initial commit
Browse files- .ipynb_checkpoints/README-checkpoint.md +122 -0
- .ipynb_checkpoints/deepencoderv2-checkpoint.py +1015 -0
- LICENSE.txt +202 -0
- README.md +1 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: image-text-to-text
|
| 3 |
+
language:
|
| 4 |
+
- multilingual
|
| 5 |
+
tags:
|
| 6 |
+
- deepseek
|
| 7 |
+
- vision-language
|
| 8 |
+
- ocr
|
| 9 |
+
- custom_code
|
| 10 |
+
license: mit
|
| 11 |
+
library_name: transformers
|
| 12 |
+
---
|
| 13 |
+
<div align="center">
|
| 14 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
|
| 15 |
+
</div>
|
| 16 |
+
<hr>
|
| 17 |
+
<div align="center">
|
| 18 |
+
<a href="https://www.deepseek.com/" target="_blank">
|
| 19 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
|
| 20 |
+
</a>
|
| 21 |
+
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2" target="_blank">
|
| 22 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
|
| 23 |
+
</a>
|
| 24 |
+
|
| 25 |
+
</div>
|
| 26 |
+
|
| 27 |
+
<div align="center">
|
| 28 |
+
|
| 29 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
|
| 30 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
|
| 31 |
+
</a>
|
| 32 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank">
|
| 33 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
|
| 34 |
+
</a>
|
| 35 |
+
|
| 36 |
+
</div>
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
<p align="center">
|
| 41 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-OCR-2"><b>🌟 Github</b></a> |
|
| 42 |
+
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR-2"><b>📥 Model Download</b></a> |
|
| 43 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Paper Link</b></a> |
|
| 44 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-OCR-2/blob/main/DeepSeek_OCR2_paper.pdf"><b>📄 Arxiv Paper Link</b></a> |
|
| 45 |
+
</p>
|
| 46 |
+
<h2>
|
| 47 |
+
<p align="center">
|
| 48 |
+
<a href="">DeepSeek-OCR 2: Visual Causal Flow</a>
|
| 49 |
+
</p>
|
| 50 |
+
</h2>
|
| 51 |
+
<p align="center">
|
| 52 |
+
<img src="assets/fig1.png" style="width: 900px" align=center>
|
| 53 |
+
</p>
|
| 54 |
+
<p align="center">
|
| 55 |
+
<a href="">Explore more human-like visual encoding.</a>
|
| 56 |
+
</p>
|
| 57 |
+
|
| 58 |
+
## Usage
|
| 59 |
+
|
| 60 |
+
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
torch==2.6.0
|
| 64 |
+
transformers==4.46.3
|
| 65 |
+
tokenizers==0.20.3
|
| 66 |
+
einops
|
| 67 |
+
addict
|
| 68 |
+
easydict
|
| 69 |
+
pip install flash-attn==2.7.3 --no-build-isolation
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from transformers import AutoModel, AutoTokenizer
|
| 74 |
+
import torch
|
| 75 |
+
import os
|
| 76 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
| 77 |
+
model_name = 'deepseek-ai/DeepSeek-OCR-2'
|
| 78 |
+
|
| 79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 80 |
+
model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
|
| 81 |
+
model = model.eval().cuda().to(torch.bfloat16)
|
| 82 |
+
|
| 83 |
+
# prompt = "<image>\nFree OCR. "
|
| 84 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
|
| 85 |
+
image_file = 'your_image.jpg'
|
| 86 |
+
output_path = 'your/output/dir'
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 768, crop_mode=True, save_results = True)
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## vLLM
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR-2/) for guidance on model inference acceleration and PDF processing, etc.<!-- -->
|
| 96 |
+
|
| 97 |
+
## Support-Modes
|
| 98 |
+
- Dynamic resolution
|
| 99 |
+
- Default: (0-6)×768×768 + 1×1024×1024 — (0-6)×144 + 256 visual tokens ✅
|
| 100 |
+
|
| 101 |
+
## Prompts examples
|
| 102 |
+
```python
|
| 103 |
+
# document: <image>\n<|grounding|>Convert the document to markdown.
|
| 104 |
+
# other image: <image>\n<|grounding|>OCR this image.
|
| 105 |
+
# without layouts: <image>\nFree OCR.
|
| 106 |
+
# figures in document: <image>\nParse the figure.
|
| 107 |
+
# general: <image>\nDescribe this image in detail.
|
| 108 |
+
# rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
## Acknowledgement
|
| 113 |
+
|
| 114 |
+
We would like to thank [DeepSeek-OCR](https://github.com/deepseek-ai/DeepSeek-OCR/), [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for their valuable models and ideas.
|
| 115 |
+
|
| 116 |
+
We also appreciate the benchmark [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
## Citation
|
| 120 |
+
|
| 121 |
+
```bibtex
|
| 122 |
+
coming soon~
|
.ipynb_checkpoints/deepencoderv2-checkpoint.py
ADDED
|
@@ -0,0 +1,1015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import copy
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from typing import Optional, Tuple
|
| 8 |
+
|
| 9 |
+
# from megatron.model import LayerNorm
|
| 10 |
+
|
| 11 |
+
import transformers
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
from typing import Optional, Tuple, Type
|
| 15 |
+
from functools import partial
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class MlpProjector(nn.Module):
|
| 20 |
+
|
| 21 |
+
def __init__(self, cfg):
|
| 22 |
+
|
| 23 |
+
super().__init__()
|
| 24 |
+
|
| 25 |
+
self.cfg = cfg
|
| 26 |
+
|
| 27 |
+
if cfg.projector_type == "identity":
|
| 28 |
+
modules = nn.Identity()
|
| 29 |
+
|
| 30 |
+
elif cfg.projector_type == "linear":
|
| 31 |
+
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
|
| 32 |
+
|
| 33 |
+
elif cfg.projector_type == "mlp_gelu":
|
| 34 |
+
mlp_depth = cfg.get("depth", 1)
|
| 35 |
+
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
|
| 36 |
+
for _ in range(1, mlp_depth):
|
| 37 |
+
modules.append(nn.GELU())
|
| 38 |
+
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 39 |
+
modules = nn.Sequential(*modules)
|
| 40 |
+
|
| 41 |
+
elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
|
| 42 |
+
mlp_depth = cfg.get("depth", 1)
|
| 43 |
+
