+ corrected_image = ImageOps.exif_transpose(image)
34
+
35
+ return corrected_image
36
+
37
+ except Exception as e:
38
+ print(f"error: {e}")
39
+ try:
40
+ return Image.open(image_path)
41
+ except:
42
+ return None
43
+
44
+
45
+ def re_match(text):
46
+ pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
47
+ matches = re.findall(pattern, text, re.DOTALL)
48
+
49
+ # pattern1 = r'<\|ref\|>.*?<\|/ref\|>\n'
50
+ # new_text1 = re.sub(pattern1, '', text, flags=re.DOTALL)
51
+
52
+ mathes_image = []
53
+ mathes_other = []
54
+ for a_match in matches:
55
+ if '<|ref|>image<|/ref|>' in a_match[0]:
56
+ mathes_image.append(a_match[0])
57
+ else:
58
+ mathes_other.append(a_match[0])
59
+ return matches, mathes_image, mathes_other
60
+
61
+
62
+ def extract_coordinates_and_label(ref_text, image_width, image_height):
63
+
64
+ try:
65
+ label_type = ref_text[1]
66
+ cor_list = eval(ref_text[2])
67
+ except Exception as e:
68
+ print(e)
69
+ return None
70
+
71
+ return (label_type, cor_list)
72
+
73
+
74
+ def draw_bounding_boxes(image, refs, ouput_path):
75
+
76
+ image_width, image_height = image.size
77
+
78
+ img_draw = image.copy()
79
+ draw = ImageDraw.Draw(img_draw)
80
+
81
+ overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
82
+ draw2 = ImageDraw.Draw(overlay)
83
+
84
+ # try:
85
+ # except IOError:
86
+ # try:
87
+ # font = ImageFont.truetype("DejaVuSans.ttf", 20)
88
+ # except IOError:
89
+ font = ImageFont.load_default()
90
+
91
+ img_idx = 0
92
+
93
+ for i, ref in enumerate(refs):
94
+ try:
95
+ result = extract_coordinates_and_label(ref, image_width, image_height)
96
+ if result:
97
+ label_type, points_list = result
98
+
99
+ color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
100
+
101
+ color_a = color + (20, )
102
+ for points in points_list:
103
+ x1, y1, x2, y2 = points
104
+
105
+ x1 = int(x1 / 999 * image_width)
106
+ y1 = int(y1 / 999 * image_height)
107
+
108
+ x2 = int(x2 / 999 * image_width)
109
+ y2 = int(y2 / 999 * image_height)
110
+
111
+ if label_type == 'image':
112
+ try:
113
+ cropped = image.crop((x1, y1, x2, y2))
114
+ cropped.save(f"{ouput_path}/images/{img_idx}.jpg")
115
+ except Exception as e:
116
+ print(e)
117
+ pass
118
+ img_idx += 1
119
+
120
+ try:
121
+ if label_type == 'title':
122
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
123
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
124
+ else:
125
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
126
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
127
+ text_x = x1
128
+ text_y = max(0, y1 - 15)
129
+
130
+
131
+ text_bbox = draw.textbbox((0, 0), label_type, font=font)
132
+ text_width = text_bbox[2] - text_bbox[0]
133
+ text_height = text_bbox[3] - text_bbox[1]
134
+ draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
135
+ fill=(255, 255, 255, 30))
136
+
137
+ draw.text((text_x, text_y), label_type, font=font, fill=color)
138
+ except:
139
+ pass
140
+ except:
141
+ continue
142
+ img_draw.paste(overlay, (0, 0), overlay)
143
+ return img_draw
144
+
145
+
146
+ def process_image_with_refs(image, ref_texts, output_path):
147
+
148
+ result_image = draw_bounding_boxes(image, ref_texts, output_path)
149
+
150
+ return result_image
151
+
152
+
153
+
154
+
155
+
156
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
157
+ best_ratio_diff = float('inf')
158
+ best_ratio = (1, 1)
159
+ area = width * height
160
+ for ratio in target_ratios:
161
+ target_aspect_ratio = ratio[0] / ratio[1]
162
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
163
+ if ratio_diff < best_ratio_diff:
164
+ best_ratio_diff = ratio_diff
165
+ best_ratio = ratio
166
+ elif ratio_diff == best_ratio_diff:
167
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
168
+ best_ratio = ratio
169
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
170
+ return best_ratio
171
+
172
+
173
+ def dynamic_preprocess(image, min_num=2, max_num=6, image_size=768, use_thumbnail=False):
174
+ orig_width, orig_height = image.size
175
+ aspect_ratio = orig_width / orig_height
176
+
177
+ # calculate the existing image aspect ratio
178
+ target_ratios = set(
179
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
180
+ i * j <= max_num and i * j >= min_num)
181
+ # print(target_ratios)
182
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
183
+
184
+ # find the closest aspect ratio to the target
185
+ target_aspect_ratio = find_closest_aspect_ratio(
186
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
187
+
188
+ # print(target_aspect_ratio)
189
+ # calculate the target width and height
190
+ target_width = image_size * target_aspect_ratio[0]
191
+ target_height = image_size * target_aspect_ratio[1]
192
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
193
+
194
+ # resize the image
195
+ resized_img = image.resize((target_width, target_height))
196
+ processed_images = []
197
+ for i in range(blocks):
198
+ box = (
199
+ (i % (target_width // image_size)) * image_size,
200
+ (i // (target_width // image_size)) * image_size,
201
+ ((i % (target_width // image_size)) + 1) * image_size,
202
+ ((i // (target_width // image_size)) + 1) * image_size
203
+ )
204
+ # split the image
205
+ split_img = resized_img.crop(box)
206
+ processed_images.append(split_img)
207
+ assert len(processed_images) == blocks
208
+ if use_thumbnail and len(processed_images) != 1:
209
+ thumbnail_img = image.resize((image_size, image_size))
210
+ processed_images.append(thumbnail_img)
211
+ return processed_images, target_aspect_ratio
212
+
213
+
214
+
215
+ def normalize_transform(mean, std):
216
+ if mean is None and std is None:
217
+ transform = None
218
+ elif mean is None and std is not None:
219
+ mean = [0.] * len(std)
220
+ transform = transforms.Normalize(mean=mean, std=std)
221
+ elif mean is not None and std is None:
222
+ std = [1.] * len(mean)
223
+ transform = transforms.Normalize(mean=mean, std=std)
224
+ else:
225
+ transform = transforms.Normalize(mean=mean, std=std)
226
+
227
+ return transform
228
+
229
+
230
+
231
+ def format_messages(
232
+ conversations: List[Dict[str, str]],
233
+ sft_format: str = "deepseek",
234
+ system_prompt: str = "",
235
+ ):
236
+ """
237
+ Applies the SFT template to conversation.
238
+
239
+ Args:
240
+ conversations (List[Dict]): A List of messages.
241
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
242
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
243
+
244
+ Returns:
245
+ sft_prompt (str): The formatted text.
246
+ """
247
+
248
+ conv = get_conv_template(sft_format)
249
+ conv.set_system_message(system_prompt)
250
+ for message in conversations:
251
+ conv.append_message(message["role"], message["content"].strip())
252
+ sft_prompt = conv.get_prompt().strip()
253
+
254
+ return sft_prompt
255
+
256
+
257
+ def text_encode(tokenizer, text: str, bos: bool = True, eos: bool = False):
258
+ t = tokenizer.encode(text, add_special_tokens=False)
259
+ bos_id = 0
260
+ eos_id = 1
261
+ if bos:
262
+ t = [bos_id] + t
263
+ if eos:
264
+ t = t + [eos_id]
265
+
266
+ return t
267
+
268
+ def load_pil_images(conversations: List[Dict[str, str]]) -> List[Image.Image]:
269
+ """
270
+
271
+ Args:
272
+ conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
273
+ [
274
+ {
275
+ "role": "User",
276
+ "content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
277
+ "images": ["./examples/table_datasets.png"]
278
+ },
279
+ {"role": "Assistant", "content": ""},
280
+ ]
281
+
282
+ Returns:
283
+ pil_images (List[PIL.Image.Image]): the list of PIL images.
284
+
285
+ """
286
+
287
+ pil_images = []
288
+
289
+ for message in conversations:
290
+ if "images" not in message:
291
+ continue
292
+
293
+ for image_path in message["images"]:
294
+ # print('----------------')
295
+ # print(image_path)
296
+ # print('----------------')
297
+ # exit()
298
+
299
+ # pil_img = Image.open(image_path)
300
+ pil_img = load_image(image_path)
301
+ pil_img = pil_img.convert("RGB")
302
+ pil_images.append(pil_img)
303
+
304
+ return pil_images
305
+
306
+
307
+ class BaseTransform(ABC):
308
+
309
+ def set_rng(self, *args, **kwargs):
310
+ pass
311
+
312
+ def __call__(self, *args, **kwargs) -> torch.Tensor:
313
+ pass
314
+
315
+ @property
316
+ def default_shape(self):
317
+ raise NotImplementedError
318
+
319
+
320
+ class BasicImageTransform(BaseTransform):
321
+ def __init__(
322
+ self,
323
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
324
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
325
+ normalize: bool = True
326
+ ):
327
+ self.mean = mean
328
+ self.std = std
329
+
330
+ transform_pipelines = [
331
+ transforms.ToTensor()
332
+ ]
333
+
334
+ normalize = normalize_transform(mean, std) if normalize else nn.Identity()
335
+ if normalize is not None:
336
+ transform_pipelines.append(normalize)
337
+
338
+ self.transform = transforms.Compose(transform_pipelines)
339
+
340
+ def __call__(self, x):
341
+ x = self.transform(x)
342
+ return x
343
+
344
+ class NoEOSTextStreamer(TextStreamer):
345
+ def on_finalized_text(self, text: str, stream_end: bool = False):
346
+
347
+ eos_text = self.tokenizer.decode([self.tokenizer.eos_token_id], skip_special_tokens=False)
348
+ text = text.replace(eos_text, "\n")
349
+ print(text, flush=True, end="")
350
+
351
+
352
+ class DeepseekOCR2Config(DeepseekV2Config):
353
+ model_type = "DeepseekOCR2"
354
+
355
+ class DeepseekOCR2Model(DeepseekV2Model):
356
+ config_class = DeepseekOCR2Config
357
+
358
+ def __init__(self, config: DeepseekV2Config):
359
+ super(DeepseekOCR2Model, self).__init__(config)
360
+
361
+ self.sam_model = build_sam_vit_b()
362
+ self.qwen2_model = build_qwen2_decoder_as_encoder()
363
+ # self.conv_2 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=2, stride=2)
364
+ n_embed = 1280
365
+ self.projector = MlpProjector(Dict(projector_type="linear", input_dim=896, n_embed=n_embed))
366
+ embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
367
+ # self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
368
+ self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
369
+
370
+
371
+
372
+
373
+ def forward(
374
+ self,
375
+ input_ids: torch.LongTensor = None,
376
+ attention_mask: Optional[torch.Tensor] = None,
377
+ position_ids: Optional[torch.LongTensor] = None,
378
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
379
+ inputs_embeds: Optional[torch.FloatTensor] = None,
380
+ use_cache: Optional[bool] = None,
381
+ output_attentions: Optional[bool] = None,
382
+ output_hidden_states: Optional[bool] = None,
383
+ images: Optional[torch.FloatTensor] = None,
384
+ images_seq_mask: Optional[torch.FloatTensor] = None,
385
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
386
+ return_dict: Optional[bool] = None,
387
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
388
+
389
+
390
+
391
+
392
+ if inputs_embeds is None:
393
+ # inputs_embeds = self.embed_tokens(input_ids)
394
+ inputs_embeds = self.get_input_embeddings()(input_ids)
395
+
396
+
397
+
398
+ sam_model = getattr(self, 'sam_model', None)
399
