import argparse import json import random from pathlib import Path from typing import Optional, Sequence, TypedDict import requests from datasets import Dataset, DatasetDict OUT_DIR = Path(__file__).parent / "data" METADATA_PATH = OUT_DIR / "metadata.json" SEED = 42 VAL_RATIO = 0.1 URLS = { "train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label", "test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label", } COARSE_DESC = { "ABBR": "abbreviation", "ENTY": "entities", "DESC": "description and abstract concepts", "HUM": "human beings", "LOC": "locations", "NUM": "numeric values" } FINE_DESC = { "ABBR:abb":"abbreviation","ABBR:exp":"expression abbreviated", "ENTY:animal":"animals","ENTY:body":"organs of body","ENTY:color":"colors","ENTY:cremat":"creative works", "ENTY:currency":"currency names","ENTY:dismed":"diseases and medicine","ENTY:event":"events","ENTY:food":"food", "ENTY:instru":"musical instrument","ENTY:lang":"languages","ENTY:letter":"letters like a-z","ENTY:other":"other entities", "ENTY:plant":"plants","ENTY:product":"products","ENTY:religion":"religions","ENTY:sport":"sports", "ENTY:substance":"elements and substances","ENTY:symbol":"symbols and signs","ENTY:techmeth":"techniques and methods", "ENTY:termeq":"equivalent terms","ENTY:veh":"vehicles","ENTY:word":"words with a special property", "DESC:def":"definition of something","DESC:desc":"description of something","DESC:manner":"manner of an action","DESC:reason":"reasons", "HUM:gr":"a group/organization","HUM:ind":"an individual","HUM:title":"title of a person","HUM:desc":"description of a person", "LOC:city":"cities","LOC:country":"countries","LOC:mount":"mountains","LOC:other":"other locations","LOC:state":"states", "NUM:code":"codes","NUM:count":"counts","NUM:date":"dates","NUM:dist":"distances","NUM:money":"prices","NUM:ord":"ranks", "NUM:other":"other numbers","NUM:period":"duration","NUM:perc":"percentages","NUM:speed":"speed","NUM:temp":"temperature", "NUM:volsize":"size/area/volume","NUM:weight":"weight", } class TrecExample(TypedDict): text: str coarse_label: str coarse_description: Optional[str] fine_label: str fine_description: Optional[str] def fetch(url: str) -> list[bytes]: r = requests.get(url, timeout=30) r.raise_for_status() return r.content.splitlines() def parse(lines: Sequence[bytes]) -> list[TrecExample]: rows: list[TrecExample] = [] for b in lines: line = b.decode("utf-8", errors="replace").strip() if not line or " " not in line: continue fine, text = line.split(" ", 1) coarse = fine.split(":", 1)[0] rows.append( { "text": text.strip(), "coarse_label": coarse, "coarse_description": COARSE_DESC.get(coarse, ""), "fine_label": fine, "fine_description": FINE_DESC.get(fine, ""), } ) return rows def extract_metadata(ds: DatasetDict) -> dict: num_rows = {name: len(split) for name, split in ds.items()} first_split = next(iter(ds.values())) features = {name: repr(feat) for name, feat in first_split.features.items()} coarse_labels = {label for split in ds.values() for label in split["coarse_label"]} fine_labels = {label for split in ds.values() for label in split["fine_label"]} label_maps = { "coarse_label": sorted(coarse_labels), "fine_label": sorted(fine_labels), } return { "num_rows": num_rows, "features": features, "label_maps": label_maps} if __name__ == "__main__": """Fetch TREC from source, split it, save as Parquet and add metadata. Run: python preprocess_trec.py --val-ratio 0.1 --seed 42 --out-dir data """ ap = argparse.ArgumentParser() ap.add_argument("--val-ratio", type=float, default=VAL_RATIO, help="Fraction of training set for validation") ap.add_argument("--seed", type=int, default=SEED, help="Random seed for shuffling") ap.add_argument("--out-dir", type=Path, help="Output directory for Parquet files") ap.add_argument("--metadata-path", type=Path, help="Path for metadata.json") args = ap.parse_args() out_dir = args.out_dir or OUT_DIR metadata_path = args.metadata_path or METADATA_PATH train = parse(fetch(URLS["train"])) test = parse(fetch(URLS["test"])) rng = random.Random(args.seed) rng.shuffle(train) n_val = int(len(train) * args.val_ratio) validation = train[:n_val] train = train[n_val:] data = DatasetDict( { "train": Dataset.from_list(train), "validation": Dataset.from_list(validation), "test": Dataset.from_list(test), } ) out_dir.mkdir(exist_ok=True, parents=True) for name, split in data.items(): split.to_parquet(str(out_dir / f"{name}.parquet")) metadata_path.write_text(json.dumps(extract_metadata(data), indent=2))