mlp_ratio = cfg.get("mlp_ratio", 1)
|
| 44 |
+
modules = [
|
| 45 |
+
nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
|
| 46 |
+
nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
|
| 47 |
+
]
|
| 48 |
+
for _ in range(1, mlp_depth - 1):
|
| 49 |
+
modules.append(nn.GELU())
|
| 50 |
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
|
| 51 |
+
modules.append(nn.GELU())
|
| 52 |
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
| 53 |
+
modules = nn.Sequential(*modules)
|
| 54 |
+
|
| 55 |
+
elif cfg.projector_type == "downsample_mlp_gelu":
|
| 56 |
+
mlp_depth = cfg.get("depth", 1)
|
| 57 |
+
mlp_ratio = cfg.get("mlp_ratio", 1)
|
| 58 |
+
modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
|
| 59 |
+
for _ in range(1, mlp_depth - 1):
|
| 60 |
+
modules.append(nn.GELU())
|
| 61 |
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
|
| 62 |
+
modules.append(nn.GELU())
|
| 63 |
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
| 64 |
+
modules = nn.Sequential(*modules)
|
| 65 |
+
|
| 66 |
+
elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
|
| 67 |
+
mlp_depth = cfg.get("depth", 1)
|
| 68 |
+
self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
| 69 |
+
self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
| 70 |
+
|
| 71 |
+
modules = []
|
| 72 |
+
for _ in range(1, mlp_depth):
|
| 73 |
+
modules.append(nn.GELU())
|
| 74 |
+
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 75 |
+
modules = nn.Sequential(*modules)
|
| 76 |
+
|
| 77 |
+
elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
|
| 78 |
+
mlp_depth = cfg.get("depth", 1)
|
| 79 |
+
channel_div = cfg.get("channel_div", 0.5)
|
| 80 |
+
self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
|
| 81 |
+
self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
|
| 82 |
+
|
| 83 |
+
modules = []
|
| 84 |
+
for _ in range(1, mlp_depth):
|
| 85 |
+
modules.append(nn.GELU())
|
| 86 |
+
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 87 |
+
modules = nn.Sequential(*modules)
|
| 88 |
+
|
| 89 |
+
elif cfg.projector_type == "low_high_split_mlp_gelu":
|
| 90 |
+
mlp_depth = cfg.get("depth", 1)
|
| 91 |
+
modules = []
|
| 92 |
+
for _ in range(1, mlp_depth):
|
| 93 |
+
modules.append(nn.GELU())
|
| 94 |
+
modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
|
| 95 |
+
modules = nn.Sequential(*modules)
|
| 96 |
+
self.high_layers = nn.Sequential(*modules)
|
| 97 |
+
self.low_layers = copy.deepcopy(modules)
|
| 98 |
+
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
|
| 101 |
+
|
| 102 |
+
if cfg.get("token_pooling", False):
|
| 103 |
+
self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
|
| 104 |
+
|
| 105 |
+
if cfg.get("conv_fusion_high_low_features", False):
|
| 106 |
+
self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
|
| 107 |
+
self.layers = modules
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
if self.cfg.get("token_pooling", False):
|
| 111 |
+
batch_size, wxh, channels = x.shape
|
| 112 |
+
w = h = int(wxh**0.5)
|
| 113 |
+
x = x.view(batch_size, w, h, channels)
|
| 114 |
+
x = x.permute(0, 3, 1, 2)
|
| 115 |
+
# import ipdb; ipdb.set_trace()
|
| 116 |
+
patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
|
| 117 |
+
batch_size, channels, h_patches, w_patches, _, _ = patches.size()
|
| 118 |
+
# 在通道维度上拼接
|
| 119 |
+
patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
|
| 120 |
+
|
| 121 |
+
# 通过线性层
|
| 122 |
+
patches = patches.permute(0, 2, 1, 3).contiguous()
|
| 123 |
+
patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
|
| 124 |
+
|
| 125 |
+
x = self.token_pooling_layer(patches)
|
| 126 |
+
|
| 127 |
+
if self.cfg.get("conv_fusion_high_low_features", False):
|
| 128 |
+
x = self.fusion_layer(x[:, 0]) + x[:, 1]
|
| 129 |
+
|
| 130 |
+
if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
|
| 131 |
+
high_x, low_x = x[0], x[1]
|
| 132 |
+
high_x = self.high_up_proj(high_x)
|
| 133 |
+
low_x = self.low_up_proj(low_x)
|
| 134 |
+
x = torch.concat([high_x, low_x], dim=-1)
|
| 135 |
+
|
| 136 |
+
if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
|
| 137 |
+
high_x = x[...,:self.cfg.input_dim[0]]
|
| 138 |
+
low_x = x[...,self.cfg.input_dim[0]:]
|
| 139 |
+
high_x = self.high_up_proj(high_x)
|
| 140 |
+
low_x = self.low_up_proj(low_x)
|
| 141 |
+
x = torch.concat([high_x, low_x], dim=-1)
|
| 142 |
+
|
| 143 |
+
if self.cfg.projector_type == 'low_high_split_mlp_gelu':
|
| 144 |
+
high_x, low_x = x[0], x[1]
|
| 145 |
+
high_x = self.high_layers(high_x)
|
| 146 |
+
low_x = self.low_layers(low_x)
|
| 147 |
+
x = torch.concat([high_x, low_x], dim=-1)
|
| 148 |
+
return x
|
| 149 |
+
|
| 150 |
+
if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
|
| 151 |
+
bs, hw, input_dim = x.shape
|
| 152 |
+
h = w = int((hw) ** 0.5)
|
| 153 |
+
|
| 154 |
+
"""compute padding"""
|
| 155 |
+
if h % self.cfg.downsample_ratio:
|
| 156 |
+
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
| 157 |
+
else:
|
| 158 |
+
pad = 0
|
| 159 |
+
x = x.reshape(bs, h, w, input_dim)
|
| 160 |
+
if pad > 0:
|
| 161 |
+
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
| 162 |
+
|
| 163 |
+
"""4 to 1 concat"""
|
| 164 |
+
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
| 165 |
+
x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
|
| 166 |
+
x = x.permute(0, 2, 1)
|
| 167 |
+
|
| 168 |
+
return self.layers(x)
|
| 169 |
+
|
| 170 |
+
@staticmethod
|
| 171 |
+
def get_flops_per_sample(cfg):
|
| 172 |
+
if cfg.projector_type == "linear":
|
| 173 |
+
fwd = 2 * cfg.input_dim * cfg.n_embed
|
| 174 |
+
|
| 175 |
+
elif "mlp_gelu" in cfg.projector_type :
|
| 176 |
+
mlp_depth = cfg.get("depth", 1)
|
| 177 |
+
downsample_ratio = cfg.get("downsample_ratio", 1)
|
| 178 |
+
input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
|
| 179 |
+
input_dim = input_dim * downsample_ratio * downsample_ratio
