--- license: other license_name: adobe-research-license license_link: LICENSE language: - en --- # [ICML 2025] Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage This dataset is associated with the evaluation in our ICML 2025 paper, [Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage](https://arxiv.org/abs/2412.15484). ## Prerequisites ### Packages * openai>=1.14.1 * python-dotenv==1.0.1 ### Dataset download ```dataset download from huggingface_hub import hf_hub_download local_path = hf_hub_download( repo_id="saehyungl/CapMAS", filename="images_capmas.tar.gz", repo_type="dataset" ) print("Downloaded to:", local_path) ``` Or you can download it using [this URL](https://huggingface.co/datasets/saehyungl/CapMAS/resolve/main/images_capmas.tar.gz?download=true). Our evaluation uses a subset of the [DOCCI](https://google.github.io/docci/) images. ## Captioning Please generate captions for the 1,000 downloaded images for captioning evaluation. Summarize the generated captions into a dictionary where the key is the corresponding image file name, and save it as a .json file. ```captions file { "aar_test_04600.jpg": , "aar_test_04601.jpg": , ... "test_00599.json": , } ``` You may refer to the [sample captions](https://github.com/adobe-research/CapMAS/blob/master/sample_captions/llava1.6-vicuna_llama3_th1.0/captions_final.json) for guidance. ## Evaluation Please visit our [GitHub repository](https://github.com/adobe-research/CapMAS). We provide the evaluation codes for the three metrics used in our paper: **Factuality**, **Coverage**, and **CLAIR** (Chan et al., EMNLP 2023). These evaluations rely on GPT-4o, so please fill in your OpenAI API key **OR** Azure OpenAI credentials in the `conf/gpt4o` file. ### Factuality (ours) ```factuality python eval_factuality.py --image-dir --captions-file ``` ### Coverage (ours) ```coverage python eval_coverage.py --vqa-dir data/COVERAGE_TEST_VQA --captions-file ``` ### CLAIR ```clair python eval_clair.py --captions-file ``` ## References 1. [DOCCI (Onoe et al., ECCV 2024)](https://google.github.io/docci/#downloads) 2. [ImageInWords (Garg et al., EMNLP 2024)](https://github.com/google/imageinwords) 3. [CLAIR (Chan et al., EMNLP 2023)](https://github.com/davidmchan/clair) ## Cite If you use the **CapMAS** dataset, filtering pipeline, or code from this repository, please cite the [paper](https://arxiv.org/pdf/2412.15484): ```bibtex @article{lee2024toward, title={Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage}, author={Lee, Saehyung and Yoon, Seunghyun and Bui, Trung and Shi, Jing and Yoon, Sungroh}, journal={arXiv e-prints}, pages={arXiv--2412}, year={2024} } ``` ## License The evaluation code and needle set data is licensed under the Adobe Research License. The license prohibits commercial use and allows non-commercial research use.