+ # sam_model = self.sam_model
400
+ qwen2_model = getattr(self, 'qwen2_model', None)
401
+
402
+
403
+
404
+ if sam_model is not None and (input_ids.shape[1] != 1 or self.training) and torch.sum(images[0][1]).item() != 0:
405
+
406
+ idx = 0
407
+
408
+ # sam_model = torch.jit.script(sam_model)
409
+
410
+ # start_time = time.time()
411
+ for image, crop_shape in zip(images, images_spatial_crop):
412
+ images_in_this_batch = []
413
+
414
+ patches = image[0]
415
+ image_ori = image[1]
416
+
417
+ with torch.no_grad():
418
+ # with torch.inference_mode():
419
+
420
+ if torch.sum(patches).item() != 0:
421
+ # P, C, H, W = patches.shape
422
+ crop_flag = 1
423
+ local_features_1 = sam_model(patches)
424
+
425
+ local_features_2 = qwen2_model(local_features_1)
426
+ # vit_time = time.time()
427
+ local_features = local_features_2
428
+ local_features = self.projector(local_features)
429
+
430
+
431
+ global_features_1 = sam_model(image_ori)
432
+ global_features_2 = qwen2_model(global_features_1)
433
+ global_features = global_features_2
434
+ global_features = self.projector(global_features)
435
+
436
+ print('=====================')
437
+ print('BASE: ', global_features.shape)
438
+ print('PATCHES: ', local_features.shape)
439
+ print('=====================')
440
+
441
+ _, hw, n_dim = global_features.shape
442
+ # h = w = int(hw ** 0.5)
443
+
444
+ _2, hw2, n_dim2 = local_features.shape
445
+ # h2 = w2 = int(hw2 ** 0.5)
446
+
447
+
448
+ global_features = global_features.view(-1, n_dim)
449
+
450
+
451
+ local_features = local_features.view(-1, n_dim2)
452
+
453
+ global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
454
+
455
+ # end_time = time.time()
456
+
457
+ # print('sam: ', sam_time - start_time)
458
+ # print('vit: ', vit_time - sam_time)
459
+ # print('all: ', end_time - start_time)
460
+
461
+ # exit()
462
+
463
+ else:
464
+ global_features_1 = sam_model(image_ori)
465
+ global_features_2 = qwen2_model(global_features_1)
466
+ global_features = global_features_2
467
+ global_features = self.projector(global_features)
468
+ print('=====================')
469
+ print('BASE: ', global_features.shape)
470
+ print('NO PATCHES')
471
+ print('=====================')
472
+ _, hw, n_dim = global_features.shape
473
+ # h = w = int(hw ** 0.5)
474
+
475
+
476
+ # global_features = global_features.view(h, w, n_dim)
477
+
478
+ # global_features = torch.cat(
479
+ # [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
480
+ # )
481
+
482
+ global_features = global_features.view(-1, n_dim)
483
+
484
+ global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
485
+
486
+ images_in_this_batch.append(global_local_features)
487
+
488
+
489
+ # print(inputs_embeds.shape)
490
+
491
+ if images_in_this_batch:
492
+ images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
493
+ # exit()
494
+
495
+ inputs_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1).cuda(), images_in_this_batch)
496
+
497
+ idx += 1
498
+
499
+
500
+ return super(DeepseekOCR2Model, self).forward(
501
+ input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
502
+ inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
503
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
504
+ return_dict=return_dict
505
+ )
506
+
507
+
508
+ class DeepseekOCR2ForCausalLM(DeepseekV2ForCausalLM):
509
+
510
+ config_class = DeepseekOCR2Config
511
+ # supports_gradient_checkpointing = True
512
+
513
+ def __init__(self, config):
514
+ super(DeepseekV2ForCausalLM, self).__init__(config)
515
+ self.model = DeepseekOCR2Model(config)
516
+
517
+ self.vocab_size = config.vocab_size
518
+
519
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
520
+
521
+ # self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
522
+
523
+ # Initialize weights and apply final processing
524
+ self.post_init()
525
+
526
+ def get_model(self):
527
+ return self.model
528
+
529
+
530
+ def forward(
531
+ self,
532
+ input_ids: torch.LongTensor = None,
533
+ attention_mask: Optional[torch.Tensor] = None,
534
+ position_ids: Optional[torch.LongTensor] = None,
535
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
536
+ inputs_embeds: Optional[torch.FloatTensor] = None,
537
+ labels: Optional[torch.LongTensor] = None,
538
+ use_cache: Optional[bool] = None,
539
+ output_attentions: Optional[bool] = None,
540
+ output_hidden_states: Optional[bool] = None,
541
+ images: Optional[torch.FloatTensor] = None,
542
+ images_seq_mask: Optional[torch.FloatTensor] = None,
543
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
544
+ return_dict: Optional[bool] = None,
545
+
546
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
547
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
548
+ output_hidden_states = (
549
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
550
+ )
551
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
552
+
553
+
554
+
555
+ outputs = self.model(
556
+ input_ids=input_ids,
557
+ past_key_values=past_key_values,
558
+ attention_mask=attention_mask,
559
+ position_ids=position_ids,
560
+ inputs_embeds=inputs_embeds,
561
+ use_cache=use_cache,
562
+ output_attentions=output_attentions,
563
+ output_hidden_states=output_hidden_states,
564
+ images=images,
565
+ images_seq_mask = images_seq_mask,
566
+ images_spatial_crop = images_spatial_crop,
567
+ return_dict=return_dict
568
+
569
+ )
570
+
571
+
572
+
573
+ # print(transformer_outputs)
574
+
575
+ hidden_states = outputs[0]
576
+ logits = self.lm_head(hidden_states)
577
+ logits = logits.float()
578
+
579
+ # logits
580
+
581
+ loss = None
582
+ if labels is not None:
583
+ # Shift so that tokens < n predict n
584
+ shift_logits = logits[..., :-1, :].contiguous()
585
+ shift_labels = labels[..., 1:].contiguous()
586
+ # Flatten the tokens
587
+ loss_fct = CrossEntropyLoss()
588
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
589
+ shift_labels = shift_labels.view(-1)
590
+ # Enable model parallelism
591
+ shift_labels = shift_labels.to(shift_logits.device)
592
+ loss = loss_fct(shift_logits, shift_labels)
593
+
594
+ if not return_dict:
595
+ output = (logits,) + outputs[1:]
596
+ return (loss,) + output if loss is not None else output
597
+
598
+ return CausalLMOutputWithPast(
599
+ loss=loss,
600
+ logits=logits,
601
+ past_key_values=outputs.past_key_values,
602
+ hidden_states=outputs.hidden_states,
603
+ attentions=outputs.attentions,
604
+ )
605
+
606
+
607
+ def prepare_inputs_for_generation(
608
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
609
+ ):
610
+ # Omit tokens covered by past_key_values
611
+ past_length = 0
612
+ if past_key_values is not None:
613
+ if isinstance(past_key_values, Cache):
614
+ cache_length = past_key_values.get_seq_length()
615
+ past_length = past_key_values.seen_tokens
616
+ max_cache_length = past_key_values.get_max_length()
617
+ else:
618
+ cache_length = past_length = past_key_values[0][0].shape[2]
619
+ max_cache_length = None
620
+
621
+ # Keep only the unprocessed tokens:
622
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
623
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
624
+ # input)
625
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
626
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
627
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
628
+ # input_ids based on the past_length.
629
+ elif past_length < input_ids.shape[1]:
630
+ input_ids = input_ids[:, past_length:]
631
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
632
+
633
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
634
+ if (
635
+ max_cache_length is not None
636
+ and attention_mask is not None
637
+ and cache_length + input_ids.shape[1] > max_cache_length
638
+ ):
639
+ attention_mask = attention_mask[:, -max_cache_length:]
640
+
641
+ position_ids = kwargs.get("position_ids", None)
642
+ if attention_mask is not None and position_ids is None:
643
+ # create position_ids on the fly for batch generation
644
+ position_ids = attention_mask.long().cumsum(-1) - 1
645
+ position_ids.masked_fill_(attention_mask == 0, 1)
646
+ if past_key_values:
647
+ position_ids = position_ids[:, -input_ids.shape[1] :]
648
+
649
+ # if self.generation_config.cache_implementation == "static":
650
+ # # generation with static cache
651
+ # cache_position = kwargs.get("cache_position", None)
652
+ # if cache_position is None:
653
+ # past_length = 0
654
+ # else:
655
+ # past_length = cache_position[-1] + 1
656
+ # input_ids = input_ids[:, past_length:]
657
+ # position_ids = position_ids[:, past_length:]
658
+
659
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
660
+ # same goes for position ids. Could also help with continued generation.
661
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
662
+
663
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
664
+ if inputs_embeds is not None and past_key_values is None:
665
+ model_inputs = {"inputs_embeds": inputs_embeds}
666
+ else:
667
+ model_inputs = {"input_ids": input_ids}
668
+
669
+ model_inputs.update(
670
+ {
671
+ "position_ids": position_ids,
672
+ "past_key_values": past_key_values,
673
+ "use_cache": kwargs.get("use_cache"),
674
+ "attention_mask": attention_mask,
675
+ "images": kwargs.get("images", None),
676
+ "images_seq_mask": kwargs.get("images_seq_mask", None),
677
+ "images_spatial_crop": kwargs.get("images_spatial_crop", None),
678
+ }
679
+ )
680
+ return model_inputs
681
+
682
+
683
+ def disable_torch_init(self):
684
+ """
685
+ Disable the redundant torch default initialization to accelerate model creation.
686
+ """
687
+ import torch
688
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
689
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
690
+
691
+
692
+
693
+ def infer(self, tokenizer, prompt='', image_file='', output_path = '', base_size=1024, image_size=640, crop_mode=True, test_compress=False, save_results=False, eval_mode=False):
694
+ self.disable_torch_init()
695
+
696
+ os.makedirs(output_path, exist_ok=True)
697
+ os.makedirs(f'{output_path}/images', exist_ok=True)
698
+
699
+ if prompt and image_file:
700
+ conversation = [
701
+ {
702
+ "role": "<|User|>",
703
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
704
+ "content": f'{prompt}',
705
+ # "content": "君不见黄河之水天上来的下一句是什么?",
706
+ # "content": "<image>\nFree OCR. ",
707
+ # "content": "<image>\nParse the figure. ",
708
+ # "content": "<image>\nExtract the text in the image. ",
709
+ "images": [f'{image_file}'],
710
+ },
711
+ {"role": "<|Assistant|>", "content": ""},
712
+ ]
713
+
714
+ elif prompt:
715
+ conversation = [
716
+ {
717
+ "role": "<|User|>",
718
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
719
+ "content": f'{prompt}',
720
+ # "content": "君不见黄河之水天上来的下一句是什么?",
721
+ # "content": "<image>\nFree OCR. ",
722
+ # "content": "<image>\nParse the figure. ",
723
+ # "content": "<image>\nExtract the text in the image. ",
724
+ # "images": [f'{image_file}'],
725
+ },
726
+ {"role": "<|Assistant|>", "content": ""},
727
+ ]
728
+ else:
729
+ assert False, f'prompt is none!'