|
| 180 |
+
fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
|
| 181 |
+
else:
|
| 182 |
+
fwd = 0
|
| 183 |
+
|
| 184 |
+
return fwd * 3
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
#===================qwen2================================
|
| 188 |
+
|
| 189 |
+
class CustomQwen2Decoder(nn.Module):
|
| 190 |
+
"""
|
| 191 |
+
Qwen2 visual encoder
|
| 192 |
+
non-causal attention + causal attention
|
| 193 |
+
token_type_ids :0=non-causal, 1=causal
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
def __init__(
|
| 197 |
+
self,
|
| 198 |
+
decoder_layer: int = 24,
|
| 199 |
+
max_position_embeddings: int = 131072,
|
| 200 |
+
hidden_dimension: int = 896,
|
| 201 |
+
num_attention_heads: int = 14,
|
| 202 |
+
num_key_value_heads: int = 2,
|
| 203 |
+
intermediate_size: int = 4864,
|
| 204 |
+
vocab_size: int = 151936,
|
| 205 |
+
attn_implementation: str = "sdpa", # ⭐
|
| 206 |
+
rms_norm_eps: float = 1e-06,
|
| 207 |
+
rope_theta: float = 1000000.0,
|
| 208 |
+
attention_dropout: float = 0.0,
|
| 209 |
+
hidden_act: str = "silu",
|
| 210 |
+
initializer_range: float = 0.02,
|
| 211 |
+
):
|
| 212 |
+
super().__init__()
|
| 213 |
+
|
| 214 |
+
# attn_implementation check
|
| 215 |
+
if attn_implementation == "flash_attention_2":
|
| 216 |
+
raise ValueError(
|
| 217 |
+
"CustomQwen2Decoder do not support flash_attention_2,"
|
| 218 |
+
"new attention mask needs 'sdpa' or 'eager'"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# load
|
| 222 |
+
Qwen2Model = getattr(transformers.models.qwen2.modeling_qwen2, 'Qwen2Model')
|
| 223 |
+
Qwen2Config = getattr(transformers, 'Qwen2Config')
|
| 224 |
+
|
| 225 |
+
# config
|
| 226 |
+
config = Qwen2Config(
|
| 227 |
+
hidden_size=hidden_dimension,
|
| 228 |
+
num_hidden_layers=decoder_layer,
|
| 229 |
+
num_attention_heads=num_attention_heads,
|
| 230 |
+
num_key_value_heads=num_key_value_heads,
|
| 231 |
+
intermediate_size=intermediate_size,
|
| 232 |
+
max_position_embeddings=max_position_embeddings,
|
| 233 |
+
vocab_size=vocab_size,
|
| 234 |
+
rms_norm_eps=rms_norm_eps,
|
| 235 |
+
rope_theta=rope_theta,
|
| 236 |
+
attention_dropout=attention_dropout,
|
| 237 |
+
hidden_act=hidden_act,
|
| 238 |
+
initializer_range=initializer_range,
|
| 239 |
+
_attn_implementation=attn_implementation, # ⭐
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
#
|
| 243 |
+
self.model = self._create_custom_model(Qwen2Model, config)
|
| 244 |
+
|
| 245 |
+
del self.model.embed_tokens
|
| 246 |
+
|
| 247 |
+
def _create_custom_model(self, Qwen2Model, config):
|
| 248 |
+
""" Qwen2Model """
|
| 249 |
+
|
| 250 |
+
class CustomQwen2ModelInner(Qwen2Model):
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def forward(
|
| 254 |
+
self,
|
| 255 |
+
input_ids=None,
|
| 256 |
+
attention_mask=None,
|
| 257 |
+
position_ids=None,
|
| 258 |
+
past_key_values=None,
|
| 259 |
+
inputs_embeds=None,
|
| 260 |
+
token_type_ids=None, # ⭐
|
| 261 |
+
use_cache=None,
|
| 262 |
+
output_attentions=None,
|
| 263 |
+
output_hidden_states=None,
|
| 264 |
+
return_dict=None,
|
| 265 |
+
cache_position=None,
|
| 266 |
+
):
|
| 267 |
+
# token_type_ids
|
| 268 |
+
self._current_token_type_ids = token_type_ids
|
| 269 |
+
|
| 270 |
+
outputs = super().forward(
|
| 271 |
+
input_ids=input_ids,
|
| 272 |
+
attention_mask=attention_mask,
|
| 273 |
+
position_ids=position_ids,
|
| 274 |
+
past_key_values=past_key_values,
|
| 275 |
+
inputs_embeds=inputs_embeds,
|
| 276 |
+
use_cache=use_cache,
|
| 277 |
+
output_attentions=output_attentions,
|
| 278 |
+
output_hidden_states=output_hidden_states,
|
| 279 |
+
return_dict=return_dict,
|
| 280 |
+
cache_position=cache_position,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
return outputs
|
| 284 |
+
|
| 285 |
+
def _update_causal_mask(
|
| 286 |
+
self,
|
| 287 |
+
attention_mask,
|
| 288 |
+
input_tensor,
|
| 289 |
+
cache_position,
|
| 290 |
+
past_key_values,
|
| 291 |
+
output_attentions,
|
| 292 |
+
):
|
| 293 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 294 |
+
min_dtype = torch.finfo(dtype).min
|
| 295 |
+
batch_size, sequence_length = input_tensor.shape[0], input_tensor.shape[1]
|
| 296 |
+
|
| 297 |
+
token_type_ids = self._current_token_type_ids
|
| 298 |
+
|
| 299 |
+
# attention mask
|
| 300 |
+
causal_mask = self._create_custom_4d_mask(
|
| 301 |
+
sequence_length=sequence_length,
|
| 302 |
+
dtype=dtype,
|
| 303 |
+
device=device,
|
| 304 |
+
batch_size=batch_size,
|
| 305 |
+
token_type_ids=token_type_ids,
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# padding mask
|
| 309 |
+
if attention_mask is not None and attention_mask.dim() == 2:
|
| 310 |
+
padding_mask = attention_mask[:, None, None, :].to(dtype=dtype)
|
| 311 |
+
padding_mask = (1.0 - padding_mask) * min_dtype
|
| 312 |
+
causal_mask = causal_mask + padding_mask
|
| 313 |
+
|
| 314 |
+
return causal_mask
|
| 315 |
+
|
| 316 |
+
def _create_custom_4d_mask(
|
| 317 |
+
self,
|
| 318 |
+
sequence_length,
|
| 319 |
+
dtype,
|
| 320 |
+
device,
|
| 321 |
+
batch_size,
|
| 322 |
+
token_type_ids,
|
| 323 |
+
):
|
| 324 |
+
min_dtype = torch.finfo(dtype).min
|
| 325 |
+
|
| 326 |
+
masks = []
|
| 327 |
+
for b in range(batch_size):
|
| 328 |
+
mask = torch.full(
|
| 329 |
+
(sequence_length, sequence_length),
|
| 330 |
+
fill_value=min_dtype,
|
| 331 |
+
dtype=dtype,
|
| 332 |
+
device=device
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
type_ids = token_type_ids[b]
|
| 336 |
+
|
| 337 |
+
image_positions = (type_ids == 0).nonzero(as_tuple=True)[0]
|
| 338 |
+
text_positions = (type_ids == 1).nonzero(as_tuple=True)[0]
|
| 339 |
+
|
| 340 |
+
# non-casual
|
| 341 |
+
if len(image_positions) > 0:
|
| 342 |
+
mask[image_positions[:, None], image_positions] = 0.0
|
| 343 |
+
|
| 344 |
+
# causal
|
| 345 |
+
for i, text_pos in enumerate(text_positions):
