import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from numpy.typing import ArrayLike from pandas.core.frame import DataFrame, Series from xgboost import XGBRegressor from plotly.subplots import make_subplots import plotly.graph_objects as go from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, r2_score from IPython.display import display, HTML, Markdown CSS = """ .output { flex-direction: row; } """ HTML(f"") df = pd.read_csv('/content/Employee Attrition.csv', \ dtype={'salary':'category', 'dept':'category'}) df= df.drop('Emp ID', axis=1) df.head() n_rows, n_columns = df.shape total_data = n_rows * n_columns print(f'total rows: {n_rows} \ntotal columns: {n_columns} \ntotal data: {total_data}') df.info() df.isnull().sum() df.dropna(inplace=True) def summary_stats(dataframe: DataFrame, numeric_only = True, style=True): if numeric_only: summary: DataFrame = dataframe.describe().T summary['variance'] = dataframe.var(numeric_only=True) summary = summary = summary if not style else summary.style.format("{:.2f}").\ background_gradient(cmap="Blues", axis=1, subset=summary.columns.drop("count")) else: summary = dataframe.describe(exclude="number") return summary numeric_cols_summary = summary_stats(df, style=True) category_cols_summary = summary_stats(df, numeric_only=False) display(numeric_cols_summary) display(category_cols_summary) numerical_cols = df.select_dtypes(include=['float64']).columns sns.set(style='whitegrid') colors = sns.color_palette("husl", len(numerical_cols)) plt.figure(figsize=(16, 12)) for i, (col, color) in enumerate(zip(numerical_cols, colors), 1): plt.subplot(3, 3, i) sns.boxplot(data=df[col], palette=[color]) plt.title(f'Boxplot of {col}') plt.tight_layout() plt.show() def find_outliers(column): Q1, Q3 = df[column].quantile([0.25, 0.75]) IQR = Q3 - Q1 lower_bound, upper_bound = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR outliers = df[(df[column] < lower_bound) | (df[column] > upper_bound)].copy() outliers['Column'] = column return outliers all_outliers = pd.concat([find_outliers(col) for col in numerical_cols]) outliers_count = all_outliers.groupby('Column').size().reset_index(name='OutliersCount') sns.set(style='whitegrid') plt.figure(figsize=(12, 8)) bar_plot = sns.barplot(x='Column', y='OutliersCount', data=outliers_count, palette='viridis') plt.title('Count of Outliers in Each Numerical Column') plt.xlabel('Numerical Column') plt.ylabel('Outliers Count') plt.xticks(rotation=45, ha='right') for p in bar_plot.patches: bar_plot.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points', fontsize=17, color='black') plt.show() columns_have_outliers = ['Work_accident', 'promotion_last_5years', 'time_spend_company'] def remove_outliers(df, column): Q1, Q3 = df[column].quantile([0.25, 0.75]) IQR = Q3 - Q1 lower_bound, upper_bound = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)] df_no_outliers = df.copy() for col in columns_have_outliers: df_no_outliers = remove_outliers(df_no_outliers, col) print(f'Shape before removing outliers: {df.shape}') print(f'Shape after removing outliers: {df_no_outliers.shape}') plt.figure(figsize=(12, 8)) for i, col in enumerate(columns_have_outliers, 1): plt.subplot(2, 2, i) sns.boxplot(x=df_no_outliers[col]) plt.title(f'Boxplot of {col}') plt.tight_layout() plt.show() sns.set(style='whitegrid') plt.figure(figsize=(14, 6)) plt.subplot(1, 2, 1) ax1 = sns.countplot(x='dept', data=df, palette='viridis') plt.title('Count Plot of Departments') plt.xticks(rotation=45, ha='right') for p in ax1.patches: ax1.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='baseline', fontsize=12, color='black') plt.subplot(1, 2, 2) ax2 = sns.countplot(x='salary', data=df, palette='magma') plt.title('Count Plot of Salary Levels') for p in ax2.patches: ax2.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='baseline', fontsize=12, color='black') plt.tight_layout() plt.show() salary_summary = df.groupby('salary').agg({ 'satisfaction_level': 'mean', 'last_evaluation': 'mean', 'number_project': 'mean', 'average_montly_hours': 'mean', 'time_spend_company': 'mean', 'Work_accident': 'mean', 'promotion_last_5years': 'mean', }).reset_index() visible_columns = ['salary', 'satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours', 'time_spend_company', 'Work_accident', 'promotion_last_5years'] fig = go.Figure(data=[go.Table( header=dict(values=list(salary_summary[visible_columns].columns)), cells=dict(values=[salary_summary[visible_columns][col].round(3) if col != 'salary' else salary_summary[visible_columns][col] for col in salary_summary[visible_columns].columns]))]) fig.update_layout( title='Salary Summary', height=300 ) fig.show() sns.set(style='whitegrid') plt.figure(figsize=(10, 6)) sns.countplot(x='dept', hue='salary', data=df) plt.xticks(rotation=45, ha='right') plt.title('Mode Department by Salary Category') plt.xlabel('Department') plt.ylabel('Count') plt.show() from sklearn.preprocessing import LabelEncoder df_label_encoded = df.copy() label_encoder = LabelEncoder() df_label_encoded['salary'] = label_encoder.fit_transform(df['salary']) df_label_encoded['dept'] = label_encoder.fit_transform(df['dept']) print("Label Encoded DataFrame:") print(df_label_encoded.head()) df_label_encoded.salary.unique() correlation_matrix = df_label_encoded.corr() plt.figure(figsize=(10, 8)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5) plt.title('Correlation Matrix') plt.show() X = df_label_encoded.drop(columns=['satisfaction_level']) y = df_label_encoded['satisfaction_level'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = XGBRegressor(n_estimtators=2000, learning_rate=0.005, n_jobs=100) model.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False) y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) mae r2_score(y_test,y_pred)