730
+
731
+ prompt = format_messages(conversations=conversation, sft_format='plain', system_prompt='')
732
+
733
+ patch_size = 16
734
+ downsample_ratio = 4
735
+ images = load_pil_images(conversation)
736
+
737
+ valid_img_tokens = 0
738
+ ratio = 1
739
+
740
+ image_draw = images[0].copy()
741
+
742
+ w,h = image_draw.size
743
+ # print(w, h)
744
+ ratio = 1 - ((max(w, h) - min(w, h)) / (max(w, h)))
745
+
746
+
747
+ image_transform=BasicImageTransform(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), normalize=True)
748
+ images_seq_mask = []
749
+
750
+ image_token = '<image>'
751
+ image_token_id = 128815
752
+ text_splits = prompt.split(image_token)
753
+
754
+ images_list, images_crop_list, images_seq_mask = [], [], []
755
+ tokenized_str = []
756
+ images_spatial_crop = []
757
+ for text_sep, image in zip(text_splits, images):
758
+
759
+ tokenized_sep = text_encode(tokenizer, text_sep, bos=False, eos=False)
760
+ tokenized_str += tokenized_sep
761
+ images_seq_mask += [False] * len(tokenized_sep)
762
+
763
+ if crop_mode:
764
+
765
+ if image.size[0] <= 768 and image.size[1] <= 768:
766
+ crop_ratio = [1, 1]
767
+
768
+ else:
769
+ if crop_mode:
770
+ # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
771
+ images_crop_raw, crop_ratio = dynamic_preprocess(image)
772
+ else:
773
+ # best_width, best_height = self.image_size, self.image_size
774
+ crop_ratio = [1, 1]
775
+
776
+ """process the global view"""
777
+ # image = image.resize((base_size, base_size))
778
+ global_view = ImageOps.pad(image, (base_size, base_size),
779
+ color=tuple(int(x * 255) for x in image_transform.mean))
780
+
781
+ if base_size == 1024:
782
+ valid_img_tokens += int(256 * ratio)
783
+ elif base_size == 1280:
784
+ valid_img_tokens += int(400 * ratio)
785
+ # elif base_size == 640:
786
+ # valid_img_tokens += int(100 * ratio)
787
+
788
+
789
+
790
+
791
+
792
+ images_list.append(image_transform(global_view).to(torch.bfloat16))
793
+
794
+ # global_view_tensor = image_transform(global_view).to(torch.bfloat16)
795
+
796
+ width_crop_num, height_crop_num = crop_ratio
797
+
798
+ images_spatial_crop.append([width_crop_num, height_crop_num])
799
+
800
+
801
+ if width_crop_num > 1 or height_crop_num > 1:
802
+ """process the local views"""
803
+
804
+ for i in range(len(images_crop_raw)):
805
+ images_crop_list.append(image_transform(images_crop_raw[i]).to(torch.bfloat16))
806
+
807
+ if image_size == 768:
808
+ valid_img_tokens += len(images_crop_list) * 144
809
+
810
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
811
+ num_queries_base = math.ceil((base_size // patch_size) / downsample_ratio)
812
+
813
+
814
+
815
+ """add image tokens"""
816
+
817
+
818
+
819
+ tokenized_image = ([image_token_id] * num_queries_base) * num_queries_base
820
+ tokenized_image += [image_token_id]
821
+ if width_crop_num > 1 or height_crop_num > 1:
822
+ tokenized_image += ([image_token_id] * (num_queries * width_crop_num)) * (
823
+ num_queries * height_crop_num)
824
+ tokenized_str += tokenized_image
825
+ images_seq_mask += [True] * len(tokenized_image)
826
+ # num_image_tokens.append(len(tokenized_image))
827
+
828
+ else:
829
+ # best_width, best_height = self.image_size, self.image_size
830
+ # print(image.size, (best_width, best_height)) # check the select_best_resolutions func
831
+
832
+ """process the global view"""
833
+ if image_size <= 768:
834
+ print('directly resize')
835
+ image = image.resize((image_size, image_size))
836
+ # else:
837
+ global_view = ImageOps.pad(image, (image_size, image_size),
838
+ color=tuple(int(x * 255) for x in image_transform.mean))
839
+ images_list.append(image_transform(global_view).to(torch.bfloat16))
840
+
841
+ if base_size == 1024:
842
+ valid_img_tokens += int(256 * ratio)
843
+ elif base_size == 1280:
844
+ valid_img_tokens += int(400 * ratio)
845
+ elif base_size == 640:
846
+ valid_img_tokens += int(100 * 1)
847
+ elif base_size == 512:
848
+ valid_img_tokens += int(64 * 1)
849
+ elif base_size == 768:
850
+ valid_img_tokens += int(144 * 1)
851
+
852
+ width_crop_num, height_crop_num = 1, 1
853
+
854
+ images_spatial_crop.append([width_crop_num, height_crop_num])
855
+
856
+
857
+ """add image tokens"""
858
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
859
+
860
+ tokenized_image = ([image_token_id] * num_queries) * num_queries
861
+ tokenized_image += [image_token_id]
862
+ # tokenized_image += ([self.image_token_id] * (num_queries * width_crop_num) + [self.image_token_id]) * (
863
+ # num_queries * height_crop_num)
864
+ tokenized_str += tokenized_image
865
+ images_seq_mask += [True] * len(tokenized_image)
866
+ # num_image_tokens.append(len(tokenized_image))
867
+
868
+
869
+ """process the last text split"""
870
+ tokenized_sep = text_encode(tokenizer, text_splits[-1], bos=False, eos=False)
871
+ tokenized_str += tokenized_sep
872
+ images_seq_mask += [False] * len(tokenized_sep)
873
+
874
+ """add the bos tokens"""
875
+ bos_id = 0
876
+ tokenized_str = [bos_id] + tokenized_str
877
+ images_seq_mask = [False] + images_seq_mask
878
+
879
+
880
+
881
+ input_ids = torch.LongTensor(tokenized_str)
882
+
883
+
884
+
885
+
886
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
887
+
888
+
889
+ if len(images_list) == 0:
890
+ images_ori = torch.zeros((1, 3, image_size, image_size))
891
+ images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
892
+ images_crop = torch.zeros((1, 3, base_size, base_size))
893
+
894
+ else:
895
+ images_ori = torch.stack(images_list, dim=0)
896
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
897
+ if images_crop_list:
898
+ images_crop = torch.stack(images_crop_list, dim=0)
899
+ else:
900
+ images_crop = torch.zeros((1, 3, base_size, base_size))
901
+
902
+
903
+
904
+ if not eval_mode:
905
+ streamer = NoEOSTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
906
+ with torch.autocast("cuda", dtype=torch.bfloat16):
907
+ with torch.no_grad():
908
+ output_ids = self.generate(
909
+ input_ids.unsqueeze(0).cuda(),
910
+ images=[(images_crop.cuda(), images_ori.cuda())],
911
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
912
+ images_spatial_crop = images_spatial_crop,
913
+ # do_sample=False,
914
+ # num_beams = 1,
915
+ temperature=0.0,
916
+ eos_token_id=tokenizer.eos_token_id,
917
+ streamer=streamer,
918
+ max_new_tokens=8192,
919
+ no_repeat_ngram_size = 20,
920
+ use_cache = True
921
+ )
922
+
923
+ else:
924
+ with torch.autocast("cuda", dtype=torch.bfloat16):
925
+ with torch.no_grad():
926
+ output_ids = self.generate(
927
+ input_ids.unsqueeze(0).cuda(),
928
+ images=[(images_crop.cuda(), images_ori.cuda())],
929
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
930
+ images_spatial_crop = images_spatial_crop,
931
+ # do_sample=False,
932
+ # num_beams = 1,
933
+ temperature=0.0,
934
+ eos_token_id=tokenizer.eos_token_id,
935
+ max_new_tokens=8192,
936
+ no_repeat_ngram_size = 35,
937
+ use_cache = True
938
+ )
939
+
940
+
941
+ if '<image>' in conversation[0]['content'] and eval_mode:
942
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
943
+ stop_str = '<|end▁of▁sentence|>'
944
+ if outputs.endswith(stop_str):
945
+ outputs = outputs[:-len(stop_str)]
946
+ # re_match
947
+ outputs = outputs.strip()
948
+
949
+ return outputs
950
+
951
+ if '<image>' in conversation[0]['content'] and test_compress:
952
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
953
+ pure_texts_outputs_token_length = len(text_encode(tokenizer, outputs, bos=False, eos=False))
954
+ print('='*50)
955
+ print('image size: ', (w, h))
956
+ print('valid image tokens: ', int(valid_img_tokens))
957
+ print('output texts tokens (valid): ', pure_texts_outputs_token_length)
958
+ print('compression ratio: ', round(pure_texts_outputs_token_length/valid_img_tokens, 2))
959
+ print('='*50)
960
+
961
+
962
+ if '<image>' in conversation[0]['content'] and save_results:
963
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
964
+ stop_str = '<|end▁of▁sentence|>'
965
+
966
+ print('='*15 + 'save results:' + '='*15)
967
+
968
+ # # # # conv.messages[-1][-1] = outputs
969
+ if outputs.endswith(stop_str):
970
+ outputs = outputs[:-len(stop_str)]
971
+ outputs = outputs.strip()
972
+
973
+ matches_ref, matches_images, mathes_other = re_match(outputs)
974
+ # print(matches_ref)
975
+ result = process_image_with_refs(image_draw, matches_ref, output_path)
976
+
977
+
978
+ for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
979
+ outputs = outputs.replace(a_match_image, '![](images/' + str(idx) + '.jpg)\n')
980
+
981
+ for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
982
+ outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
983
+
984
+
985
+ # if 'structural formula' in conversation[0]['content']:
986
+ # outputs = '<smiles>' + outputs + '</smiles>'
987
+ with open(f'{output_path}/result.mmd', 'w', encoding = 'utf-8') as afile:
988
+ afile.write(outputs)
989
+
990
+ if 'line_type' in outputs:
991
+ import matplotlib.pyplot as plt
992
+ lines = eval(outputs)['Line']['line']
993
+
994
+ line_type = eval(outputs)['Line']['line_type']
995
+ # print(lines)
996
+
997
+ endpoints = eval(outputs)['Line']['line_endpoint']
998
+
999
+ fig, ax = plt.subplots(figsize=(3,3), dpi=200)
1000
+ ax.set_xlim(-15, 15)
1001
+ ax.set_ylim(-15, 15)
1002
+
1003
+ for idx, line in enumerate(lines):
1004
+ try:
1005
+ p0 = eval(line.split(' -- ')[0])
1006
+ p1 = eval(line.split(' -- ')[-1])
1007
+
1008
+ if line_type[idx] == '--':
1009
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
1010
+ else:
1011
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
1012
+
1013
+ ax.scatter(p0[0], p0[1], s=5, color = 'k')
1014
+ ax.scatter(p1[0], p1[1], s=5, color = 'k')
1015
+ except:
1016
+ pass
1017
+
1018
+ for endpoint in endpoints:
1019
+
1020
+ label = endpoint.split(': ')[0]
1021
+ (x, y) = eval(endpoint.split(': ')[1])
1022
+ ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points',
1023
+ fontsize=5, fontweight='light')
1024
+
1025
+
1026
+ plt.savefig(f'{output_path}/geo.jpg')
1027
+ plt.close()
1028
+
1029
+ result.save(f"{output_path}/result_with_boxes.jpg")
modeling_deepseekv2.py ADDED
@@ -0,0 +1,1992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model and compatible with both DeepSeekV2 and DeepSeekV3"""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+ import numpy as np
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ import torch.distributed as dist
30
+ from einops import repeat
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache
36
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
37
+ from transformers.models.llama.modeling_llama import (
38
+ LlamaAttention,
39
+ LlamaFlashAttention2
40
+ )
41
+ from transformers.modeling_outputs import (
42
+ BaseModelOutputWithPast,
43
+ CausalLMOutputWithPast,
44
+ SequenceClassifierOutputWithPast,
45
+ )
46
+ from transformers.modeling_utils import PreTrainedModel
47
+ from transformers.pytorch_utils import (
48
+ ALL_LAYERNORM_LAYERS,
49
+ is_torch_greater_or_equal_than_1_13,
50
+ )
51
+ from transformers.utils import (
52
+ add_start_docstrings,
53
+ add_start_docstrings_to_model_forward,
54
+ is_flash_attn_2_available,
55
+ is_flash_attn_greater_or_equal_2_10,
56
+ logging,
57
+ replace_return_docstrings,
58
+ )
59
+ from transformers.utils.import_utils import is_torch_fx_available
60
+
61
+ from .configuration_deepseek_v2 import DeepseekV2Config
62
+
63
+ if is_flash_attn_2_available():
64
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
65
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
66
+
67
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
68
+ # It means that the function will not be traced through and simply appear as a node in the graph.