|
| 346 |
+
if len(image_positions) > 0:
|
| 347 |
+
mask[text_pos, image_positions] = 0.0
|
| 348 |
+
mask[text_pos, text_positions[:i+1]] = 0.0
|
| 349 |
+
|
| 350 |
+
masks.append(mask)
|
| 351 |
+
|
| 352 |
+
mask = torch.stack(masks, dim=0).unsqueeze(1)
|
| 353 |
+
return mask
|
| 354 |
+
|
| 355 |
+
return CustomQwen2ModelInner(config)
|
| 356 |
+
|
| 357 |
+
def forward(
|
| 358 |
+
self,
|
| 359 |
+
inputs_embeds,
|
| 360 |
+
token_type_ids,
|
| 361 |
+
attention_mask=None,
|
| 362 |
+
**kwargs
|
| 363 |
+
):
|
| 364 |
+
"""
|
| 365 |
+
Args:
|
| 366 |
+
inputs_embeds: [batch_size, seq_len, hidden_dim]
|
| 367 |
+
token_type_ids: [batch_size, seq_len], 0=non-causal, 1=causal
|
| 368 |
+
attention_mask: [batch_size, seq_len], optional
|
| 369 |
+
"""
|
| 370 |
+
return self.model(
|
| 371 |
+
inputs_embeds=inputs_embeds,
|
| 372 |
+
token_type_ids=token_type_ids,
|
| 373 |
+
attention_mask=attention_mask,
|
| 374 |
+
**kwargs
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# batch_size = 2
|
| 382 |
+
# inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
|
| 383 |
+
|
| 384 |
+
# inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
|
| 385 |
+
# token_type_ids = torch.cat([
|
| 386 |
+
# torch.zeros(batch_size, 256, dtype=torch.long),
|
| 387 |
+
# torch.ones(batch_size, 256, dtype=torch.long),
|
| 388 |
+
# ], dim=1).cuda()
|
| 389 |
+
|
| 390 |
+
# # start = time.time()
|
| 391 |
+
# with torch.no_grad():
|
| 392 |
+
# outputs_sdpa = decoder_sdpa(inputs_embeds, token_type_ids)
|
| 393 |
+
# print(outputs_sdpa[0].shape)
|
| 394 |
+
# print(f"SDPA time: {time.time() - start:.4f}s")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
class Qwen2Decoder2Encoder(nn.Module):
|
| 399 |
+
"""
|
| 400 |
+
Decoder based on Multilingual BART
|
| 401 |
+
Set the initial weights and configuration with a pretrained multilingual BART model,
|
| 402 |
+
and modify the detailed configurations as a Nougat decoder
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
def __init__(
|
| 406 |
+
self,
|
| 407 |
+
decoder_layer: int,
|
| 408 |
+
hidden_dimension: int,
|
| 409 |
+
num_attention_heads: int,
|
| 410 |
+
num_key_value_heads: int,
|
| 411 |
+
intermediate_size: int,
|
| 412 |
+
max_query: int,
|
| 413 |
+
):
|
| 414 |
+
super().__init__()
|
| 415 |
+
|
| 416 |
+
self.model = CustomQwen2Decoder(
|
| 417 |
+
decoder_layer=decoder_layer,
|
| 418 |
+
hidden_dimension=hidden_dimension,
|
| 419 |
+
num_attention_heads=num_attention_heads,
|
| 420 |
+
num_key_value_heads=num_key_value_heads,
|
| 421 |
+
intermediate_size=intermediate_size,
|
| 422 |
+
attn_implementation="sdpa",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
self.query_768 = nn.Embedding(144, hidden_dimension)
|
| 429 |
+
self.query_1024 = nn.Embedding(256, hidden_dimension)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# self.query_refixation = nn.Embedding(int(math.sqrt(max_query)), hidden_dimension)
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 436 |
+
x = x.flatten(2).transpose(1, 2)
|
| 437 |
+
|
| 438 |
+
bs, n_query, _ = x.shape
|
| 439 |
+
|
| 440 |
+
if n_query == 144:
|
| 441 |
+
param_img = self.query_768.weight
|
| 442 |
+
elif n_query == 256:
|
| 443 |
+
param_img = self.query_1024.weight
|
| 444 |
+
|
| 445 |
+
batch_query_imgs = param_img.unsqueeze(0).expand(
|
| 446 |
+
bs, -1, -1
|
| 447 |
+
) # (batch_size, num_queries, hidden_size)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
x_combined = torch.cat([x, batch_query_imgs], dim=1)
|
| 452 |
+
|
| 453 |
+
token_type_ids = torch.cat([
|
| 454 |
+
torch.zeros(bs, n_query, dtype=torch.long),
|
| 455 |
+
torch.ones(bs, n_query, dtype=torch.long),
|
| 456 |
+
], dim=1)
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
y = self.model(x_combined, token_type_ids)[0]
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
y = y[:, n_query:, :] # causal flow query
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
return y
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def build_qwen2_decoder_as_encoder(
|
| 469 |
+
decoder_layer=24,
|
| 470 |
+
hidden_dimension=896,
|
| 471 |
+
num_attention_heads=14,
|
| 472 |
+
num_key_value_heads=2,
|
| 473 |
+
intermediate_size=4864,
|
| 474 |
+
max_query = 400,
|
| 475 |
+
checkpoint=None,
|
| 476 |
+
):
|
| 477 |
+
|
| 478 |
+
decoder_as_encoder = Qwen2Decoder2Encoder(
|
| 479 |
+
decoder_layer=decoder_layer,
|
| 480 |
+
hidden_dimension = hidden_dimension,
|
| 481 |
+
num_attention_heads = num_attention_heads,
|
| 482 |
+
num_key_value_heads = num_key_value_heads,
|
| 483 |
+
intermediate_size = intermediate_size,
|
| 484 |
+
max_query = max_query
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
if checkpoint is not None:
|
| 491 |
+
# with open(checkpoint, "rb") as f:
|
| 492 |
+
state_dict = torch.load(checkpoint)
|
| 493 |
+
|
| 494 |
+
decoder_as_encoder.load_state_dict(state_dict, strict=True)
|
| 495 |
+
# tob
|
| 496 |
+
print(checkpoint)
|
| 497 |
+
return decoder_as_encoder
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
#=========================Sam-Vary=================================
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
def get_abs_pos_sam(abs_pos, tgt_size):
|
| 506 |
+
|
| 507 |
+
dtype = abs_pos.dtype
|
| 508 |
+
|
| 509 |
+
src_size = abs_pos.size(1)
|
| 510 |
+
|
| 511 |
+
if src_size != tgt_size:
|
| 512 |
+
old_pos_embed = abs_pos.permute(0, 3, 1, 2)
|
| 513 |
+
old_pos_embed = old_pos_embed.to(torch.float32)
|
| 514 |
+
new_pos_embed = F.interpolate(
|
| 515 |
+
old_pos_embed,
|
| 516 |
+
size=(tgt_size, tgt_size),
|
| 517 |
+
mode='bicubic',
|
| 518 |
+
antialias=True,
|
| 519 |
+
align_corners=False,
|
| 520 |
+
).to(dtype)
|
| 521 |
+
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
|
| 522 |
+
return new_pos_embed
|
| 523 |
+
else:
|
| 524 |
+
