sanskxr02 commited on
Commit
551b9bb
·
verified ·
1 Parent(s): d8f6566

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pretty_name: >-
4
+ fidelity-data-factory/ README.md Metadata UI license task_categories
5
+ language tags pretty_name size_categories
6
+ size_categories:
7
+ - 100K<n<1M
8
+ task_categories:
9
+ - reinforcement-learning
10
+ - robotics
11
+ - world models
12
+ - representation-learning
13
+ - video-understanding
14
+ tags:
15
+ - egocentric
16
+ - robotics
17
+ - state-action-state
18
+ - world-models
19
+ - vla
20
+ - human-interaction
21
+ - imitation-learning
22
+ - offline-rl
23
+
24
+ ---
25
+
26
+
27
+ # Fidelity Dynamics – Egocentric State–Action Transitions (v0)
28
+
29
+ This repository contains an initial release of egocentric state–action–state′ transitions extracted from real-world worker footage by buildai.
30
+
31
+ ## Overview
32
+ The dataset is constructed by enriching monocular egocentric videos into structured transitions of the form:
33
+
34
+ (s_t, a_t, s_{t+1})
35
+
36
+ Each transition represents a short temporal step derived from consecutive video frames.
37
+
38
+ This release is intended as early infrastructure for researchers exploring:
39
+ - World models
40
+ - Dynamics learning
41
+ - Vision–language–action systems
42
+ - Representation learning from human activity
43
+
44
+ ## Data Contents
45
+ - ~250,000 transitions
46
+ - Real factory environments
47
+ - Egocentric viewpoint (head- or chest-mounted cameras)
48
+
49
+ Each transition is stored as a JSONL record.
50
+
51
+ ## Schema (Simplified)
52
+
53
+ - `s` (state):
54
+ - `ego.pose`: estimated egomotion
55
+ - `ego.vel`: egocentric velocity
56
+ - `hand`: hand presence and image-space location
57
+ - `entities`: detected objects with bounding boxes and centers
58
+ - `meta`: video identifier
59
+
60
+ - `a` (action):
61
+ - `ego_delta`
62
+ - `hand_delta`
63
+ - `grasp_delta`
64
+
65
+ - `s_prime`:
66
+ - Same structure as `s`, representing the next timestep
67
+
68
+ All values are derived from monocular video without force, torque, or privileged robot sensors.
69
+
70
+ ## Notes & Limitations
71
+ - Monocular only
72
+ - No force / torque / joint states
73
+ - No task labels
74
+ - Noise and estimation error are expected
75
+
76
+ This is an early dataset released to support exploration and feedback.
77
+
78
+ ## Credits
79
+ Original video data provided by BuildAI.
80
+ Enrichment and processing by Fidelity Dynamics.