69
+ if is_torch_fx_available():
70
+ if not is_torch_greater_or_equal_than_1_13:
71
+ import torch.fx
72
+
73
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV2RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
+
113
+
114
+
115
+
116
+ class DeepseekV2RotaryEmbedding(nn.Module):
117
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
118
+ super().__init__()
119
+
120
+ self.dim = dim
121
+ self.max_position_embeddings = max_position_embeddings
122
+ self.base = base
123
+ inv_freq = 1.0 / (
124
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
125
+ )
126
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
127
+
128
+ # Build here to make `torch.jit.trace` work.
129
+ self._set_cos_sin_cache(
130
+ seq_len=max_position_embeddings,
131
+ device=self.inv_freq.device,
132
+ dtype=torch.get_default_dtype(),
133
+ )
134
+ self.max_seq_len_cached = None
135
+
136
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
137
+ self.max_seq_len_cached = seq_len
138
+ t = torch.arange(
139
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
140
+ )
141
+
142
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
143
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
144
+ emb = torch.cat((freqs, freqs), dim=-1)
145
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
146
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
147
+
148
+ def forward(self, x, seq_len=None):
149
+ # x: [bs, num_attention_heads, seq_len, head_size]
150
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
151
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
152
+
153
+ return (
154
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
155
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
156
+ )
157
+
158
+
159
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
160
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
161
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
162
+
163
+ def __init__(
164
+ self,
165
+ dim,
166
+ max_position_embeddings=2048,
167
+ base=10000,
168
+ device=None,
169
+ scaling_factor=1.0,
170
+ ):
171
+ self.scaling_factor = scaling_factor
172
+ super().__init__(dim, max_position_embeddings, base, device)
173
+
174
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
175
+ self.max_seq_len_cached = seq_len
176
+ t = torch.arange(
177
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
178
+ )
179
+ t = t / self.scaling_factor
180
+
181
+ freqs = torch.outer(t, self.inv_freq)
182
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
183
+ emb = torch.cat((freqs, freqs), dim=-1)
184
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
185
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
186
+
187
+
188
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
189
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
190
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
191
+
192
+ def __init__(
193
+ self,
194
+ dim,
195
+ max_position_embeddings=2048,
196
+ base=10000,
197
+ device=None,
198
+ scaling_factor=1.0,
199
+ ):
200
+ self.scaling_factor = scaling_factor
201
+ super().__init__(dim, max_position_embeddings, base, device)
202
+
203
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
204
+ self.max_seq_len_cached = seq_len
205
+
206
+ if seq_len > self.max_position_embeddings:
207
+ base = self.base * (
208
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
209
+ - (self.scaling_factor - 1)
210
+ ) ** (self.dim / (self.dim - 2))
211
+ inv_freq = 1.0 / (
212
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
213
+ )
214
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
215
+
216
+ t = torch.arange(
217
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
218
+ )
219
+
220
+ freqs = torch.outer(t, self.inv_freq)
221
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
222
+ emb = torch.cat((freqs, freqs), dim=-1)
223
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
224
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
225
+
226
+
227
+ # Inverse dim formula to find dim based on number of rotations
228
+ def yarn_find_correction_dim(
229
+ num_rotations, dim, base=10000, max_position_embeddings=2048
230
+ ):
231
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
232
+ 2 * math.log(base)
233
+ )
234
+
235
+
236
+ # Find dim range bounds based on rotations
237
+ def yarn_find_correction_range(
238
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
239
+ ):
240
+ low = math.floor(
241
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
242
+ )
243
+ high = math.ceil(
244
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
245
+ )
246
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
247
+
248
+
249
+ def yarn_get_mscale(scale=1, mscale=1):
250
+ if scale <= 1:
251
+ return 1.0
252
+ return 0.1 * mscale * math.log(scale) + 1.0
253
+
254
+
255
+ def yarn_linear_ramp_mask(min, max, dim):
256
+ if min == max:
257
+ max += 0.001 # Prevent singularity
258
+
259
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
260
+ ramp_func = torch.clamp(linear_func, 0, 1)
261
+ return ramp_func
262
+
263
+
264
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
265
+
266
+ def __init__(
267
+ self,
268
+ dim,
269
+ max_position_embeddings=2048,
270
+ base=10000,
271
+ device=None,
272
+ scaling_factor=1.0,
273
+ original_max_position_embeddings=4096,
274
+ beta_fast=32,
275
+ beta_slow=1,
276
+ mscale=1,
277
+ mscale_all_dim=0,
278
+ ):
279
+ self.scaling_factor = scaling_factor
280
+ self.original_max_position_embeddings = original_max_position_embeddings
281
+ self.beta_fast = beta_fast
282
+ self.beta_slow = beta_slow
283
+ self.mscale = mscale
284
+ self.mscale_all_dim = mscale_all_dim
285
+ super().__init__(dim, max_position_embeddings, base, device)
286
+
287
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
288
+ self.max_seq_len_cached = seq_len
289
+ dim = self.dim
290
+
291
+ freq_extra = 1.0 / (
292
+ self.base
293
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
294
+ )
295
+ freq_inter = 1.0 / (
296
+ self.scaling_factor
297
+ * self.base
298
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
299
+ )
300
+
301
+ low, high = yarn_find_correction_range(
302
+ self.beta_fast,
303
+ self.beta_slow,
304
+ dim,
305
+ self.base,
306
+ self.original_max_position_embeddings,
307
+ )
308
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
309
+ device=device, dtype=torch.float32
310
+ )
311
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
312
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
313
+
314
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
315
+
316
+ freqs = torch.outer(t, inv_freq)
317
+
318
+ _mscale = float(
319
+ yarn_get_mscale(self.scaling_factor, self.mscale)
320
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
321
+ )
322
+
323
+ emb = torch.cat((freqs, freqs), dim=-1)
324
+ self.register_buffer(
325
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
326
+ )
327
+ self.register_buffer(
328
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
329
+ )
330
+
331
+
332
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
333
+ def rotate_half(x):
334
+ """Rotates half the hidden dims of the input."""
335
+ x1 = x[..., : x.shape[-1] // 2]
336
+ x2 = x[..., x.shape[-1] // 2 :]
337
+ return torch.cat((-x2, x1), dim=-1)
338
+
339
+
340
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
341
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
342
+ """Applies Rotary Position Embedding to the query and key tensors.
343
+
344
+ Args:
345
+ q (`torch.Tensor`): The query tensor.
346
+ k (`torch.Tensor`): The key tensor.
347
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
348
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
349
+ position_ids (`torch.Tensor`):
350
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
351
+ used to pass offsetted position ids when working with a KV-cache.
352
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
353
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
354
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
355
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
356
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
357
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
358
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
359
+ Returns:
360
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
361
+ """
362
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
363
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
364
+
365
+
366
+ # print()
367
+
368
+ b, h, s, d = q.shape
369
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
370
+
371
+ b, h, s, d = k.shape
372
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
373
+
374
+ q_embed = (q * cos) + (rotate_half(q) * sin)
375
+ k_embed = (k * cos) + (rotate_half(k) * sin)
376
+
377
+
378
+ return q_embed, k_embed
379
+
380
+
381
+ class DeepseekV2MLP(nn.Module):
382
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
383
+ super().__init__()
384
+ self.config = config
385
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
386
+ self.intermediate_size = (
387
+ config.intermediate_size if intermediate_size is None else intermediate_size
388
+ )
389
+
390
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
391
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
392
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
393
+ self.act_fn = ACT2FN[config.hidden_act]
394
+
395
+ def forward(self, x):
396
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
397
+ return down_proj
398
+
399
+
400
+ class MoEGate(nn.Module):
401
+ def __init__(self, config):
402
+ super().__init__()
403
+ self.config = config
404
+ self.top_k = config.num_experts_per_tok
405
+ self.n_routed_experts = config.n_routed_experts
406
+ self.routed_scaling_factor = config.routed_scaling_factor
407
+ self.scoring_func = config.scoring_func
408
+ self.alpha = config.aux_loss_alpha
409
+ self.seq_aux = config.seq_aux
410
+ self.topk_method = config.topk_method
411
+ self.n_group = config.n_group
412
+ self.topk_group = config.topk_group
413
+
414
+ # topk selection algorithm
415
+ self.norm_topk_prob = config.norm_topk_prob
416
+ self.gating_dim = config.hidden_size
417
+ self.weight = nn.Parameter(
418
+ torch.empty((self.n_routed_experts, self.gating_dim))
419
+ )
420
+ if self.topk_method == "noaux_tc":
421
+ self.e_score_correction_bias = nn.Parameter(
422
+ torch.empty((self.n_routed_experts))
423
+ )
424
+ self.reset_parameters()
425
+
426
+ def reset_parameters(self) -> None:
427
+ import torch.nn.init as init
428
+
429
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
430
+
431
+ def forward(self, hidden_states):
432
+ bsz, seq_len, h = hidden_states.shape
433
+ ### compute gating score
434
+ hidden_states = hidden_states.view(-1, h)
435
+ logits = F.linear(
436
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
437
+ )
438
+ if self.scoring_func == "softmax":
439
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
440
+ elif self.scoring_func == "sigmoid":
441
+ scores = logits.sigmoid()
442
+ else:
443
+ raise NotImplementedError(
444
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
445
+ )
446
+
447
+ ### select top-k experts
448
+ if self.topk_method == "greedy":
449
+ topk_weight, topk_idx = torch.topk(
450
+ scores, k=self.top_k, dim=-1, sorted=False
451
+ )
452
+ elif self.topk_method == "group_limited_greedy":
453
+ group_scores = (
454
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
455
+ ) # [n, n_group]
456
+ group_idx = torch.topk(
457
+ group_scores, k=self.topk_group, dim=-1, sorted=False
458
+ )[
459
+ 1
460
+ ] # [n, top_k_group]
461
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
462
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
463
+ score_mask = (
464
+ group_mask.unsqueeze(-1)
465
+ .expand(
466
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
467
+ )
468
+ .reshape(bsz * seq_len, -1)
469
+ ) # [n, e]
470
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
471
+ topk_weight, topk_idx = torch.topk(
472
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
473
+ )
474
+ elif self.topk_method == "noaux_tc":
475
+ assert not self.training
476
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
477
+ group_scores = (
478
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
479
+ ) # [n, n_group]
480
+ group_idx = torch.topk(
481
+ group_scores, k=self.topk_group, dim=-1, sorted=False
482
+ )[
483
+ 1
484
+ ] # [n, top_k_group]
485
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
486
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
487
+ score_mask = (
488
+ group_mask.unsqueeze(-1)
489
+ .expand(
490
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
491
+ )
492
+ .reshape(bsz * seq_len, -1)
493
+ ) # [n, e]
494
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
495
+ _, topk_idx = torch.topk(
496
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
497
+ )
498
+ topk_weight = scores.gather(1, topk_idx)
499
+
500
+ ### norm gate to sum 1
501
+ if self.top_k > 1 and self.norm_topk_prob:
502
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
503
+ topk_weight = topk_weight / denominator * self.routed_scaling_factor
504
+ else:
505
+ topk_weight = topk_weight * self.routed_scaling_factor
506
+ ### expert-level computation auxiliary loss
507
+ if self.training and self.alpha > 0.0:
508
+ scores_for_aux = scores
509
+ aux_topk = self.top_k
510
+ # always compute aux loss based on the naive greedy topk method
511
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
512
+ if self.seq_aux:
513
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
514
+ ce = torch.zeros(
515
+ bsz, self.n_routed_experts, device=hidden_states.device
516
+ )
517
+ ce.scatter_add_(
518
+ 1,
519
+ topk_idx_for_aux_loss,
520
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
521
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
522
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
523
+ dim=1
524
+ ).mean() * self.alpha
525
+ else:
526
+ mask_ce = F.one_hot(
527
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
528
+ )
529
+ ce = mask_ce.float().mean(0)
530
+ Pi = scores_for_aux.mean(0)
531
+ fi = ce * self.n_routed_experts
532
+ aux_loss = (Pi * fi).sum() * self.alpha
533
+ else:
534
+ aux_loss = None
535
+ return topk_idx, topk_weight, aux_loss
536
+
537
+
538
+ class AddAuxiliaryLoss(torch.autograd.Function):
539
+ """
540
+ The trick function of adding auxiliary (aux) loss,
541
+ which includes the gradient of the aux loss during backpropagation.