return abs_pos
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class MLPBlock(nn.Module):
|
| 530 |
+
def __init__(
|
| 531 |
+
self,
|
| 532 |
+
embedding_dim: int,
|
| 533 |
+
mlp_dim: int,
|
| 534 |
+
act: Type[nn.Module] = nn.GELU,
|
| 535 |
+
) -> None:
|
| 536 |
+
super().__init__()
|
| 537 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
| 538 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
| 539 |
+
self.act = act()
|
| 540 |
+
|
| 541 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 542 |
+
return self.lin2(self.act(self.lin1(x)))
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
| 546 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
| 547 |
+
class LayerNorm2d(nn.Module):
|
| 548 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
| 549 |
+
super().__init__()
|
| 550 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
| 551 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
| 552 |
+
self.eps = eps
|
| 553 |
+
|
| 554 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 555 |
+
u = x.mean(1, keepdim=True)
|
| 556 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 557 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 558 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 559 |
+
return x
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
| 563 |
+
class ImageEncoderViT(nn.Module):
|
| 564 |
+
def __init__(
|
| 565 |
+
self,
|
| 566 |
+
img_size: int = 1024,
|
| 567 |
+
patch_size: int = 16,
|
| 568 |
+
in_chans: int = 3,
|
| 569 |
+
embed_dim: int = 768,
|
| 570 |
+
depth: int = 12,
|
| 571 |
+
num_heads: int = 12,
|
| 572 |
+
mlp_ratio: float = 4.0,
|
| 573 |
+
out_chans: int = 256,
|
| 574 |
+
qkv_bias: bool = True,
|
| 575 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 576 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 577 |
+
use_abs_pos: bool = True,
|
| 578 |
+
use_rel_pos: bool = False,
|
| 579 |
+
rel_pos_zero_init: bool = True,
|
| 580 |
+
window_size: int = 0,
|
| 581 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
| 582 |
+
) -> None:
|
| 583 |
+
"""
|
| 584 |
+
Args:
|
| 585 |
+
img_size (int): Input image size.
|
| 586 |
+
patch_size (int): Patch size.
|
| 587 |
+
in_chans (int): Number of input image channels.
|
| 588 |
+
embed_dim (int): Patch embedding dimension.
|
| 589 |
+
depth (int): Depth of ViT.
|
| 590 |
+
num_heads (int): Number of attention heads in each ViT block.
|
| 591 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 592 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 593 |
+
norm_layer (nn.Module): Normalization layer.
|
| 594 |
+
act_layer (nn.Module): Activation layer.
|
| 595 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
| 596 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 597 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 598 |
+
window_size (int): Window size for window attention blocks.
|
| 599 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
| 600 |
+
"""
|
| 601 |
+
super().__init__()
|
| 602 |
+
self.img_size = img_size
|
| 603 |
+
|
| 604 |
+
self.patch_embed = PatchEmbed(
|
| 605 |
+
kernel_size=(patch_size, patch_size),
|
| 606 |
+
stride=(patch_size, patch_size),
|
| 607 |
+
in_chans=in_chans,
|
| 608 |
+
embed_dim=embed_dim,
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
| 612 |
+
if use_abs_pos:
|
| 613 |
+
# Initialize absolute positional embedding with pretrain image size.
|
| 614 |
+
self.pos_embed = nn.Parameter(
|
| 615 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
self.blocks = nn.ModuleList()
|
| 619 |
+
for i in range(depth):
|
| 620 |
+
block = Block(
|
| 621 |
+
dim=embed_dim,
|
| 622 |
+
num_heads=num_heads,
|
| 623 |
+
mlp_ratio=mlp_ratio,
|
| 624 |
+
qkv_bias=qkv_bias,
|
| 625 |
+
norm_layer=norm_layer,
|
| 626 |
+
act_layer=act_layer,
|
| 627 |
+
use_rel_pos=use_rel_pos,
|
| 628 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 629 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
| 630 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
| 631 |
+
)
|
| 632 |
+
self.blocks.append(block)
|
| 633 |
+
|
| 634 |
+
self.neck = nn.Sequential(
|
| 635 |
+
nn.Conv2d(
|
| 636 |
+
embed_dim,
|
| 637 |
+
out_chans,
|
| 638 |
+
kernel_size=1,
|
| 639 |
+
bias=False,
|
| 640 |
+
),
|
| 641 |
+
LayerNorm2d(out_chans),
|
| 642 |
+
nn.Conv2d(
|
| 643 |
+
out_chans,
|
| 644 |
+
out_chans,
|
| 645 |
+
kernel_size=3,
|
| 646 |
+
padding=1,
|
| 647 |
+
bias=False,
|
| 648 |
+
),
|
| 649 |
+
LayerNorm2d(out_chans),
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
| 653 |
+
self.net_3 = nn.Conv2d(512, 896, kernel_size=3, stride=2, padding=1, bias=False)
|
| 654 |
+
|
| 655 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 656 |
+
x = self.patch_embed(x)
|
| 657 |
+
if self.pos_embed is not None:
|
| 658 |
+
# x = x + self.pos_embed
|
| 659 |
+
x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
|
| 660 |
+
|
| 661 |
+
for blk in self.blocks:
|
| 662 |
+
x = blk(x)
|
| 663 |
+
|
| 664 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
| 665 |
+
x2 = self.net_2(x)
|
| 666 |
+
x3 = self.net_3(x2.clone())
|
| 667 |
+
|
| 668 |
+
return x3
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
class Block(nn.Module):
|
| 672 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
| 673 |
+
|
| 674 |
+
def __init__(
|
| 675 |
+
self,
|
| 676 |
+
dim: int,
|
| 677 |
+
num_heads: int,
|
| 678 |
+
mlp_ratio: float = 4.0,
|
| 679 |
+
qkv_bias: bool = True,
|
| 680 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 681 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 682 |
+
use_rel_pos: bool = False,
|
| 683 |
+
rel_pos_zero_init: bool = True,
|
| 684 |
+
window_size: int = 0,
|
| 685 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 686 |
+
) -> None:
|
| 687 |
+
"""
|
| 688 |
+
Args:
|
| 689 |
+
dim (int): Number of input channels.
