--- tags: - ocr - document-processing - nanonets - nanonets-ocr2 - markdown - uv-script - generated --- # Document OCR using Nanonets-OCR2-3B This dataset contains markdown-formatted OCR results from images in [NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset](https://huggingface.co/datasets/NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset) using Nanonets-OCR2-3B. ## Processing Details - **Source Dataset**: [NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset](https://huggingface.co/datasets/NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset) - **Model**: [nanonets/Nanonets-OCR2-3B](https://huggingface.co/nanonets/Nanonets-OCR2-3B) - **Model Size**: 3B parameters - **Number of Samples**: 50 - **Processing Time**: 8.7 minutes - **Processing Date**: 2025-10-13 17:49 UTC ### Configuration - **Image Column**: `image` - **Output Column**: `markdown` - **Dataset Split**: `train` - **Batch Size**: 16 - **Max Model Length**: 8,192 tokens - **Max Output Tokens**: 4,096 - **GPU Memory Utilization**: 80.0% ## Model Information Nanonets-OCR2-3B is a state-of-the-art document OCR model that excels at: - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format - 📊 **Tables** - Extracted and formatted as HTML - 📝 **Document structure** - Headers, lists, and formatting maintained - 🖼️ **Images** - Captions and descriptions included in `` tags - ☑️ **Forms** - Checkboxes rendered as ☐/☑ - 🔖 **Watermarks** - Wrapped in `` tags - 📄 **Page numbers** - Wrapped in `` tags - 🌍 **Multilingual** - Supports multiple languages ## Dataset Structure The dataset contains all original columns plus: - `markdown`: The extracted text in markdown format with preserved structure - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{{output_dataset_id}}", split="train") # Access the markdown text for example in dataset: print(example["markdown"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) Nanonets OCR2 script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr2.py \ NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \ \ --model nanonets/Nanonets-OCR2-3B \ --image-column image \ --batch-size 16 \ --max-model-len 8192 \ --max-tokens 4096 \ --gpu-memory-utilization 0.8 ``` ## Performance - **Processing Speed**: ~0.1 images/second - **GPU Configuration**: vLLM with 80% GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)