542
+ """
543
+
544
+ @staticmethod
545
+ def forward(ctx, x, loss):
546
+ assert loss.numel() == 1
547
+ ctx.dtype = loss.dtype
548
+ ctx.required_aux_loss = loss.requires_grad
549
+ return x
550
+
551
+ @staticmethod
552
+ def backward(ctx, grad_output):
553
+ grad_loss = None
554
+ if ctx.required_aux_loss:
555
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
556
+ return grad_output, grad_loss
557
+
558
+
559
+ class DeepseekV2MoE(nn.Module):
560
+ """
561
+ A mixed expert module containing shared experts.
562
+ """
563
+
564
+ def __init__(self, config):
565
+ super().__init__()
566
+ self.config = config
567
+ self.num_experts_per_tok = config.num_experts_per_tok
568
+
569
+ if hasattr(config, "ep_size") and config.ep_size > 1:
570
+ assert config.ep_size == dist.get_world_size()
571
+ self.ep_size = config.ep_size
572
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
573
+ self.ep_rank = dist.get_rank()
574
+ self.experts = nn.ModuleList(
575
+ [
576
+ (
577
+ DeepseekV2MLP(
578
+ config, intermediate_size=config.moe_intermediate_size
579
+ )
580
+ if i >= self.ep_rank * self.experts_per_rank
581
+ and i < (self.ep_rank + 1) * self.experts_per_rank
582
+ else None
583
+ )
584
+ for i in range(config.n_routed_experts)
585
+ ]
586
+ )
587
+ else:
588
+ self.ep_size = 1
589
+ self.experts_per_rank = config.n_routed_experts
590
+ self.ep_rank = 0
591
+ self.experts = nn.ModuleList(
592
+ [
593
+ DeepseekV2MLP(
594
+ config, intermediate_size=config.moe_intermediate_size
595
+ )
596
+ for i in range(config.n_routed_experts)
597
+ ]
598
+ )
599
+ self.gate = MoEGate(config)
600
+ if config.n_shared_experts is not None:
601
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
602
+ self.shared_experts = DeepseekV2MLP(
603
+ config=config, intermediate_size=intermediate_size
604
+ )
605
+
606
+ def forward(self, hidden_states):
607
+ identity = hidden_states
608
+ orig_shape = hidden_states.shape
609
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
610
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
611
+ flat_topk_idx = topk_idx.view(-1)
612
+ if self.training:
613
+ hidden_states = hidden_states.repeat_interleave(
614
+ self.num_experts_per_tok, dim=0
615
+ )
616
+ y = torch.empty_like(hidden_states)
617
+ for i, expert in enumerate(self.experts):
618
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
619
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
620
+ y = y.to(hidden_states.dtype).view(*orig_shape)
621
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
622
+ else:
623
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
624
+ if self.config.n_shared_experts is not None:
625
+ y = y + self.shared_experts(identity)
626
+ return y
627
+
628
+ @torch.no_grad()
629
+ def moe_infer(self, x, topk_ids, topk_weight):
630
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
631
+ cnts.scatter_(1, topk_ids, 1)
632
+ tokens_per_expert = cnts.sum(dim=0)
633
+ idxs = topk_ids.view(-1).argsort()
634
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
635
+ sorted_tokens_shape = sorted_tokens.shape
636
+ if self.ep_size > 1:
637
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
638
+ tokens_per_expert_group = tokens_per_expert.new_empty(
639
+ tokens_per_expert.shape[0]
640
+ )
641
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
642
+ output_splits = (
643
+ tokens_per_expert_group.view(self.ep_size, -1)
644
+ .sum(1)
645
+ .cpu()
646
+ .numpy()
647
+ .tolist()
648
+ )
649
+ gathered_tokens = sorted_tokens.new_empty(
650
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
651
+ )
652
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
653
+ dist.all_to_all(
654
+ list(gathered_tokens.split(output_splits)),
655
+ list(sorted_tokens.split(input_split_sizes)),
656
+ )
657
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
658
+ self.ep_size, self.experts_per_rank
659
+ ).sum(dim=0)
660
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
661
+ s = 0
662
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
663
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
664
+ s += k
665
+ gatherd_idxs = gatherd_idxs.argsort()
666
+ sorted_tokens = gathered_tokens[gatherd_idxs]
667
+ tokens_per_expert = tokens_per_expert_post_gather
668
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
669
+
670
+ outputs = []
671
+ start_idx = 0
672
+ for i, num_tokens in enumerate(tokens_per_expert):
673
+ end_idx = start_idx + num_tokens
674
+ if num_tokens == 0:
675
+ continue
676
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
677
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
678
+ expert_out = expert(tokens_for_this_expert)
679
+ outputs.append(expert_out)
680
+ start_idx = end_idx
681
+
682
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
683
+ if self.ep_size > 1:
684
+ new_x = torch.empty_like(outs)
685
+ new_x[gatherd_idxs] = outs
686
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
687
+ dist.all_to_all(
688
+ list(gathered_tokens.split(input_split_sizes)),
689
+ list(new_x.split(output_splits)),
690
+ )
691
+ outs = gathered_tokens
692
+
693
+ new_x = torch.empty_like(outs)
694
+ new_x[idxs] = outs
695
+ final_out = (
696
+ new_x.view(*topk_ids.shape, -1)
697
+ .type(topk_weight.dtype)
698
+ .mul_(topk_weight.unsqueeze(dim=-1))
699
+ .sum(dim=1)
700
+ .type(new_x.dtype)
701
+ )
702
+ return final_out
703
+
704
+
705
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
706
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
707
+ """
708
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
709
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
710
+ """
711
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
712
+ if n_rep == 1:
713
+ return hidden_states
714
+ hidden_states = hidden_states[:, :, None, :, :].expand(
715
+ batch, num_key_value_heads, n_rep, slen, head_dim
716
+ )
717
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
718
+
719
+
720
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
721
+ class DeepseekV2Attention(nn.Module):
722
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
723
+
724
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
725
+ super().__init__()
726
+ self.config = config
727
+ self.layer_idx = layer_idx
728
+ if layer_idx is None:
729
+ logger.warning_once(
730
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
731
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
732
+ "when creating this class."
733
+ )
734
+
735
+ self.attention_dropout = config.attention_dropout
736
+ self.hidden_size = config.hidden_size
737
+ self.num_heads = config.num_attention_heads
738
+
739
+ self.max_position_embeddings = config.max_position_embeddings
740
+ self.rope_theta = config.rope_theta
741
+ self.q_lora_rank = config.q_lora_rank
742
+ self.qk_rope_head_dim = config.qk_rope_head_dim
743
+ self.kv_lora_rank = config.kv_lora_rank
744
+ self.v_head_dim = config.v_head_dim
745
+ self.qk_nope_head_dim = config.qk_nope_head_dim
746
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
747
+
748
+ self.is_causal = True
749
+
750
+ if self.q_lora_rank is None:
751
+ self.q_proj = nn.Linear(
752
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
753
+ )
754
+ else:
755
+ self.q_a_proj = nn.Linear(
756
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
757
+ )
758
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
759
+ self.q_b_proj = nn.Linear(
760
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
761
+ )
762
+ # config.kv_lora_rank + config.qk_rope_head_dim,
763
+ self.kv_a_proj_with_mqa = nn.Linear(
764
+ self.hidden_size,
765
+ config.kv_lora_rank + config.qk_rope_head_dim,
766
+ bias=config.attention_bias,
767
+ )
768
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
769
+ self.kv_b_proj = nn.Linear(
770
+ config.kv_lora_rank,
771
+ self.num_heads
772
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
773
+ bias=False,
774
+ )
775
+
776
+ self.o_proj = nn.Linear(
777
+ self.num_heads * self.v_head_dim,
778
+ self.hidden_size,
779
+ bias=config.attention_bias,
780
+ )
781
+ self._init_rope()
782
+
783
+ self.softmax_scale = self.q_head_dim ** (-0.5)
784
+ if self.config.rope_scaling is not None:
785
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
786
+ scaling_factor = self.config.rope_scaling["factor"]
787
+ if mscale_all_dim:
788
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
789
+ self.softmax_scale = self.softmax_scale * mscale * mscale
790
+
791
+ def _init_rope(self):
792
+ if self.config.rope_scaling is None:
793
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
794
+ self.qk_rope_head_dim,
795
+ max_position_embeddings=self.max_position_embeddings,
796
+ base=self.rope_theta,
797
+ )
798
+ # self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
799
+ # self.qk_rope_head_dim,
800
+ # max_position_embeddings=self.max_position_embeddings,
801
+ # scaling_factor=scaling_factor,
802
+ # base=self.rope_theta,
803
+ # )
804
+ else:
805
+ scaling_type = self.config.rope_scaling["type"]
806
+ scaling_factor = self.config.rope_scaling["factor"]
807
+ if scaling_type == "linear":
808
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
809
+ self.qk_rope_head_dim,
810
+ max_position_embeddings=self.max_position_embeddings,
811
+ scaling_factor=scaling_factor,
812
+ base=self.rope_theta,
813
+ )
814
+ elif scaling_type == "dynamic":
815
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
816
+ self.qk_rope_head_dim,
817
+ max_position_embeddings=self.max_position_embeddings,
818
+ scaling_factor=scaling_factor,
819
+ base=self.rope_theta,
820
+ )
821
+ elif scaling_type == "yarn":
822
+ kwargs = {
823
+ key: self.config.rope_scaling[key]
824
+ for key in [
825
+ "original_max_position_embeddings",
826
+ "beta_fast",
827
+ "beta_slow",
828
+ "mscale",
829
+ "mscale_all_dim",
830
+ ]
831
+ if key in self.config.rope_scaling
832
+ }
833
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
834
+ self.qk_rope_head_dim,
835
+ max_position_embeddings=self.max_position_embeddings,
836
+ scaling_factor=scaling_factor,
837
+ base=self.rope_theta,
838
+ **kwargs,
839
+ )
840
+ else:
841
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
842
+
843
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
844
+ return (
845
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
846
+ .transpose(1, 2)
847
+ .contiguous()
848
+ )
849
+
850
+ def forward(
851
+ self,
852
+ hidden_states: torch.Tensor,
853
+ attention_mask: Optional[torch.Tensor] = None,
854
+ position_ids: Optional[torch.LongTensor] = None,
855
+ past_key_value: Optional[Cache] = None,
856
+ output_attentions: bool = False,
857
+ use_cache: bool = False,
858
+ **kwargs,
859
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
860
+ if "padding_mask" in kwargs:
861
+ warnings.warn(
862
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
863
+ )
864
+ bsz, q_len, _ = hidden_states.size()
865
+
866
+ if self.q_lora_rank is None:
867
+ q = self.q_proj(hidden_states)
868
+ else:
869
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
870
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
871
+
872
+
873
+ q_nope, q_pe = torch.split(
874
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
875
+ )
876
+
877
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
878
+ compressed_kv, k_pe = torch.split(
879
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
880
+ )
881
+ compressed_kv = self.kv_a_layernorm(compressed_kv)
882
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
883
+
884
+ kv_seq_len = k_pe.shape[-2]
885
+ if past_key_value is not None:
886
+ if self.layer_idx is None:
887
+ raise ValueError(
888
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
889
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
890
+ "with a layer index."