|
| 690 |
+
num_heads (int): Number of attention heads in each ViT block.
|
| 691 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 692 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 693 |
+
norm_layer (nn.Module): Normalization layer.
|
| 694 |
+
act_layer (nn.Module): Activation layer.
|
| 695 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 696 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 697 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
| 698 |
+
use global attention.
|
| 699 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 700 |
+
positional parameter size.
|
| 701 |
+
"""
|
| 702 |
+
super().__init__()
|
| 703 |
+
self.norm1 = norm_layer(dim)
|
| 704 |
+
self.attn = Attention(
|
| 705 |
+
dim,
|
| 706 |
+
num_heads=num_heads,
|
| 707 |
+
qkv_bias=qkv_bias,
|
| 708 |
+
use_rel_pos=use_rel_pos,
|
| 709 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 710 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
self.norm2 = norm_layer(dim)
|
| 714 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
| 715 |
+
|
| 716 |
+
self.window_size = window_size
|
| 717 |
+
|
| 718 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 719 |
+
shortcut = x
|
| 720 |
+
x = self.norm1(x)
|
| 721 |
+
# Window partition
|
| 722 |
+
if self.window_size > 0:
|
| 723 |
+
H, W = x.shape[1], x.shape[2]
|
| 724 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 725 |
+
|
| 726 |
+
x = self.attn(x)
|
| 727 |
+
# Reverse window partition
|
| 728 |
+
if self.window_size > 0:
|
| 729 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
| 730 |
+
|
| 731 |
+
x = shortcut + x
|
| 732 |
+
x = x + self.mlp(self.norm2(x))
|
| 733 |
+
|
| 734 |
+
return x
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
class Attention(nn.Module):
|
| 738 |
+
"""Multi-head Attention block with relative position embeddings."""
|
| 739 |
+
|
| 740 |
+
def __init__(
|
| 741 |
+
self,
|
| 742 |
+
dim: int,
|
| 743 |
+
num_heads: int = 8,
|
| 744 |
+
qkv_bias: bool = True,
|
| 745 |
+
use_rel_pos: bool = False,
|
| 746 |
+
rel_pos_zero_init: bool = True,
|
| 747 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 748 |
+
) -> None:
|
| 749 |
+
"""
|
| 750 |
+
Args:
|
| 751 |
+
dim (int): Number of input channels.
|
| 752 |
+
num_heads (int): Number of attention heads.
|
| 753 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 754 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 755 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 756 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 757 |
+
positional parameter size.
|
| 758 |
+
"""
|
| 759 |
+
super().__init__()
|
| 760 |
+
self.num_heads = num_heads
|
| 761 |
+
head_dim = dim // num_heads
|
| 762 |
+
self.scale = head_dim**-0.5
|
| 763 |
+
|
| 764 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 765 |
+
self.proj = nn.Linear(dim, dim)
|
| 766 |
+
|
| 767 |
+
self.use_rel_pos = use_rel_pos
|
| 768 |
+
if self.use_rel_pos:
|
| 769 |
+
assert (
|
| 770 |
+
input_size is not None
|
| 771 |
+
), "Input size must be provided if using relative positional encoding."
|
| 772 |
+
# initialize relative positional embeddings
|
| 773 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 774 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 775 |
+
|
| 776 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 777 |
+
B, H, W, _ = x.shape
|
| 778 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
| 779 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 780 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
| 781 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
| 782 |
+
|
| 783 |
+
rel_h, rel_w = None, None
|
| 784 |
+
if self.use_rel_pos:
|
| 785 |
+
rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
| 786 |
+
|
| 787 |
+
q = q.view(B, self.num_heads, H * W, -1)
|
| 788 |
+
k = k.view(B, self.num_heads, H * W, -1)
|
| 789 |
+
v = v.view(B, self.num_heads, H * W, -1)
|
| 790 |
+
|
| 791 |
+
if self.use_rel_pos:
|
| 792 |
+
rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
|
| 793 |
+
rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
|
| 794 |
+
attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
|
| 795 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
|
| 796 |
+
# x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
|
| 797 |
+
else:
|
| 798 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
| 799 |
+
|
| 800 |
+
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
| 801 |
+
|
| 802 |
+
x = self.proj(x)
|
| 803 |
+
|
| 804 |
+
return x
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 808 |
+
"""
|
| 809 |
+
Partition into non-overlapping windows with padding if needed.
|
| 810 |
+
Args:
|
| 811 |
+
x (tensor): input tokens with [B, H, W, C].
|
| 812 |
+
window_size (int): window size.
|
| 813 |
+
|
| 814 |
+
Returns:
|
| 815 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
| 816 |
+
(Hp, Wp): padded height and width before partition
|
| 817 |
+
"""
|
| 818 |
+
B, H, W, C = x.shape
|
| 819 |
+
|
| 820 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 821 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 822 |
+
if pad_h > 0 or pad_w > 0:
|
| 823 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 824 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 825 |
+
|
| 826 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 827 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 828 |
+
return windows, (Hp, Wp)
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
def window_unpartition(
|
| 832 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
| 833 |
+
) -> torch.Tensor:
|
| 834 |
+
"""
|
| 835 |
+
Window unpartition into original sequences and removing padding.
|
| 836 |
+
Args:
|
| 837 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
| 838 |
+
window_size (int): window size.
|
| 839 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
| 840 |
+
hw (Tuple): original height and width (H, W) before padding.
|
| 841 |
+
|
| 842 |
+
Returns:
|
| 843 |
+
x: unpartitioned sequences with [B, H, W, C].
|
| 844 |
+
"""
|
| 845 |
+
Hp, Wp = pad_hw
|
| 846 |
+
H, W = hw
|
| 847 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 848 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 849 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 850 |
+
|
| 851 |
+
if Hp > H or Wp > W:
|
| 852 |
+
x = x[:, :H, :W, :].contiguous()
|
| 853 |
+
return x
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 857 |
+
"""
|
| 858 |
+
Get relative positional embeddings according to the relative positions of
|
| 859 |
+
query and key sizes.
|
| 860 |
+
Args:
|
| 861 |
+
q_size (int): size of query q.
|
| 862 |
+
k_size (int): size of key k.
|
| 863 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
| 864 |
+
|
| 865 |
+
Returns:
|
| 866 |
+
Extracted positional embeddings according to relative positions.
