JessicaE commited on
Commit
648641a
·
verified ·
1 Parent(s): e384456

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md CHANGED
@@ -34,4 +34,204 @@ dataset_info:
34
  num_examples: 98326
35
  download_size: 1123845484193
36
  dataset_size: 1132139207159
 
 
 
 
 
 
 
37
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  num_examples: 98326
35
  download_size: 1123845484193
36
  dataset_size: 1132139207159
37
+ license: mit
38
+ task_categories:
39
+ - visual-question-answering
40
+ language:
41
+ - en
42
+ size_categories:
43
+ - 10K<n<100K
44
  ---
45
+
46
+ # OpenSeeSimE-Fluid: Engineering Simulation Visual Question Answering Benchmark
47
+
48
+ ## Dataset Summary
49
+
50
+ OpenSeeSimE-Fluid is a large-scale benchmark dataset for evaluating vision-language models on computational fluid dynamics (CFD) simulation interpretation tasks. It contains approximately 98,000 question-answer pairs across parametrically-varied fluid simulations including turbulent flow, heat transfer, and complex flow patterns.
51
+
52
+ ## Purpose
53
+
54
+ While vision-language models (VLMs) have shown promise in general visual reasoning, their effectiveness for specialized engineering simulation interpretation remains unknown. This benchmark enables:
55
+
56
+ - Statistically robust evaluation of VLM performance on CFD visualizations
57
+ - Assessment across multiple reasoning capabilities (captioning, reasoning, grounding, relationship understanding)
58
+ - Evaluation using different question formats (binary classification, multiple-choice, spatial grounding)
59
+
60
+ ## Dataset Composition
61
+
62
+ ### Statistics
63
+ - **Total instances**: ~98,000 question-answer pairs
64
+ - **Simulation types**: 5 fluid models (Bent Pipe, Converging Nozzle, Mixing Pipe, Heat Sink, Heat Exchanger)
65
+ - **Parametric variations**: 1,024 unique instances per base model (4^5 parameter combinations)
66
+ - **Question categories**: Captioning, Reasoning, Grounding, Relationship Understanding
67
+ - **Question types**: Binary, Multiple-choice, Spatial grounding
68
+ - **Media formats**: Both static images (1920×1440 PNG) and videos (Originally Extracted at: 200 frames, 40 fps, 5 seconds (some exceptions apply for longer fluid flow development))
69
+
70
+ ### Simulation Parameters
71
+
72
+ Each base model varies across 5 parameters with 4 values each:
73
+
74
+ **Bent Pipe**: Bend Angle, Turn Radius, Pipe Diameter, Fluid Viscosity, Fluid Velocity
75
+ **Converging Nozzle**: Pipe Diameter, Front Chamfer Length, Back Chamfer Length, Inner Fillet Radius, Fluid Velocity
76
+ **Mixing Pipe**: Pipe 1 Diameter, Pipe 2 Diameter, Fillet Radius, Fluid 1 Velocity, Fluid 2 Velocity
77
+ **Heat Sink**: Fin Thickness, Sink Length, Fin Spacing, Fin Number, Fluid Velocity
78
+ **Heat Exchanger**: Tube Diameter, Fin Diameter, Fin Thickness, Fin Spacing, Fluid Velocity
79
+
80
+ ### Question Distribution
81
+
82
+ - **Binary Classification**: 40% (yes/no questions about dead zones, symmetry, flow direction, etc.)
83
+ - **Multiple-Choice**: 30% (4-option questions about flow regime, axis of symmetry, magnitude ranges, etc.)
84
+ - **Spatial Grounding**: 30% (location-based questions with labeled regions A/B/C/D)
85
+
86
+ ## Data Collection Process
87
+
88
+ ### Simulation Generation
89
+ 1. Base models sourced from Ansys Fluent tutorial files
90
+ 2. Parametric automation via PyFluent and PyGeometry interfaces
91
+ 3. Systematic variation across 5 parameters with 4 linearly-spaced values
92
+ 4. All simulations solved with validated turbulence models and convergence criteria
93
+
94
+ ### Ground Truth Extraction
95
+ Automated extraction eliminates human annotation costs and ensures consistency:
96
+
97
+ - **Statistical Analysis**: Direct queries on velocity, pressure, and temperature fields
98
+ - **Distribution Analysis**: Dead zone detection via velocity magnitude thresholds (1% of maximum)
99
+ - **Physics-Based Classification**: Mach number calculations for flow regime classification
100
+ - **Spatial Localization**: Color-based region generation with computer vision algorithms
101
+
102
+ All ground truth derived from numerical simulation results rather than visual interpretation.
103
+
104
+ ## Preprocessing and Data Format
105
+
106
+ ### Image Processing
107
+ - Resolution: 1920×1440 pixels
108
+ - Format: PNG with lossless compression
109
+ - Standardized viewing orientations: front, back, left, right, top, bottom, isometric
110
+ - Consistent color mapping: rainbow gradients (red=maximum, blue=minimum)
111
+ - Visualization types: contour plots (pressure, velocity magnitude) and vector plots (velocity vectors, streamlines)
112
+
113
+ ### Video Processing
114
+ - 200 frames at 40 fps (5 seconds duration); some exceptions apply for longer fluid flow development
115
+ - Pathlines showing steady-state flow solution
116
+ - H.264 compression at 1920×1440 resolution
117
+
118
+ ### Data Fields
119
+ ```python
120
+ {
121
+ 'file_name': str, # Unique identifier
122
+ 'source_file': str, # Base simulation model
123
+ 'question': str, # Question text
124
+ 'question_type': str, # 'Binary', 'Multiple Choice', or 'Spatial'
125
+ 'question_id': int, # Question identifier (1-20)
126
+ 'answer': str, # Ground truth answer
127
+ 'answer_choices': List[str], # Available options
128
+ 'correct_choice_idx': int, # Index of correct answer
129
+ 'image': Image, # PIL Image object (1920×1440)
130
+ 'video': Video, # Video frames
131
+ 'media_type': str # 'image' or 'video'
132
+ }
133
+ ```
134
+
135
+ ## Labels
136
+
137
+ All labels are automatically generated from simulation numerical results:
138
+
139
+ - **Binary questions**: "Yes" or "No"
140
+ - **Multiple-choice**: Single letter (A/B/C/D) or descriptive option
141
+ - **Spatial grounding**: Region label (A/B/C/D) corresponding to labeled visualization locations
142
+
143
+ ## Dataset Splits
144
+
145
+ - **Test split only**: ~98K instances
146
+ - No train/validation splits provided (evaluation benchmark, not for model training)
147
+ - Representative sampling across all simulation types and question categories
148
+
149
+ ## Intended Use
150
+
151
+ ### Primary Use Cases
152
+ 1. **Benchmark evaluation** of vision-language models on CFD simulation interpretation
153
+ 2. **Capability assessment** across visual reasoning dimensions (captioning, spatial grounding, relationship understanding)
154
+ 3. **Transfer learning analysis** from general-domain to specialized technical visual reasoning
155
+
156
+ ### Out-of-Scope Use
157
+ - Real-time engineering decision-making without expert validation
158
+ - Safety-critical applications without human oversight
159
+ - Generalization to simulation types beyond fluid dynamics
160
+
161
+ ## Limitations
162
+
163
+ ### Technical Limitations
164
+ - **Objective tasks only**: Excludes subjective engineering judgments requiring domain expertise
165
+ - **Single physics domain**: Fluid dynamics only (see OpenSeeSimE-Structural for structural mechanics)
166
+ - **Ansys-specific**: Visualizations generated using Ansys Fluent rendering conventions
167
+ - **Steady-state focus**: Videos show pathlines of steady-state solutions, not transient phenomena
168
+ - **2D visualizations**: All inputs are 2D projections of 3D simulations (or 2D Cross Sectional Planes)
169
+
170
+ ### Known Biases
171
+ - **Color scheme dependency**: Questions exploit default color gradient conventions
172
+ - **Geometry bias**: Selected simulation types may not represent full diversity of CFD applications
173
+ - **Flow regime bias**: Limited supersonic cases due to parameter range constraints
174
+ - **View orientation bias**: Standardized camera positions may not capture all critical flow features
175
+
176
+ ## Ethical Considerations
177
+
178
+ ### Responsible Use
179
+ - Models evaluated on this benchmark should NOT be deployed for safety-critical engineering decisions without expert validation
180
+ - Automated interpretation should augment, not replace, human engineering expertise
181
+ - Users should verify that benchmark performance translates to their specific simulation contexts
182
+
183
+ ### Data Privacy
184
+ - All simulations have no proprietary or confidential engineering data
185
+ - No personal information collected
186
+ - Publicly available tutorial files used as base models
187
+
188
+ ### Environmental Impact
189
+ - Dataset generation required significant CPU computational resources with parallel processing
190
+ - Consider environmental cost of large-scale model evaluation on this benchmark
191
+ - CFD simulations are computationally intensive (hours per case on multi-core workstations)
192
+
193
+ ## License
194
+
195
+ MIT License - Free for academic and commercial use with attribution
196
+
197
+ ## Citation
198
+
199
+ If you use this dataset, please cite:
200
+
201
+ ```bibtex
202
+ @article{ezemba2024opensesime,
203
+ title={OpenSeeSimE: A Large-Scale Benchmark to Assess Vision-Language Model Question Answering Capabilities in Engineering Simulations},
204
+ author={Ezemba, Jessica and Pohl, Jason and Tucker, Conrad and McComb, Christopher},
205
+ year={2025}
206
+ }
207
+ ```
208
+
209
+ ## AI Usage Disclosure
210
+
211
+ ### Dataset Generation
212
+ - **Simulation automation**: Python scripts with Ansys PyFluent interface
213
+ - **Ground truth extraction**: Automated computational protocols (no AI involvement)
214
+ - **Quality validation**: Expert oversight of automated extraction procedures
215
+ - **No generative AI** used in dataset creation, labeling, or curation
216
+
217
+ ### Visualization Generation
218
+ - Ansys Fluent rendering engine (deterministic, physics-based)
219
+ - Standardized color mapping and camera controls
220
+ - No AI-based image generation or enhancement
221
+
222
+ ## Contact
223
+
224
+ **Authors**: Jessica Ezemba ([email protected]), Jason Pohl, Conrad Tucker, Christopher McComb
225
+ **Institution**: Department of Mechanical Engineering, Carnegie Mellon University
226
+
227
+ ## Acknowledgments
228
+
229
+ - Ansys for providing simulation software and tutorial files
230
+ - Carnegie Mellon University for computational resources
231
+ - Reviewers and domain experts who validated the automated extraction protocols
232
+
233
+ ---
234
+
235
+ **Version**: 1.0
236
+ **Last Updated**: December 2025
237
+ **Status**: Complete and stable