891
+ )
892
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
893
+
894
+ cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len)
895
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
896
+
897
+ if past_key_value is not None:
898
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
899
+ compressed_kv = compressed_kv.unsqueeze(1)
900
+ k_pe, compressed_kv = past_key_value.update(k_pe, compressed_kv, self.layer_idx, cache_kwargs)
901
+ compressed_kv = compressed_kv.squeeze(1)
902
+
903
+ kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
904
+ q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :]
905
+ out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :]
906
+
907
+ q_nope = torch.matmul(q_nope, q_absorb)
908
+ attn_weights = (torch.matmul(q_pe, k_pe.mT) +
909
+ torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)) * self.softmax_scale
910
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
911
+ raise ValueError(
912
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
913
+ f" {attn_weights.size()}"
914
+ )
915
+ assert attention_mask is not None
916
+ if attention_mask is not None:
917
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
918
+ raise ValueError(
919
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
920
+ )
921
+ attn_weights = attn_weights + attention_mask
922
+
923
+ # upcast attention to fp32
924
+ attn_weights = nn.functional.softmax(
925
+ attn_weights, dim=-1, dtype=torch.float32
926
+ ).to(q_pe.dtype)
927
+ attn_weights = nn.functional.dropout(
928
+ attn_weights, p=self.attention_dropout, training=self.training
929
+ )
930
+ attn_output = torch.einsum('bhql,blc->bhqc', attn_weights, compressed_kv)
931
+
932
+ attn_output = torch.matmul(attn_output, out_absorb.mT)
933
+
934
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
935
+ raise ValueError(
936
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
937
+ f" {attn_output.size()}"
938
+ )
939
+
940
+ attn_output = attn_output.transpose(1, 2).contiguous()
941
+
942
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
943
+
944
+ attn_output = self.o_proj(attn_output)
945
+
946
+ if not output_attentions:
947
+ attn_weights = None
948
+
949
+ return attn_output, attn_weights, past_key_value
950
+
951
+
952
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
953
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
954
+ """
955
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
956
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
957
+ flash attention and deal with padding tokens in case the input contains any of them.
958
+ """
959
+
960
+ def __init__(self, *args, **kwargs):
961
+ super().__init__(*args, **kwargs)
962
+
963
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
964
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
965
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
966
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
967
+
968
+ def forward(
969
+ self,
970
+ hidden_states: torch.Tensor,
971
+ attention_mask: Optional[torch.LongTensor] = None,
972
+ position_ids: Optional[torch.LongTensor] = None,
973
+ past_key_value: Optional[Cache] = None,
974
+ output_attentions: bool = False,
975
+ use_cache: bool = False,
976
+ **kwargs,
977
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
978
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
979
+ if "padding_mask" in kwargs:
980
+ warnings.warn(
981
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
982
+ )
983
+
984
+ # overwrite attention_mask with padding_mask
985
+ attention_mask = kwargs.pop("padding_mask")
986
+
987
+ output_attentions = False
988
+
989
+ bsz, q_len, _ = hidden_states.size()
990
+
991
+ if self.q_lora_rank is None:
992
+ q = self.q_proj(hidden_states)
993
+ else:
994
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
995
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
996
+ q_nope, q_pe = torch.split(
997
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
998
+ )
999
+
1000
+ # Flash attention requires the input to have the shape
1001
+ # batch_size x seq_length x head_dim x hidden_dim
1002
+ # therefore we just need to keep the original shape
1003
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
1004
+ compressed_kv, k_pe = torch.split(
1005
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
1006
+ )
1007
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
1008
+ kv = (
1009
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
1010
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
1011
+ .transpose(1, 2)
1012
+ )
1013
+
1014
+ k_nope, value_states = torch.split(
1015
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1016
+ )
1017
+ kv_seq_len = value_states.shape[-2]
1018
+
1019
+ kv_seq_len = value_states.shape[-2]
1020
+ if past_key_value is not None:
1021
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1022
+
1023
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1024
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1025
+
1026
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1027
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1028
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1029
+
1030
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1031
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1032
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1033
+
1034
+ if self.q_head_dim != self.v_head_dim:
1035
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
1036
+
1037
+ # TODO: support compressed_kv for kv_cache (instead of key_states, value_states) in flash_attention version
1038
+ if past_key_value is not None:
1039
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1040
+ key_states, value_states = past_key_value.update(
1041
+ key_states, value_states, self.layer_idx, cache_kwargs
1042
+ )
1043
+
1044
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1045
+ # to be able to avoid many of these transpose/reshape/view.
1046
+ query_states = query_states.transpose(1, 2)
1047
+ key_states = key_states.transpose(1, 2)
1048
+ value_states = value_states.transpose(1, 2)
1049
+
1050
+ dropout_rate = self.attention_dropout if self.training else 0.0
1051
+
1052
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1053
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1054
+ # cast them back in the correct dtype just to be sure everything works as expected.
1055
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1056
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1057
+
1058
+ input_dtype = query_states.dtype
1059
+ if input_dtype == torch.float32:
1060
+ # Handle the case where the model is quantized
1061
+ if hasattr(self.config, "_pre_quantization_dtype"):
1062
+ target_dtype = self.config._pre_quantization_dtype
1063
+ elif torch.is_autocast_enabled():
1064
+ target_dtype = torch.get_autocast_gpu_dtype()
1065
+ else:
1066
+ target_dtype = (
1067
+ self.q_proj.weight.dtype
1068
+ if self.q_lora_rank is None
1069
+ else self.q_a_proj.weight.dtype
1070
+ )
1071
+
1072
+ logger.warning_once(
1073
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1074
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1075
+ f" {target_dtype}."
1076
+ )
1077
+
1078
+ query_states = query_states.to(target_dtype)
1079
+ key_states = key_states.to(target_dtype)
1080
+ value_states = value_states.to(target_dtype)
1081
+
1082
+ attn_output = self._flash_attention_forward(
1083
+ query_states,
1084
+ key_states,
1085
+ value_states,
1086
+ attention_mask,
1087
+ q_len,
1088
+ dropout=dropout_rate,
1089
+ softmax_scale=self.softmax_scale,
1090
+ )
1091
+ if self.q_head_dim != self.v_head_dim:
1092
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1093
+
1094
+ attn_output = attn_output.reshape(
1095
+ bsz, q_len, self.num_heads * self.v_head_dim
1096
+ ).contiguous()
1097
+ attn_output = self.o_proj(attn_output)
1098
+
1099
+ if not output_attentions:
1100
+ attn_weights = None
1101
+
1102
+ return attn_output, attn_weights, past_key_value
1103
+
1104
+ def _flash_attention_forward(
1105
+ self,
1106
+ query_states,
1107
+ key_states,
1108
+ value_states,
1109
+ attention_mask,
1110
+ query_length,
1111
+ dropout=0.0,
1112
+ softmax_scale=None,
1113
+ ):
1114
+ """
1115
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1116
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1117
+
1118
+ Args:
1119
+ query_states (`torch.Tensor`):
1120
+ Input query states to be passed to Flash Attention API
1121
+ key_states (`torch.Tensor`):
1122
+ Input key states to be passed to Flash Attention API
1123
+ value_states (`torch.Tensor`):
1124
+ Input value states to be passed to Flash Attention API
1125
+ attention_mask (`torch.Tensor`):
1126
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1127
+ position of padding tokens and 1 for the position of non-padding tokens.
1128
+ dropout (`int`, *optional*):
1129
+ Attention dropout
1130
+ softmax_scale (`float`, *optional*):
1131
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1132
+ """
1133
+ if not self._flash_attn_uses_top_left_mask:
1134
+ causal = self.is_causal
1135
+ else:
1136
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1137
+ causal = self.is_causal and query_length != 1
1138
+
1139
+ # Contains at least one padding token in the sequence
1140
+ if attention_mask is not None:
1141
+ batch_size = query_states.shape[0]
1142
+ (
1143
+ query_states,
1144
+ key_states,
1145
+ value_states,
1146
+ indices_q,
1147
+ cu_seq_lens,
1148
+ max_seq_lens,
1149
+ ) = self._upad_input(
1150
+ query_states, key_states, value_states, attention_mask, query_length
1151
+ )
1152
+
1153
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1154
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1155
+
1156
+ attn_output_unpad = flash_attn_varlen_func(
1157
+ query_states,
1158
+ key_states,
1159
+ value_states,
1160
+ cu_seqlens_q=cu_seqlens_q,
1161
+ cu_seqlens_k=cu_seqlens_k,
1162
+ max_seqlen_q=max_seqlen_in_batch_q,
1163
+ max_seqlen_k=max_seqlen_in_batch_k,
1164
+ dropout_p=dropout,
1165
+ softmax_scale=softmax_scale,
1166
+ causal=causal,
1167
+ )
1168
+
1169
+ attn_output = pad_input(
1170
+ attn_output_unpad, indices_q, batch_size, query_length
1171
+ )
1172
+ else:
1173
+ attn_output = flash_attn_func(
1174
+ query_states,
1175
+ key_states,
1176
+ value_states,
1177
+ dropout,
1178
+ softmax_scale=softmax_scale,
1179
+ causal=causal,
1180
+ )
1181
+
1182
+ return attn_output
1183
+
1184
+ def _upad_input(
1185
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1186
+ ):
1187
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1188
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1189
+
1190
+ key_layer = index_first_axis(
1191
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1192
+ indices_k,
1193
+ )
1194
+ value_layer = index_first_axis(
1195
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1196
+ indices_k,
1197
+ )
1198
+ if query_length == kv_seq_len:
1199
+ query_layer = index_first_axis(
1200
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1201
+ indices_k,
1202
+ )
1203
+ cu_seqlens_q = cu_seqlens_k
1204
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1205
+ indices_q = indices_k
1206
+ elif query_length == 1:
1207
+ max_seqlen_in_batch_q = 1
1208
+ cu_seqlens_q = torch.arange(
1209
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1210
+ ) # There is a memcpy here, that is very bad.
1211
+ indices_q = cu_seqlens_q[:-1]
1212
+ query_layer = query_layer.squeeze(1)
1213
+ else:
1214
+ # The -q_len: slice assumes left padding.
1215
+ attention_mask = attention_mask[:, -query_length:]
1216
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1217
+ query_layer, attention_mask
1218
+ )
1219
+
1220
+ return (
1221
+ query_layer,
1222
+ key_layer,
1223
+ value_layer,
1224
+ indices_q,
1225
+ (cu_seqlens_q, cu_seqlens_k),
1226
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1227
+ )
1228
+
1229
+
1230
+ ATTENTION_CLASSES = {
1231
+ "eager": DeepseekV2Attention,
1232
+ "flash_attention_2": DeepseekV2FlashAttention2,
1233
+
1234
+ "mla_eager": DeepseekV2Attention,
1235
+ "mla_flash_attention_2": DeepseekV2FlashAttention2,
1236
+
1237
+ "mha_eager": LlamaAttention,
1238
+ "mha_flash_attention_2": LlamaFlashAttention2
1239
+ }
1240
+
1241
+
1242
+ class DeepseekV2DecoderLayer(nn.Module):
1243
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1244
+ super().__init__()
1245
+ self.hidden_size = config.hidden_size
1246
+
1247
+
1248
+ if config.use_mla:
1249
+ attn_implementation = "mla_" + config._attn_implementation
1250
+ else:
1251
+ attn_implementation = "mha_" + config._attn_implementation
1252
+
1253
+ self.self_attn = ATTENTION_CLASSES[attn_implementation](
1254
+ config=config, layer_idx=layer_idx
1255
+ )
1256
+
1257
+ self.mlp = (
1258
+ DeepseekV2MoE(config)
1259
+ if (
1260
+ config.n_routed_experts is not None
1261
+ and layer_idx >= config.first_k_dense_replace
1262
+ and layer_idx % config.moe_layer_freq == 0
1263
+ )
1264
+ else DeepseekV2MLP(config)
1265
+ )
1266
+ self.input_layernorm = DeepseekV2RMSNorm(
1267
+ config.hidden_size, eps=config.rms_norm_eps
1268
+ )
1269
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1270
+ config.hidden_size, eps=config.rms_norm_eps
1271
+ )
1272
+
1273
+ def forward(
1274
+ self,
1275
+ hidden_states: torch.Tensor,
1276
+ attention_mask: Optional[torch.Tensor] = None,
1277
+ position_ids: Optional[torch.LongTensor] = None,
1278
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1279
+ output_attentions: Optional[bool] = False,
1280
+ use_cache: Optional[bool] = False,
1281
+ **kwargs,
1282
+ ) -> Tuple[
1283
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1284
+ ]:
1285
+ """
1286
+ Args:
1287
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1288
+ attention_mask (`torch.FloatTensor`, *optional*):
1289
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1290
+ query_sequence_length, key_sequence_length)` if default attention is used.