|
| 867 |
+
"""
|
| 868 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 869 |
+
# Interpolate rel pos if needed.
|
| 870 |
+
if rel_pos.shape[0] != max_rel_dist:
|
| 871 |
+
# Interpolate rel pos.
|
| 872 |
+
dtype = rel_pos.dtype
|
| 873 |
+
rel_pos = rel_pos.to(torch.float32)
|
| 874 |
+
rel_pos_resized = F.interpolate(
|
| 875 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 876 |
+
size=max_rel_dist,
|
| 877 |
+
mode="linear",
|
| 878 |
+
).to(dtype)
|
| 879 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 880 |
+
else:
|
| 881 |
+
rel_pos_resized = rel_pos
|
| 882 |
+
|
| 883 |
+
# Scale the coords with short length if shapes for q and k are different.
|
| 884 |
+
q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
|
| 885 |
+
k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
|
| 886 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 887 |
+
|
| 888 |
+
return rel_pos_resized[relative_coords.long()]
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
def add_decomposed_rel_pos(
|
| 892 |
+
q: torch.Tensor,
|
| 893 |
+
rel_pos_h: torch.Tensor,
|
| 894 |
+
rel_pos_w: torch.Tensor,
|
| 895 |
+
q_size: Tuple[int, int],
|
| 896 |
+
k_size: Tuple[int, int],
|
| 897 |
+
) -> torch.Tensor:
|
| 898 |
+
"""
|
| 899 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
| 900 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
| 901 |
+
Args:
|
| 902 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
| 903 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
| 904 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
| 905 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
| 906 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
| 907 |
+
|
| 908 |
+
Returns:
|
| 909 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
| 910 |
+
"""
|
| 911 |
+
q_h, q_w = q_size
|
| 912 |
+
k_h, k_w = k_size
|
| 913 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
| 914 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
| 915 |
+
|
| 916 |
+
B, _, dim = q.shape
|
| 917 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
| 918 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
| 919 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
| 920 |
+
rel_h = rel_h.unsqueeze(-1)
|
| 921 |
+
rel_w = rel_w.unsqueeze(-2)
|
| 922 |
+
rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
|
| 923 |
+
rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
|
| 924 |
+
|
| 925 |
+
return rel_h, rel_w
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
class PatchEmbed(nn.Module):
|
| 929 |
+
"""
|
| 930 |
+
Image to Patch Embedding.
|
| 931 |
+
"""
|
| 932 |
+
|
| 933 |
+
def __init__(
|
| 934 |
+
self,
|
| 935 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
| 936 |
+
stride: Tuple[int, int] = (16, 16),
|
| 937 |
+
padding: Tuple[int, int] = (0, 0),
|
| 938 |
+
in_chans: int = 3,
|
| 939 |
+
embed_dim: int = 768,
|
| 940 |
+
) -> None:
|
| 941 |
+
"""
|
| 942 |
+
Args:
|
| 943 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
| 944 |
+
stride (Tuple): stride of the projection layer.
|
| 945 |
+
padding (Tuple): padding size of the projection layer.
|
| 946 |
+
in_chans (int): Number of input image channels.
|
| 947 |
+
embed_dim (int): Patch embedding dimension.
|
| 948 |
+
"""
|
| 949 |
+
super().__init__()
|
| 950 |
+
|
| 951 |
+
self.proj = nn.Conv2d(
|
| 952 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 953 |
+
)
|
| 954 |
+
|
| 955 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 956 |
+
x = self.proj(x)
|
| 957 |
+
# B C H W -> B H W C
|
| 958 |
+
x = x.permute(0, 2, 3, 1)
|
| 959 |
+
return x
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
def build_sam_vit_b(checkpoint=None):
|
| 963 |
+
return _build_sam(
|
| 964 |
+
encoder_embed_dim=768,
|
| 965 |
+
encoder_depth=12,
|
| 966 |
+
encoder_num_heads=12,
|
| 967 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
| 968 |
+
checkpoint=checkpoint,
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
def build_sam_fast_vit_b(checkpoint=None, compile_mode='max-autotune', dtype=torch.bfloat16):
|
| 972 |
+
image_encoder = build_sam_vit_b(checkpoint).eval().to(dtype)
|
| 973 |
+
# sam = _apply_eval_dtype_sam(sam, dtype)
|
| 974 |
+
image_encoder = torch.compile(image_encoder, mode=compile_mode)
|
| 975 |
+
return image_encoder
|
| 976 |
+
|
| 977 |
+
|
| 978 |
+
def _build_sam(
|
| 979 |
+
encoder_embed_dim,
|
| 980 |
+
encoder_depth,
|
| 981 |
+
encoder_num_heads,
|
| 982 |
+
encoder_global_attn_indexes,
|
| 983 |
+
checkpoint=None,
|
| 984 |
+
):
|
| 985 |
+
prompt_embed_dim = 256
|
| 986 |
+
image_size = 1024
|
| 987 |
+
vit_patch_size = 16
|
| 988 |
+
image_embedding_size = image_size // vit_patch_size
|
| 989 |
+
image_encoder=ImageEncoderViT(
|
| 990 |
+
depth=encoder_depth,
|
| 991 |
+
embed_dim=encoder_embed_dim,
|
| 992 |
+
img_size=image_size,
|
| 993 |
+
mlp_ratio=4,
|
| 994 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
| 995 |
+
num_heads=encoder_num_heads,
|
| 996 |
+
patch_size=vit_patch_size,
|
| 997 |
+
qkv_bias=True,
|
| 998 |
+
use_rel_pos=True,
|
| 999 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
| 1000 |
+
window_size=14,
|
| 1001 |
+
out_chans=prompt_embed_dim,
|
| 1002 |
+
)
|
| 1003 |
+
image_encoder.eval()
|
| 1004 |
+
if checkpoint is not None:
|
| 1005 |
+
# with open(checkpoint, "rb") as f:
|
| 1006 |
+
state_dict = torch.load(checkpoint)
|
| 1007 |
+
# print(state_dict.keys())
|
| 1008 |
+
# for key in state_dict:
|
| 1009 |
+
# image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
|
| 1010 |
+
# ocr-anyting
|
| 1011 |
+
# image_encoder.load_state_dict(state_dict, strict=True)
|
| 1012 |
+
# tob
|
| 1013 |
+
image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
|
| 1014 |
+
print(checkpoint)
|
| 1015 |
+
return image_encoder
|
LICENSE.txt
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
Apache License
|
| 3 |
+
Version 2.0, January 2004
|
| 4 |
+
http://www.apache.org/licenses/
|
| 5 |
+
|
| 6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 7 |
+
|
| 8 |
+
1. Definitions.
|
| 9 |
+
|
| 10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 12 |
+
|
| 13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 14 |
+
the copyright owner that is granting the License.
|
| 15 |
+
|
| 16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 17 |
+
other entities that control, are controlled by, or are under common
|
| 18 |
+
control with that entity. For the purposes of this definition,
|
| 19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 20 |
+
direction or management of such entity, whether by contract or
|
| 21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 23 |
+
|
| 24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 25 |
+
exercising permissions granted by this License.
|
| 26 |
+
|
| 27 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 28 |
+
including but not limited to software source code, documentation
|
| 29 |
+
source, and configuration files.
|
| 30 |
+
|
| 31 |
+
"Object" form shall mean any form resulting from mechanical
|
| 32 |
+
transformation or translation of a Source form, including but
|
| 33 |
+
not limited to compiled object code, generated documentation,
|
| 34 |
+
and conversions to other media types.
