File size: 2,928 Bytes
244553f
9f3e46b
 
 
 
 
 
 
 
244553f
9f3e46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
tags:
- ocr
- document-processing
- nanonets
- nanonets-ocr2
- markdown
- uv-script
- generated
---

# Document OCR using Nanonets-OCR2-3B

This dataset contains markdown-formatted OCR results from images in [stckmn/ocr-input-Directive017-1761354068](https://huggingface.co/datasets/stckmn/ocr-input-Directive017-1761354068) using Nanonets-OCR2-3B.

## Processing Details

- **Source Dataset**: [stckmn/ocr-input-Directive017-1761354068](https://huggingface.co/datasets/stckmn/ocr-input-Directive017-1761354068)
- **Model**: [nanonets/Nanonets-OCR2-3B](https://huggingface.co/nanonets/Nanonets-OCR2-3B)
- **Model Size**: 3.75B parameters
- **Number of Samples**: 21
- **Processing Time**: 3.2 minutes
- **Processing Date**: 2025-10-25 01:05 UTC

### Configuration

- **Image Column**: `image`
- **Output Column**: `markdown`
- **Dataset Split**: `train`
- **Batch Size**: 16
- **Max Model Length**: 8,192 tokens
- **Max Output Tokens**: 4,096
- **GPU Memory Utilization**: 80.0%

## Model Information

Nanonets-OCR2-3B is a state-of-the-art document OCR model that excels at:
- πŸ“ **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- πŸ“Š **Tables** - Extracted and formatted as HTML
- πŸ“ **Document structure** - Headers, lists, and formatting maintained
- πŸ–ΌοΈ **Images** - Captions and descriptions included in `<img>` tags
- β˜‘οΈ **Forms** - Checkboxes rendered as ☐/β˜‘
- πŸ”– **Watermarks** - Wrapped in `<watermark>` tags
- πŸ“„ **Page numbers** - Wrapped in `<page_number>` tags
- 🌍 **Multilingual** - Supports multiple languages

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="train")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) Nanonets OCR2 script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr2.py \
    stckmn/ocr-input-Directive017-1761354068 \
    <output-dataset> \
    --model nanonets/Nanonets-OCR2-3B \
    --image-column image \
    --batch-size 16 \
    --max-model-len 8192 \
    --max-tokens 4096 \
    --gpu-memory-utilization 0.8
```

## Performance

- **Processing Speed**: ~0.1 images/second
- **GPU Configuration**: vLLM with 80% GPU memory utilization

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)