1291
+ output_attentions (`bool`, *optional*):
1292
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1293
+ returned tensors for more detail.
1294
+ use_cache (`bool`, *optional*):
1295
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1296
+ (see `past_key_values`).
1297
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1298
+ """
1299
+ if "padding_mask" in kwargs:
1300
+ warnings.warn(
1301
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1302
+ )
1303
+ residual = hidden_states
1304
+
1305
+ hidden_states = self.input_layernorm(hidden_states)
1306
+
1307
+ # Self Attention
1308
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1309
+ hidden_states=hidden_states,
1310
+ attention_mask=attention_mask,
1311
+ position_ids=position_ids,
1312
+ past_key_value=past_key_value,
1313
+ output_attentions=output_attentions,
1314
+ use_cache=use_cache,
1315
+ **kwargs,
1316
+ )
1317
+ hidden_states = residual + hidden_states
1318
+
1319
+ # Fully Connected
1320
+ residual = hidden_states
1321
+ hidden_states = self.post_attention_layernorm(hidden_states)
1322
+ hidden_states = self.mlp(hidden_states)
1323
+ hidden_states = residual + hidden_states
1324
+
1325
+ outputs = (hidden_states,)
1326
+
1327
+ if output_attentions:
1328
+ outputs += (self_attn_weights,)
1329
+
1330
+ if use_cache:
1331
+ outputs += (present_key_value,)
1332
+
1333
+ return outputs
1334
+
1335
+
1336
+ DeepseekV2_START_DOCSTRING = r"""
1337
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1338
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1339
+ etc.)
1340
+
1341
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1342
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1343
+ and behavior.
1344
+
1345
+ Parameters:
1346
+ config ([`DeepseekV2Config`]):
1347
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1348
+ load the weights associated with the model, only the configuration. Check out the
1349
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1350
+ """
1351
+
1352
+
1353
+ @add_start_docstrings(
1354
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1355
+ DeepseekV2_START_DOCSTRING,
1356
+ )
1357
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1358
+ config_class = DeepseekV2Config
1359
+ base_model_prefix = "model"
1360
+ supports_gradient_checkpointing = True
1361
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1362
+ _skip_keys_device_placement = "past_key_values"
1363
+ _supports_flash_attn_2 = True
1364
+ _supports_cache_class = True
1365
+
1366
+ def _init_weights(self, module):
1367
+ std = self.config.initializer_range
1368
+ if isinstance(module, nn.Linear):
1369
+ module.weight.data.normal_(mean=0.0, std=std)
1370
+ if module.bias is not None:
1371
+ module.bias.data.zero_()
1372
+ elif isinstance(module, nn.Embedding):
1373
+ module.weight.data.normal_(mean=0.0, std=std)
1374
+ if module.padding_idx is not None:
1375
+ module.weight.data[module.padding_idx].zero_()
1376
+
1377
+
1378
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1379
+ Args:
1380
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1381
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1382
+ it.
1383
+
1384
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1385
+ [`PreTrainedTokenizer.__call__`] for details.
1386
+
1387
+ [What are input IDs?](../glossary#input-ids)
1388
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1389
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1390
+
1391
+ - 1 for tokens that are **not masked**,
1392
+ - 0 for tokens that are **masked**.
1393
+
1394
+ [What are attention masks?](../glossary#attention-mask)
1395
+
1396
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1397
+ [`PreTrainedTokenizer.__call__`] for details.
1398
+
1399
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1400
+ `past_key_values`).
1401
+
1402
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1403
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1404
+ information on the default strategy.
1405
+
1406
+ - 1 indicates the head is **not masked**,
1407
+ - 0 indicates the head is **masked**.
1408
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1409
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1410
+ config.n_positions - 1]`.
1411
+
1412
+ [What are position IDs?](../glossary#position-ids)
1413
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1414
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1415
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1416
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1417
+
1418
+ Two formats are allowed:
1419
+ - a [`~cache_utils.Cache`] instance;
1420
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1421
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1422
+ cache format.
1423
+
1424
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1425
+ legacy cache format will be returned.
1426
+
1427
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1428
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1429
+ of shape `(batch_size, sequence_length)`.
1430
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1431
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1432
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1433
+ model's internal embedding lookup matrix.
1434
+ use_cache (`bool`, *optional*):
1435
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1436
+ `past_key_values`).
1437
+ output_attentions (`bool`, *optional*):
1438
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1439
+ tensors for more detail.
1440
+ output_hidden_states (`bool`, *optional*):
1441
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1442
+ more detail.
1443
+ return_dict (`bool`, *optional*):
1444
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1445
+ """
1446
+
1447
+
1448
+ @add_start_docstrings(
1449
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1450
+ DeepseekV2_START_DOCSTRING,
1451
+ )
1452
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1453
+ """
1454
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1455
+
1456
+ Args:
1457
+ config: DeepseekV2Config
1458
+ """
1459
+
1460
+ def __init__(self, config: DeepseekV2Config):
1461
+ super().__init__(config)
1462
+ self.padding_idx = config.pad_token_id
1463
+ self.vocab_size = config.vocab_size
1464
+
1465
+ self.embed_tokens = nn.Embedding(
1466
+ config.vocab_size, config.hidden_size, self.padding_idx
1467
+ )
1468
+ self.layers = nn.ModuleList(
1469
+ [
1470
+ DeepseekV2DecoderLayer(config, layer_idx)
1471
+ for layer_idx in range(config.num_hidden_layers)
1472
+ ]
1473
+ )
1474
+ # print(config._attn_implementation)
1475
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1476
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1477
+
1478
+ self.gradient_checkpointing = False
1479
+ # Initialize weights and apply final processing
1480
+ self.post_init()
1481
+
1482
+ def get_input_embeddings(self):
1483
+ return self.embed_tokens
1484
+
1485
+ def set_input_embeddings(self, value):
1486
+ self.embed_tokens = value
1487
+
1488
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1489
+ def forward(
1490
+ self,
1491
+ input_ids: torch.LongTensor = None,
1492
+ attention_mask: Optional[torch.Tensor] = None,
1493
+ position_ids: Optional[torch.LongTensor] = None,
1494
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1495
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1496
+ use_cache: Optional[bool] = None,
1497
+ output_attentions: Optional[bool] = None,
1498
+ output_hidden_states: Optional[bool] = None,
1499
+ return_dict: Optional[bool] = None,
1500
+ cache_position: Optional[torch.LongTensor] = None
1501
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1502
+ output_attentions = (
1503
+ output_attentions
1504
+ if output_attentions is not None
1505
+ else self.config.output_attentions
1506
+ )
1507
+ output_hidden_states = (
1508
+ output_hidden_states
1509
+ if output_hidden_states is not None
1510
+ else self.config.output_hidden_states
1511
+ )
1512
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1513
+
1514
+ return_dict = (
1515
+ return_dict if return_dict is not None else self.config.use_return_dict
1516
+ )
1517
+
1518
+ # retrieve input_ids and inputs_embeds
1519
+ if input_ids is not None and inputs_embeds is not None:
1520
+ raise ValueError(
1521
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1522
+ )
1523
+ elif input_ids is not None:
1524
+ batch_size, seq_length = input_ids.shape[:2]
1525
+ elif inputs_embeds is not None:
1526
+ batch_size, seq_length = inputs_embeds.shape[:2]
1527
+ else:
1528
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1529
+
1530
+ if self.gradient_checkpointing and self.training:
1531
+ if use_cache:
1532
+ logger.warning_once(
1533
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1534
+ )
1535
+ use_cache = False
1536
+
1537
+ past_key_values_length = 0
1538
+ if use_cache:
1539
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1540
+ if use_legacy_cache:
1541
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1542
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1543
+
1544
+ if position_ids is None:
1545
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1546
+ position_ids = torch.arange(
1547
+ past_key_values_length,
1548
+ seq_length + past_key_values_length,
1549
+ dtype=torch.long,
1550
+ device=device,
1551
+ )
1552
+ position_ids = position_ids.unsqueeze(0)
1553
+
1554
+ if inputs_embeds is None:
1555
+ inputs_embeds = self.embed_tokens(input_ids)
1556
+
1557
+ if self._use_flash_attention_2:
1558
+ # 2d mask is passed through the layers
1559
+ attention_mask = (
1560
+ attention_mask
1561
+ if (attention_mask is not None and 0 in attention_mask)
1562
+ else None
1563
+ )
1564
+ else:
1565
+ # 4d mask is passed through the layers
1566
+ attention_mask = _prepare_4d_causal_attention_mask(
1567
+ attention_mask,
1568
+ (batch_size, seq_length),
1569
+ inputs_embeds,
1570
+ past_key_values_length,
1571
+ )
1572
+
1573
+ # embed positions
1574
+ hidden_states = inputs_embeds
1575
+
1576
+ # decoder layers
1577
+ all_hidden_states = () if output_hidden_states else None
1578
+ all_self_attns = () if output_attentions else None
1579
+ next_decoder_cache = None
1580
+
1581
+ for decoder_layer in self.layers:
1582
+ if output_hidden_states:
1583
+ all_hidden_states += (hidden_states,)
1584
+
1585
+ if self.gradient_checkpointing and self.training:
1586
+ layer_outputs = self._gradient_checkpointing_func(
1587
+ decoder_layer.__call__,
1588
+ hidden_states,
1589
+ attention_mask,
1590
+ position_ids,
1591
+ past_key_values,
1592
+ output_attentions,
1593
+ use_cache,
1594
+ )
1595
+ else:
1596
+ layer_outputs = decoder_layer(
1597
+ hidden_states,
1598
+ attention_mask=attention_mask,
1599
+ position_ids=position_ids,
1600
+ past_key_value=past_key_values,
1601
+ output_attentions=output_attentions,
1602
+ use_cache=use_cache,
1603
+ )
1604
+
1605
+ hidden_states = layer_outputs[0]
1606
+
1607
+ if use_cache:
1608
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1609
+
1610
+ if output_attentions:
1611
+ all_self_attns += (layer_outputs[1],)
1612
+
1613
+ hidden_states = self.norm(hidden_states)
1614
+
1615
+ # add hidden states from the last decoder layer
1616
+ if output_hidden_states:
1617
+ all_hidden_states += (hidden_states,)
1618
+
1619
+ next_cache = None
1620
+ if use_cache:
1621
+ next_cache = (
1622
+ next_decoder_cache.to_legacy_cache()
1623
+ if use_legacy_cache
1624
+ else next_decoder_cache
1625
+ )
1626
+ if not return_dict:
1627
+ return tuple(
1628
+ v
1629
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1630
+ if v is not None
1631
+ )
1632
+ return BaseModelOutputWithPast(
1633
+ last_hidden_state=hidden_states,
1634
+ past_key_values=next_cache,
1635
+ hidden_states=all_hidden_states,
1636
+ attentions=all_self_attns,
1637
+ )
1638
+
1639
+
1640
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1641
+ _tied_weights_keys = ["lm_head.weight"]
1642
+
1643
+ def __init__(self, config):
1644
+ super().__init__(config)
1645
+ self.model = DeepseekV2Model(config)
1646
+ self.vocab_size = config.vocab_size
1647
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1648
+
1649
+ # Initialize weights and apply final processing
1650
+ self.post_init()
1651
+
1652
+ def get_input_embeddings(self):
1653
+ return self.model.embed_tokens
1654
+
1655
+ def set_input_embeddings(self, value):
1656
+ self.model.embed_tokens = value
1657
+
1658
+ def get_output_embeddings(self):
1659
+ return self.lm_head
1660
+
1661
+ def set_output_embeddings(self, new_embeddings):
1662
+ self.lm_head = new_embeddings
1663
+
1664
+ def set_decoder(self, decoder):
1665
