holylovenia commited on
Commit
4098528
·
1 Parent(s): 53401ca

Upload indotacos.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. indotacos.py +141 -0
indotacos.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import List
3
+
4
+ import datasets
5
+
6
+ from nusacrowd.utils.configs import NusantaraConfig
7
+ from nusacrowd.utils.constants import Tasks
8
+ from nusacrowd.utils import schemas
9
+
10
+ import pandas as pd
11
+
12
+ _CITATION = """\
13
+ @misc{wibisono2022indotacos,
14
+ title = {IndoTacos},
15
+ howpublished = {\\url{https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict}},
16
+ note = {Accessed: 2022-09-22}
17
+ }
18
+ """
19
+
20
+ _LOCAL = False
21
+ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
22
+ _DATASETNAME = "indotacos"
23
+
24
+ _DESCRIPTION = """\
25
+ Predicting the outcome or the probability of winning a legal case has always been highly attractive in legal sciences and practice.
26
+ Hardly any dataset has been developed to analyze and accelerate the research of court verdict analysis.
27
+ Find out what factor affects the outcome of tax court verdict using Natural Language Processing.
28
+ """
29
+
30
+ _HOMEPAGE = "https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict"
31
+
32
+ _LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
33
+
34
+ # For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
35
+ # In most cases the URLs will be the same for the source and nusantara config.
36
+ # However, if you need to access different files for each config you can have multiple entries in this dict.
37
+ # This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
38
+ _URLS = {_DATASETNAME: {"indotacos": "https://huggingface.co/datasets/christianwbsn/indotacos/resolve/main/indonesia_tax_court_verdict.csv"}}
39
+
40
+ _SUPPORTED_TASKS = [Tasks.TAX_COURT_VERDICT]
41
+
42
+ _SOURCE_VERSION = "1.0.0"
43
+
44
+ _NUSANTARA_VERSION = "1.0.0"
45
+
46
+
47
+ class IndoTacos(datasets.GeneratorBasedBuilder):
48
+ """IndoTacos, an Indonesian Tax Court verdict summary containing 12283 tax court cases provided by perpajakan.ddtc.co.id."""
49
+
50
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
51
+ NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
52
+
53
+ BUILDER_CONFIGS = [
54
+ NusantaraConfig(
55
+ name="indotacos_source",
56
+ version=SOURCE_VERSION,
57
+ description="indotacos source schema",
58
+ schema="source",
59
+ subset_id="indotacos",
60
+ ),
61
+ NusantaraConfig(
62
+ name="indotacos_nusantara_text",
63
+ version=NUSANTARA_VERSION,
64
+ description="IndoTacos Nusantara schema",
65
+ schema="nusantara_text",
66
+ subset_id="indotacos",
67
+ ),
68
+ ]
69
+
70
+ DEFAULT_CONFIG_NAME = "indotacos_source"
71
+ labels = ["mengabulkan sebagian", "mengabulkan seluruhnya", "menolak", "lain-lain", "menambah pajak", "mengabulkan", "membetulkan"]
72
+
73
+ def _info(self) -> datasets.DatasetInfo:
74
+
75
+ if self.config.schema == "source":
76
+ features = datasets.Features(
77
+ {
78
+ "id": datasets.Value("int32"),
79
+ "text": datasets.Value("string"),
80
+ "nomor_putusan": datasets.Value("string"),
81
+ "tahun_pajak": datasets.Value("int32"),
82
+ "jenis_pajak": datasets.Value("string"),
83
+ "tahun_putusan": datasets.Value("int32"),
84
+ "pokok_sengketa": datasets.Value("string"),
85
+ "jenis_putusan": datasets.Value("string"),
86
+ }
87
+ )
88
+ elif self.config.schema == "nusantara_text":
89
+ features = schemas.text_features(self.labels)
90
+
91
+ return datasets.DatasetInfo(
92
+ description=_DESCRIPTION,
93
+ features=features,
94
+ homepage=_HOMEPAGE,
95
+ license=_LICENSE,
96
+ citation=_CITATION,
97
+ )
98
+
99
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
100
+ url = _URLS["indotacos"]
101
+ path = dl_manager.download(url)["indotacos"]
102
+ data_files = {"train": path}
103
+
104
+ return [
105
+ datasets.SplitGenerator(
106
+ name=datasets.Split.TRAIN,
107
+ gen_kwargs={
108
+ "filepath": data_files["train"],
109
+ },
110
+ )
111
+ ]
112
+
113
+ def _generate_examples(self, filepath: Path):
114
+ df = pd.read_csv(filepath)
115
+ if self.config.schema == "source":
116
+ row_id = 1
117
+ for row in df.itertuples():
118
+ ex = {
119
+ "id": str(row_id),
120
+ "text": row.text,
121
+ "nomor_putusan": row.nomor_putusan,
122
+ "tahun_pajak": row.tahun_pajak,
123
+ "jenis_pajak": row.jenis_pajak,
124
+ "tahun_putusan": row.tahun_putusan,
125
+ "pokok_sengketa": row.pokok_sengketa,
126
+ "jenis_putusan": row.jenis_putusan,
127
+ }
128
+ yield row_id, ex
129
+ row_id += 1
130
+ elif self.config.schema == "nusantara_text":
131
+ row_id = 1
132
+ for row in df.itertuples():
133
+ ex = {
134
+ "id": str(row_id),
135
+ "text": {"text": row.text, "nomor_putusan": row.nomor_putusan, "tahun_pajak": row.tahun_pajak, "jenis_pajak": row.jenis_pajak, "tahun_putusan": row.tahun_putusan, "pokok_sengketa": row.pokok_sengketa},
136
+ "label": row.jenis_putusan,
137
+ }
138
+ yield row_id, ex
139
+ row_id += 1
140
+ else:
141
+ raise ValueError(f"Invalid config: {self.config.name}")