| import argparse | |
| import json | |
| import random | |
| from pathlib import Path | |
| from typing import Optional, Sequence, TypedDict | |
| import requests | |
| from datasets import Dataset, DatasetDict | |
| OUT_DIR = Path(__file__).parent / "data" | |
| METADATA_PATH = OUT_DIR / "metadata.json" | |
| SEED = 42 | |
| VAL_RATIO = 0.1 | |
| URLS = { | |
| "train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label", | |
| "test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label", | |
| } | |
| COARSE_DESC = { | |
| "ABBR": "abbreviation", "ENTY": "entities", "DESC": "description and abstract concepts", | |
| "HUM": "human beings", "LOC": "locations", "NUM": "numeric values" | |
| } | |
| FINE_DESC = { | |
| "ABBR:abb":"abbreviation","ABBR:exp":"expression abbreviated", | |
| "ENTY:animal":"animals","ENTY:body":"organs of body","ENTY:color":"colors","ENTY:cremat":"creative works", | |
| "ENTY:currency":"currency names","ENTY:dismed":"diseases and medicine","ENTY:event":"events","ENTY:food":"food", | |
| "ENTY:instru":"musical instrument","ENTY:lang":"languages","ENTY:letter":"letters like a-z","ENTY:other":"other entities", | |
| "ENTY:plant":"plants","ENTY:product":"products","ENTY:religion":"religions","ENTY:sport":"sports", | |
| "ENTY:substance":"elements and substances","ENTY:symbol":"symbols and signs","ENTY:techmeth":"techniques and methods", | |
| "ENTY:termeq":"equivalent terms","ENTY:veh":"vehicles","ENTY:word":"words with a special property", | |
| "DESC:def":"definition of something","DESC:desc":"description of something","DESC:manner":"manner of an action","DESC:reason":"reasons", | |
| "HUM:gr":"a group/organization","HUM:ind":"an individual","HUM:title":"title of a person","HUM:desc":"description of a person", | |
| "LOC:city":"cities","LOC:country":"countries","LOC:mount":"mountains","LOC:other":"other locations","LOC:state":"states", | |
| "NUM:code":"codes","NUM:count":"counts","NUM:date":"dates","NUM:dist":"distances","NUM:money":"prices","NUM:ord":"ranks", | |
| "NUM:other":"other numbers","NUM:period":"duration","NUM:perc":"percentages","NUM:speed":"speed","NUM:temp":"temperature", | |
| "NUM:volsize":"size/area/volume","NUM:weight":"weight", | |
| } | |
| class TrecExample(TypedDict): | |
| text: str | |
| coarse_label: str | |
| coarse_description: Optional[str] | |
| fine_label: str | |
| fine_description: Optional[str] | |
| def fetch(url: str) -> list[bytes]: | |
| r = requests.get(url, timeout=30) | |
| r.raise_for_status() | |
| return r.content.splitlines() | |
| def parse(lines: Sequence[bytes]) -> list[TrecExample]: | |
| rows: list[TrecExample] = [] | |
| for b in lines: | |
| line = b.decode("utf-8", errors="replace").strip() | |
| if not line or " " not in line: | |
| continue | |
| fine, text = line.split(" ", 1) | |
| coarse = fine.split(":", 1)[0] | |
| rows.append( | |
| { | |
| "text": text.strip(), | |
| "coarse_label": coarse, | |
| "coarse_description": COARSE_DESC.get(coarse, ""), | |
| "fine_label": fine, | |
| "fine_description": FINE_DESC.get(fine, ""), | |
| } | |
| ) | |
| return rows | |
| def extract_metadata(ds: DatasetDict) -> dict: | |
| num_rows = {name: len(split) for name, split in ds.items()} | |
| first_split = next(iter(ds.values())) | |
| features = {name: repr(feat) for name, feat in first_split.features.items()} | |
| coarse_labels = {label for split in ds.values() for label in split["coarse_label"]} | |
| fine_labels = {label for split in ds.values() for label in split["fine_label"]} | |
| label_maps = { | |
| "coarse_label": sorted(coarse_labels), | |
| "fine_label": sorted(fine_labels), | |
| } | |
| return { | |
| "num_rows": num_rows, | |
| "features": features, | |
| "label_maps": label_maps} | |
| if __name__ == "__main__": | |
| """Fetch TREC from source, split it, save as Parquet and add metadata. | |
| Run: python preprocess_trec.py --val-ratio 0.1 --seed 42 --out-dir data | |
| """ | |
| ap = argparse.ArgumentParser() | |
| ap.add_argument("--val-ratio", type=float, default=VAL_RATIO, help="Fraction of training set for validation") | |
| ap.add_argument("--seed", type=int, default=SEED, help="Random seed for shuffling") | |
| ap.add_argument("--out-dir", type=Path, help="Output directory for Parquet files") | |
| ap.add_argument("--metadata-path", type=Path, help="Path for metadata.json") | |
| args = ap.parse_args() | |
| out_dir = args.out_dir or OUT_DIR | |
| metadata_path = args.metadata_path or METADATA_PATH | |
| train = parse(fetch(URLS["train"])) | |
| test = parse(fetch(URLS["test"])) | |
| rng = random.Random(args.seed) | |
| rng.shuffle(train) | |
| n_val = int(len(train) * args.val_ratio) | |
| validation = train[:n_val] | |
| train = train[n_val:] | |
| data = DatasetDict( | |
| { | |
| "train": Dataset.from_list(train), | |
| "validation": Dataset.from_list(validation), | |
| "test": Dataset.from_list(test), | |
| } | |
| ) | |
| out_dir.mkdir(exist_ok=True, parents=True) | |
| for name, split in data.items(): | |
| split.to_parquet(str(out_dir / f"{name}.parquet")) | |
| metadata_path.write_text(json.dumps(extract_metadata(data), indent=2)) | |