+ self.model = decoder
1666
+
1667
+ def get_decoder(self):
1668
+ return self.model
1669
+
1670
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1671
+ @replace_return_docstrings(
1672
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1673
+ )
1674
+ def forward(
1675
+ self,
1676
+ input_ids: torch.LongTensor = None,
1677
+ attention_mask: Optional[torch.Tensor] = None,
1678
+ position_ids: Optional[torch.LongTensor] = None,
1679
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1680
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1681
+ labels: Optional[torch.LongTensor] = None,
1682
+ use_cache: Optional[bool] = None,
1683
+ output_attentions: Optional[bool] = None,
1684
+ output_hidden_states: Optional[bool] = None,
1685
+ return_dict: Optional[bool] = None,
1686
+ cache_position: Optional[torch.LongTensor] = None
1687
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1688
+ r"""
1689
+ Args:
1690
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1691
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1692
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1693
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1694
+
1695
+ Returns:
1696
+
1697
+ Example:
1698
+
1699
+ ```python
1700
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1701
+
1702
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1703
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1704
+
1705
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1706
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1707
+
1708
+ >>> # Generate
1709
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1710
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1711
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1712
+ ```"""
1713
+ output_attentions = (
1714
+ output_attentions
1715
+ if output_attentions is not None
1716
+ else self.config.output_attentions
1717
+ )
1718
+ output_hidden_states = (
1719
+ output_hidden_states
1720
+ if output_hidden_states is not None
1721
+ else self.config.output_hidden_states
1722
+ )
1723
+ return_dict = (
1724
+ return_dict if return_dict is not None else self.config.use_return_dict
1725
+ )
1726
+
1727
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1728
+ outputs = self.model(
1729
+ input_ids=input_ids,
1730
+ attention_mask=attention_mask,
1731
+ position_ids=position_ids,
1732
+ past_key_values=past_key_values,
1733
+ inputs_embeds=inputs_embeds,
1734
+ use_cache=use_cache,
1735
+ output_attentions=output_attentions,
1736
+ output_hidden_states=output_hidden_states,
1737
+ return_dict=return_dict,
1738
+ cache_position=cache_position
1739
+ )
1740
+
1741
+ hidden_states = outputs[0]
1742
+ logits = self.lm_head(hidden_states)
1743
+ logits = logits.float()
1744
+
1745
+ loss = None
1746
+ if labels is not None:
1747
+ # Shift so that tokens < n predict n
1748
+ shift_logits = logits[..., :-1, :].contiguous()
1749
+ shift_labels = labels[..., 1:].contiguous()
1750
+ # Flatten the tokens
1751
+ loss_fct = CrossEntropyLoss()
1752
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1753
+ shift_labels = shift_labels.view(-1)
1754
+ # Enable model parallelism
1755
+ shift_labels = shift_labels.to(shift_logits.device)
1756
+ loss = loss_fct(shift_logits, shift_labels)
1757
+
1758
+ if not return_dict:
1759
+ output = (logits,) + outputs[1:]
1760
+ return (loss,) + output if loss is not None else output
1761
+
1762
+ return CausalLMOutputWithPast(
1763
+ loss=loss,
1764
+ logits=logits,
1765
+ past_key_values=outputs.past_key_values,
1766
+ hidden_states=outputs.hidden_states,
1767
+ attentions=outputs.attentions,
1768
+ )
1769
+
1770
+ def prepare_inputs_for_generation(
1771
+ self,
1772
+ input_ids,
1773
+ past_key_values=None,
1774
+ attention_mask=None,
1775
+ inputs_embeds=None,
1776
+ **kwargs,
1777
+ ):
1778
+ past_length = 0
1779
+ if past_key_values is not None:
1780
+ if isinstance(past_key_values, Cache):
1781
+ cache_length = past_key_values.get_seq_length()
1782
+ past_length = past_key_values.seen_tokens
1783
+ max_cache_length = past_key_values.get_max_length()
1784
+ else:
1785
+ cache_length = past_length = past_key_values[0][0].shape[2]
1786
+ max_cache_length = None
1787
+
1788
+ # Keep only the unprocessed tokens:
1789
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1790
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1791
+ # input)
1792
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1793
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1794
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1795
+ # input_ids based on the past_length.
1796
+ elif past_length < input_ids.shape[1]:
1797
+ input_ids = input_ids[:, past_length:]
1798
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1799
+
1800
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1801
+ if (
1802
+ max_cache_length is not None
1803
+ and attention_mask is not None
1804
+ and cache_length + input_ids.shape[1] > max_cache_length
1805
+ ):
1806
+ attention_mask = attention_mask[:, -max_cache_length:]
1807
+
1808
+ position_ids = kwargs.get("position_ids", None)
1809
+ if attention_mask is not None and position_ids is None:
1810
+ # create position_ids on the fly for batch generation
1811
+ position_ids = attention_mask.long().cumsum(-1) - 1
1812
+ position_ids.masked_fill_(attention_mask == 0, 1)
1813
+ if past_key_values:
1814
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1815
+
1816
+ if self.generation_config.cache_implementation == "static":
1817
+ # generation with static cache
1818
+ cache_position = kwargs.get("cache_position", None)
1819
+ if cache_position is None:
1820
+ past_length = 0
1821
+ else:
1822
+ past_length = cache_position[-1] + 1
1823
+ input_ids = input_ids[:, past_length:]
1824
+ position_ids = position_ids[:, past_length:]
1825
+
1826
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
1827
+ # same goes for position ids. Could also help with continued generation.
1828
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
1829
+
1830
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1831
+ if inputs_embeds is not None and past_key_values is None:
1832
+ model_inputs = {"inputs_embeds": inputs_embeds}
1833
+ else:
1834
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1835
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1836
+ # TODO: use `next_tokens` directly instead.
1837
+ model_inputs = {"input_ids": input_ids.contiguous()}
1838
+
1839
+ model_inputs.update(
1840
+ {
1841
+ "position_ids": position_ids.contiguous(),
1842
+ "cache_position": cache_position,
1843
+ "past_key_values": past_key_values,
1844
+ "use_cache": kwargs.get("use_cache"),
1845
+ "attention_mask": attention_mask,
1846
+ }
1847
+ )
1848
+ return model_inputs
1849
+
1850
+ @staticmethod
1851
+ def _reorder_cache(past_key_values, beam_idx):
1852
+ reordered_past = ()
1853
+ for layer_past in past_key_values:
1854
+ reordered_past += (
1855
+ tuple(
1856
+ past_state.index_select(0, beam_idx.to(past_state.device))
1857
+ for past_state in layer_past
1858
+ ),
1859
+ )
1860
+ return reordered_past
1861
+
1862
+
1863
+ @add_start_docstrings(
1864
+ """
1865
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1866
+
1867
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1868
+ (e.g. GPT-2) do.
1869
+
1870
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1871
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1872
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1873
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1874
+ each row of the batch).
1875
+ """,
1876
+ DeepseekV2_START_DOCSTRING,
1877
+ )
1878
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1879
+ def __init__(self, config):
1880
+ super().__init__(config)
1881
+ self.num_labels = config.num_labels
1882
+ self.model = DeepseekV2Model(config)
1883
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1884
+
1885
+ # Initialize weights and apply final processing
1886
+ self.post_init()
1887
+
1888
+ def get_input_embeddings(self):
1889
+ return self.model.embed_tokens
1890
+
1891
+ def set_input_embeddings(self, value):
1892
+ self.model.embed_tokens = value
1893
+
1894
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1895
+ def forward(
1896
+ self,
1897
+ input_ids: torch.LongTensor = None,
1898
+ attention_mask: Optional[torch.Tensor] = None,
1899
+ position_ids: Optional[torch.LongTensor] = None,
1900
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1902
+ labels: Optional[torch.LongTensor] = None,
1903
+ use_cache: Optional[bool] = None,
1904
+ output_attentions: Optional[bool] = None,
1905
+ output_hidden_states: Optional[bool] = None,
1906
+ return_dict: Optional[bool] = None,
1907
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1908
+ r"""
1909
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1910
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1911
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1912
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1913
+ """
1914
+ return_dict = (
1915
+ return_dict if return_dict is not None else self.config.use_return_dict
1916
+ )
1917
+
1918
+ transformer_outputs = self.model(
1919
+ input_ids,
1920
+ attention_mask=attention_mask,
1921
+ position_ids=position_ids,
1922
+ past_key_values=past_key_values,
1923
+ inputs_embeds=inputs_embeds,
1924
+ use_cache=use_cache,
1925
+ output_attentions=output_attentions,
1926
+ output_hidden_states=output_hidden_states,
1927
+ return_dict=return_dict,
1928
+ )
1929
+ hidden_states = transformer_outputs[0]
1930
+ logits = self.score(hidden_states)
1931
+
1932
+ if input_ids is not None:
1933
+ batch_size = input_ids.shape[0]
1934
+ else:
1935
+ batch_size = inputs_embeds.shape[0]
1936
+
1937
+ if self.config.pad_token_id is None and batch_size != 1:
1938
+ raise ValueError(
1939
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1940
+ )
1941
+ if self.config.pad_token_id is None:
1942
+ sequence_lengths = -1
1943
+ else:
1944
+ if input_ids is not None:
1945
+ sequence_lengths = (
1946
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1947
+ ).to(logits.device)
1948
+ else:
1949
+ sequence_lengths = -1
1950
+
1951
+ pooled_logits = logits[
1952
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1953
+ ]
1954
+
1955
+ loss = None
1956
+ if labels is not None:
1957
+ labels = labels.to(logits.device)
1958
+ if self.config.problem_type is None:
1959
+ if self.num_labels == 1:
1960
+ self.config.problem_type = "regression"
1961
+ elif self.num_labels > 1 and (
1962
+ labels.dtype == torch.long or labels.dtype == torch.int
1963
+ ):
1964
+ self.config.problem_type = "single_label_classification"
1965
+ else:
1966
+ self.config.problem_type = "multi_label_classification"
1967
+
1968
+ if self.config.problem_type == "regression":
1969
+ loss_fct = MSELoss()
1970
+ if self.num_labels == 1:
1971
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1972
+ else:
1973
+ loss = loss_fct(pooled_logits, labels)
1974
+ elif self.config.problem_type == "single_label_classification":
1975
+ loss_fct = CrossEntropyLoss()
1976
+ loss = loss_fct(
1977
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1978
+ )
1979
+ elif self.config.problem_type == "multi_label_classification":
1980
+ loss_fct = BCEWithLogitsLoss()
1981
+ loss = loss_fct(pooled_logits, labels)
1982
+ if not return_dict:
1983
+ output = (pooled_logits,) + transformer_outputs[1:]
1984
+ return ((loss,) + output) if loss is not None else output
1985
+
1986
+ return SequenceClassifierOutputWithPast(
1987
+ loss=loss,
1988
+ logits=pooled_logits,
1989
+ past_key_values=transformer_outputs.past_key_values,
1990
+ hidden_states=transformer_outputs.hidden_states,
1991
+ attentions=transformer_outputs.attentions,
1992
+ )
processor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_special_token": false,
3
+ "candidate_resolutions": [
4
+ [
5
+ 1024,
6
+ 1024
7
+ ]
8
+ ],
9
+ "downsample_ratio": 4,
10
+ "ignore_id": -100,
11
+ "image_mean": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "image_std": [
17
+ 0.5,
18
+ 0.5,
19
+ 0.5
20
+ ],
21
+ "image_token": "<image>",
22
+ "mask_prompt": false,
23
+ "normalize": true,
24
+ "pad_token": "<\uff5c\u2581pad\u2581\uff5c>",
25
+ "patch_size": 16,
26
+ "processor_class": "DeepseekVLV2Processor",
27
+ "sft_format": "deepseek"
28
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|User|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|Assistant|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<|begin▁of▁sentence|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "<|end▁of▁sentence|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<|▁pad▁|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff