""" imbalance_coefficient.py Provides a function `imb_coef` to quantify imbalance in regression targets for both continuous and discrete settings. It estimates the deviation of the empirical distribution from the uniform distribution using KDE or frequency analysis. Author: Samuel Stocksieker License: MIT or CC-BY-4.0 Date: 2025-08-06 """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import gaussian_kde, uniform from scipy.integrate import quad def imb_coef( y, bdw='scott', n_map=100_000, distfunc='pdf', disttype='cont', # 'cont' for continuous, 'dis' for discrete plot=False, p=1, k=1, w=None, scale=True, save=False, rep='', ): """ Computes an imbalance coefficient for a target variable in regression tasks. Parameters: ---------- y : array-like Target variable (continuous or discrete). bdw : str or float Bandwidth for KDE ('scott' or float). n_map : int Number of points for KDE evaluation. distfunc : str Not used currently (placeholder). disttype : str 'cont' for continuous, 'dis' for discrete targets. plot : bool Whether to plot distribution comparison. p : int Exponent for penalizing deviations in discrete mode. k : int Index for saving figures (used in filenames). w : array-like or None Optional weights per observation. scale : bool Whether to scale `y` to [0, 1] in continuous mode. save : bool Whether to save plot as PNG. rep : str Folder path prefix for saving plots. Returns: ------- imb_ratio : float imbalance coefficient in percentage. """ y = np.array(y) if disttype == 'cont': # Continuous target if scale: y = (y - y.min()) / (y.max() - y.min()) min_y, max_y = y.min(), y.max() map_vals = np.linspace(min_y, max_y, n_map) # Weight setup weights = ( np.ones(n_map) if w is None else np.interp(map_vals, y, w, left=min(w[y == min_y]), right=min(w[y == max_y])) ) kde = gaussian_kde(y, bw_method=bdw) kde_vals = kde(map_vals) d_best = uniform.pdf(map_vals, loc=min_y, scale=max_y - min_y) kde_func = lambda x: np.interp(x, map_vals, kde_vals) weight_func = lambda x: np.interp(x, map_vals, weights) if w is None: integrand = lambda x: max(0, 1 - kde_func(x)) imb_ratio = round(quad(integrand, min_y, max_y, epsabs=1e-5)[0], 4) * 100 else: num = quad(lambda x: max(0, 1 - kde_func(x)) * weight_func(x), min_y, max_y, epsabs=1e-5)[0] den = quad(lambda x: weight_func(x), min_y, max_y, epsabs=1e-5)[0] imb_ratio = round(num / den, 4) * 100 if plot: plt.figure(figsize=(10, 5)) plt.hist(y, bins=100, density=True, color='gray', alpha=0.6, label='Histogram') plt.plot(map_vals, kde_vals, label='KDE', color='darkred') plt.plot(map_vals, d_best, label='Uniform', color='darkgreen') plt.title(f"{imb_ratio:.2f}%", fontsize=16, color='darkred') plt.xlabel("Target values") plt.ylabel("Density") plt.legend() if save: plt.savefig(f"{rep}imbMetric_dens_{k}.png", bbox_inches='tight') plt.show() return imb_ratio elif disttype == 'dis': # Discrete target y = y.astype(int) map_vals = np.arange(y.min(), y.max() + 1) if w is None: weights = np.ones_like(map_vals) else: df_w = pd.DataFrame({'map': y, 'w1': w}) w_agg = df_w.groupby('map')['w1'].mean().reset_index() w_all = pd.DataFrame({'map': map_vals}) w_all = w_all.merge(w_agg, on='map', how='left').fillna(0) weights = w_all['w1'].values freqs = pd.Series(y).value_counts(normalize=True).reindex(map_vals, fill_value=0).values d_best = np.ones_like(map_vals) / len(map_vals) error = np.abs(freqs - d_best) ** p * (freqs < d_best) * weights imb_ratio = round(np.sum(error[weights > 0]) / np.sum(d_best * weights), 4) * 100 if np.isnan(imb_ratio): imb_ratio = 100 if plot: df_plot = pd.DataFrame({ 'map': list(map_vals) * 2, 'freq': list(freqs) + list(d_best), 'dist': ['Emp'] * len(map_vals) + ['Uni'] * len(map_vals) }) plt.figure(figsize=(10, 5)) for label, group in df_plot.groupby('dist'): plt.bar(group['map'], group['freq'], alpha=0.5, label=label) plt.title(f"{imb_ratio:.2f}%", fontsize=16, color='darkred') plt.xlabel("Target values") plt.ylabel("Frequency") plt.legend() if save: plt.savefig(f"{rep}imbMetric_mass_{k}.png", bbox_inches='tight') plt.show() return imb_ratio return None