|
| 35 |
+
|
| 36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 37 |
+
Object form, made available under the License, as indicated by a
|
| 38 |
+
copyright notice that is included in or attached to the work
|
| 39 |
+
(an example is provided in the Appendix below).
|
| 40 |
+
|
| 41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 42 |
+
form, that is based on (or derived from) the Work and for which the
|
| 43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 45 |
+
of this License, Derivative Works shall not include works that remain
|
| 46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 47 |
+
the Work and Derivative Works thereof.
|
| 48 |
+
|
| 49 |
+
"Contribution" shall mean any work of authorship, including
|
| 50 |
+
the original version of the Work and any modifications or additions
|
| 51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 55 |
+
means any form of electronic, verbal, or written communication sent
|
| 56 |
+
to the Licensor or its representatives, including but not limited to
|
| 57 |
+
communication on electronic mailing lists, source code control systems,
|
| 58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 60 |
+
excluding communication that is conspicuously marked or otherwise
|
| 61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 62 |
+
|
| 63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 65 |
+
subsequently incorporated within the Work.
|
| 66 |
+
|
| 67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 72 |
+
Work and such Derivative Works in Source or Object form.
|
| 73 |
+
|
| 74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 77 |
+
(except as stated in this section) patent license to make, have made,
|
| 78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 79 |
+
where such license applies only to those patent claims licensable
|
| 80 |
+
by such Contributor that are necessarily infringed by their
|
| 81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 83 |
+
institute patent litigation against any entity (including a
|
| 84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 85 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 86 |
+
or contributory patent infringement, then any patent licenses
|
| 87 |
+
granted to You under this License for that Work shall terminate
|
| 88 |
+
as of the date such litigation is filed.
|
| 89 |
+
|
| 90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 91 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 92 |
+
modifications, and in Source or Object form, provided that You
|
| 93 |
+
meet the following conditions:
|
| 94 |
+
|
| 95 |
+
(a) You must give any other recipients of the Work or
|
| 96 |
+
Derivative Works a copy of this License; and
|
| 97 |
+
|
| 98 |
+
(b) You must cause any modified files to carry prominent notices
|
| 99 |
+
stating that You changed the files; and
|
| 100 |
+
|
| 101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 102 |
+
that You distribute, all copyright, patent, trademark, and
|
| 103 |
+
attribution notices from the Source form of the Work,
|
| 104 |
+
excluding those notices that do not pertain to any part of
|
| 105 |
+
the Derivative Works; and
|
| 106 |
+
|
| 107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 108 |
+
distribution, then any Derivative Works that You distribute must
|
| 109 |
+
include a readable copy of the attribution notices contained
|
| 110 |
+
within such NOTICE file, excluding those notices that do not
|
| 111 |
+
pertain to any part of the Derivative Works, in at least one
|
| 112 |
+
of the following places: within a NOTICE text file distributed
|
| 113 |
+
as part of the Derivative Works; within the Source form or
|
| 114 |
+
documentation, if provided along with the Derivative Works; or,
|
| 115 |
+
within a display generated by the Derivative Works, if and
|
| 116 |
+
wherever such third-party notices normally appear. The contents
|
| 117 |
+
of the NOTICE file are for informational purposes only and
|
| 118 |
+
do not modify the License. You may add Your own attribution
|
| 119 |
+
notices within Derivative Works that You distribute, alongside
|
| 120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 121 |
+
that such additional attribution notices cannot be construed
|
| 122 |
+
as modifying the License.
|
| 123 |
+
|
| 124 |
+
You may add Your own copyright statement to Your modifications and
|
| 125 |
+
may provide additional or different license terms and conditions
|
| 126 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 127 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 128 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 129 |
+
the conditions stated in this License.
|
| 130 |
+
|
| 131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 133 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 134 |
+
this License, without any additional terms or conditions.
|
| 135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 136 |
+
the terms of any separate license agreement you may have executed
|
| 137 |
+
with Licensor regarding such Contributions.
|
| 138 |
+
|
| 139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 141 |
+
except as required for reasonable and customary use in describing the
|
| 142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 143 |
+
|
| 144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 145 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 148 |
+
implied, including, without limitation, any warranties or conditions
|
| 149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 151 |
+
appropriateness of using or redistributing the Work and assume any
|
| 152 |
+
risks associated with Your exercise of permissions under this License.
|
| 153 |
+
|
| 154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 155 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 156 |
+
unless required by applicable law (such as deliberate and grossly
|
| 157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 158 |
+
liable to You for damages, including any direct, indirect, special,
|
| 159 |
+
incidental, or consequential damages of any character arising as a
|
| 160 |
+
result of this License or out of the use or inability to use the
|
| 161 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 162 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 163 |
+
other commercial damages or losses), even if such Contributor
|
| 164 |
+
has been advised of the possibility of such damages.
|
| 165 |
+
|
| 166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 169 |
+
or other liability obligations and/or rights consistent with this
|
| 170 |
+
License. However, in accepting such obligations, You may act only
|
| 171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 172 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 173 |
+
defend, and hold each Contributor harmless for any liability
|
| 174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 175 |
+
of your accepting any such warranty or additional liability.
|
| 176 |
+
|
| 177 |
+
END OF TERMS AND CONDITIONS
|
| 178 |
+
|
| 179 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 180 |
+
|
| 181 |
+
To apply the Apache License to your work, attach the following
|
| 182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 183 |
+
replaced with your own identifying information. (Don't include
|
| 184 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 185 |
+
comment syntax for the file format. We also recommend that a
|
| 186 |
+
file or class name and description of purpose be included on the
|
| 187 |
+
same "printed page" as the copyright notice for easier
|
| 188 |
+
identification within third-party archives.
|
| 189 |
+
|
| 190 |
+
Copyright (c) 2023 DeepSeek
|
| 191 |
+
|
| 192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 193 |
+
you may not use this file except in compliance with the License.
|
| 194 |
+
You may obtain a copy of the License at
|
| 195 |
+
|
| 196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 197 |
+
|
| 198 |
+
Unless required by applicable law or agreed to in writing, software
|
| 199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 201 |
+
See the License for the specific language governing permissions and
|
| 202 |
+
limitations under the License.
|
README.md
CHANGED
|
@@ -7,7 +7,7 @@ tags:
|
|
| 7 |
- vision-language
|
| 8 |
- ocr
|
| 9 |
- custom_code
|
| 10 |
-
license:
|
| 11 |
library_name: transformers
|
| 12 |
---
|
| 13 |
<div align="center">
|
|
|
|
| 7 |
- vision-language
|
| 8 |
- ocr
|
| 9 |
- custom_code
|
| 10 |
+
license: mit
|
| 11 |
library_name: transformers
|
| 12 |
---
|
| 13 |
<div align="center">
|